i Lecture-3

Inheritance

public, private and protected members
const member functions

friend functions

friend classes

virtual functions

Polymorphism

Abstract classes

Const member functions, const arguments
Passing arguments by value and reference
Function overloading

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008

i Inheritance

s Let's take the account example again

= There are many types of accounts
= Checking, saving, money market, IRA, etc.

= All accounts may have

= Some common members.
= Account number, user SSN, etc.

= Some class specific members.

= Method implementation may be
= Same in different classes
= Different in different classes.

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 2

Inheritance - base class & derived class

ase class
class account
{
int user_SSN;
int accountNumber;
public:
void deposit (int amount);
void withdraw (int amount);
double computeInterest ():
}.
= Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
int lastCheckCleared; // not present in account
void showAllChecksCleared();// not present in account
double computeInterest(); // defined in both classes

}, W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 3

Inheritance - base class and derived

classes
= Derived (or child) class-1
class checkingAccount : public account
= Base Class { 7 ’
public:
class account int lastCheckCleared;
{ void showChecksCleared ();
private: | double computeInterest ()
int user_SSN; }:
ut;nz .accoun‘I'Number, = Derived (or child) class-2
P ' class IRA_account : public account
account () {} (
account (int ssn, acctNum); public:
~account() { } void buyFund (int fund_ID):
void deposit (int amount) void sellFund (int fund_ID):
void withdraw (int amount); double computeInterest ();
double computeInterest(); }:
}.

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 4

i Inheritance - continued.

= Important points to note:

= Derived classes have access to members of
base classes in this example.

= Derived classes can have their own members.

= E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

= Members of one derived class are not accessible
to another

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 5

i Examples

» Valid usage in an external function
= account acct(123456, 5672);
= checkingAccount ca;
= acct.deposit (700);
= acct.withdraw (300);
= ca.deposit (1000);
= ca.showAllChecksCleared()

» Invalid usage in derived class

= ca.user_SSN =1234; // Can't access user SSN
s ca.accountNumber = 567;

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 6

i friend functions

= What if a function genuinely needs to
have access to private data?

= E.g. showAccountInfo (Account acct)

= Need to give access ONLY to that
function, not others.

s Use friend function definition

= friend functions of a class have access
to private members of the class.

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 7

i Example - friend function

class account void showAccountInfo

{ (Account a)

private: {
int user_SSN; cout << a.user_SSN <«
int accountNumber:; end;

public: cout << a.accountNumber
void deposit (int amount) «endl;
void withdraw (int amount); }

double computeInterest ();
friend showAccountInfo
(class Account)
}:

This is valid.

Friend function can access
private members.

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 8

i friend class

= Concept of friend can be extended to a class from
a function.

= A class gives access to its private members to its
friend classes.

class account class bank
{ {

friend class bank }
};

Members of bank have access to private members of
account

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 9

i virtual functions

= Function "double computeInterest()" is
defined in both base and child classes.
= Supposed to return different values

= virtual double Account::computeInterest ()
{ return O; }

= double CheckingAccount::computeInterest ()
{ return 10.0; }

= double IRA_Account::computeInterest ()
{ return 100.0; }

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 10

i virtual functions ... contd.

main()

{

Account *x = new CheckingAccount();

x—~computeInterest();
// Will this return O or 10.0?

}

= This will return
= 0, if the function is NOT virtual
= 10.0, if the function is defined virtual

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 11

:L Why are virtual functions needed?

= Mainly to enforce class specific
functional implementation.

= Should not call base class function
from a child object.

= An account object may take different
“forms" at different times
= Checking account, IRA account, etc.

= computeInterest() should compute
derived class specific function.

= Polymorphism

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 12

i Abstract classes

= Consider an object of Account.

= It makes sense to have
= A specific type (e.g., checking) of account
= Not just a generic account object.
= A user should be able to create
= Specific object types.
= NOT generic objects.

= An abstract class is the generic class.

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 13

i Abstract classes ... contd.

= Properties of abstract classes.
= Defines a generic base class
= Class definition has attributes and methods
= Other classes are derived from it.

= Derived classes implement the methods
defined in abstract class.

= Can NOT instantiate objects of base class.

= Can instantiate only objects of derived
classes.

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 14

i How do we create abstract classes?

s Set ANY virtual function to O.
class Account

{
}

class CheckingAccount : public Account

{
}

Account x; // Will NOT work.
CheckingAccount v. // Will work.

ogramming Languages — C++
Ramana Isukapalli Sep 24, 2008 15

virtual double computeInterest () = O;

double computeInterest (){ ..}

i const member functions

class myClass

{

int a;

void f1() const
{a=3;}// Not allowed

).

= const functions can't change any attributes of
myClass.

= function_1 can't change a in the above example

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 16

i Making arguments const

class myClass

{

int q;

void fl(const int i)
{ i=3;}// not allowed

= Cannot change the value of const
arguments

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 17

i Passing args. to a function ... by value

= Compiler creates its own copy.

. An char&ges made inside the function are not
lected after the function.

class myClass

{
void fl(int i) // i is passed by value
{i=3;}
).
int x = 5;
myClass obj;
obj.f1(x);

cout <«< “value of x: "« x<«<endl: // x is still B

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 18

reference

i Passing args. to a function ... by

= Compiler takes the original object.
= Any changes made inside the function are reflected
after the function.

class myClass

{
void f1(int& i) // i is passed by reference.
{i=3:}
).
int x = 5;
myClass obj;
obj.f1(x);

cout <«< “value of x: "<« x<«<endl: // xis 3

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 19

i Function overloading

= Possible to have multiple member functions of
the same name with different parameters

= Function overloading

class myClass
{
// f1 - overloaded function
void f1 (int i);
void f1 (int i, int j);
void f2 (int i, double j);
}

W3110: Programming Languages — C++
Ramana Isukapalli Sep 24, 2008 20

