
W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 1

Lecture-3

� Inheritance
� public, private and protected members
� const member functions
� friend functions
� friend classes
� virtual functions
� Polymorphism
� Abstract classes
� Const member functions, const arguments
� Passing arguments by value and reference
� Function overloading

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 2

Inheritance

� Let’s take the account example again

� There are many types of accounts
� Checking, saving, money market, IRA, etc.

� All accounts may have
� Some common members.

� Account number, user SSN, etc.

� Some class specific members.

� Method implementation may be
� Same in different classes

� Different in different classes.

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 3

Inheritance – base class & derived class

� Base class
class account
{

int user_SSN;
int accountNumber;

public:
void deposit (int amount);
void withdraw (int amount);
double computeInterest ();

};

� Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account

int lastCheckCleared; // not present in account
void showAllChecksCleared();// not present in account
double computeInterest(); // defined in both classes

};

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 4

Inheritance – base class and derived
classes

� Base Class

class account
{
private:

int user_SSN;
int accountNumber;

public:
account () { }
account (int ssn, acctNum);
~account() { }
void deposit (int amount)
void withdraw (int amount);
double computeInterest();

};

� Derived (or child) class-1
class checkingAccount : public account
{

public:
int lastCheckCleared;
void showChecksCleared ();
double computeInterest ()

};

� Derived (or child) class-2
class IRA_account : public account
{

public:
void buyFund (int fund_ID);
void sellFund (int fund_ID);
double computeInterest ();

};

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 5

Inheritance – continued.

� Important points to note:
� Derived classes have access to members of
base classes in this example.

� Derived classes can have their own members.
� E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

� Members of one derived class are not accessible
to another

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 6

Examples

� Valid usage in an external function
� account acct(123456, 5672);

� checkingAccount ca;

� acct.deposit (700);

� acct.withdraw (300);

� ca.deposit (1000);

� ca.showAllChecksCleared()

� Invalid usage in derived class
� ca.user_SSN = 1234; // Can’t access user_SSN

� ca.accountNumber = 567;

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 7

friend functions

� What if a function genuinely needs to
have access to private data?
� E.g. showAccountInfo (Account acct)

� Need to give access ONLY to that
function, not others.

� Use friend function definition

� friend functions of a class have access
to private members of the class.

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 8

Example – friend function

class account
{
private:

int user_SSN;
int accountNumber;

public:
void deposit (int amount)
void withdraw (int amount);
double computeInterest ();

friend showAccountInfo
(class Account)

};

void showAccountInfo
(Account a)
{
cout << a.user_SSN <<
endl;
cout << a.accountNumber

<< endl;
}

This is valid.
Friend function can access

private members.

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 9

friend class

� Concept of friend can be extended to a class from
a function.

� A class gives access to its private members to its
friend classes.

class account class bank
{ {

… …
friend class bank };

};

Members of bank have access to private members of
account

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 10

virtual functions

� Function “double computeInterest()” is
defined in both base and child classes.
� Supposed to return different values

� virtual double Account::computeInterest ()
{ return 0; }

� double CheckingAccount::computeInterest ()
{ return 10.0; }

� double IRA_Account::computeInterest ()
{ return 100.0; }

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 11

virtual functions … contd.

main()
{
Account *x = new CheckingAccount();
x→computeInterest();
// Will this return 0 or 10.0?

}
� This will return

� 0, if the function is NOT virtual
� 10.0, if the function is defined virtual

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 12

Why are virtual functions needed?

� Mainly to enforce class specific
functional implementation.

� Should not call base class function
from a child object.

� An account object may take different
“forms” at different times
� Checking account, IRA account, etc.
� computeInterest() should compute
derived class specific function.

⇒ Polymorphism

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 13

Abstract classes

� Consider an object of Account.

� It makes sense to have
� A specific type (e.g., checking) of account

� Not just a generic account object.

� A user should be able to create
� Specific object types.

� NOT generic objects.

� An abstract class is the generic class.

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 14

Abstract classes … contd.

� Properties of abstract classes.
� Defines a generic base class

� Class definition has attributes and methods

� Other classes are derived from it.

� Derived classes implement the methods
defined in abstract class.

� Can NOT instantiate objects of base class.

� Can instantiate only objects of derived
classes.

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 15

How do we create abstract classes?

� Set ANY virtual function to 0.
class Account
{

virtual double computeInterest () = 0;
}
class CheckingAccount : public Account
{

double computeInterest () { … }
}

Account x; // Will NOT work.
CheckingAccount y; // Will work.

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 16

const member functions

class myClass

{

int a;

…

void f1() const

{ a = 3; } // Not allowed

};

� const functions can’t change any attributes of
myClass.

� function_1 can’t change a in the above example

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 17

Making arguments const

class myClass
{
int a;
…
void f1(const int i)
{ i = 3; } // not allowed

� Cannot change the value of const
arguments

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 18

Passing args. to a function … by value

� Compiler creates its own copy.
� Any changes made inside the function are not
reflected after the function.

class myClass
{

void f1(int i) // i is passed by value
{ i = 3; }

};
int x = 5;
myClass obj;
obj.f1(x);
cout << “value of x: “ << x << endl; // x is still 5

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 19

Passing args. to a function … by
reference

� Compiler takes the original object.
� Any changes made inside the function are reflected

after the function.
class myClass
{

void f1(int& i) // i is passed by reference.
{ i = 3; }

};
int x = 5;
myClass obj;
obj.f1(x);
cout << “value of x: “ << x << endl; // x is 3

W3110: Programming Languages – C++
Ramana Isukapalli Sep 24, 2008 20

Function overloading

� Possible to have multiple member functions of
the same name with different parameters
⇒⇒⇒⇒ Function overloading

class myClass
{
// f1 – overloaded function
void f1 (int i);
void f1 (int i, int j);
void f2 (int i, double j);

}

