
1

Lecture-3

� Inheritance

� public, private and protected members

� const member functions

� friend functions

� friend classes

� Virtual functions

� Polymorphism

� Abstract classes

2

Inheritance

� Let’s take the account example again

� There are many types of accounts
� Checking, saving, money market, IRA, etc.

� All accounts may have
� Some common members.

� Account number, user SSN, etc.

� Some class specific members.

� Method implementation may be
� Same in different classes

� Different in different classes.

3

Inheritance – base class & derived class

� Base class
class account
{

int user_SSN;
int accountNumber;
void deposit (int amount);
void withdraw (int amount);
double computeInterest ();

};

� Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account

int lastCheckCleared; // not present in account
void showAllChecksCleared();// not present in account
double computeInterest(); // defined in both classes

};

4

Inheritance – base class and derived
classes

� Base Class

class account
{
private:

int user_SSN;
int accountNumber;

public:
void deposit (int amount)
void withdraw (int amount);
double computeInterest();

};

� Derived (or child) class-1
class checkingAccount : public

account
{

int lastCheckCleared;
void showChecksCleared ();
double computeInterest ()

};

� Derived (or child) class-2
class IRA_account : public account
{

void buyFund (int fund_ID);
void sellFund (int fund_ID);
double computeInterest ();

};

5

Inheritance – continued.

� Important points to note:
� Derived classes have access to members of
base classes in this example.

� Derived classes can have their own members.
� E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

� Members of one derived class are not accessible
to another

6

Examples

� Valid usage in an external function
� account acct(123456, abc);

� checkingAccount

� acct.deposit (700);

� acct.withdraw (300);

� checkingAccount.deposit (1000);

� checkingAccount

� Invalid usage in an external function
� acct.user_SSN = 1234; // Can’t access user_SSN

� acct.accountNumber = 567;

7

const member functions

class myClass

{

int a;

…

void function_1() const;

};

� const functions can’t change any attributes of
myClass.

� function_1 can’t change a in the above example

8

friend functions

� What if a function genuinely needs to
have access to private data?
� E.g. showAccountInfo (Account acct)

� Need to give access ONLY to that
function, not others.

� Use friend function definition

� friend functions of a class have access
to private members of the class.

9

Example – friend function

class account
{
private:

int user_SSN;
int accountNumber;

public:
void deposit (int amount)
void withdraw (int amount);
double computeInterest ();

friend showAccountInfo
(class Account)

};

void showAccountInfo
(Account acct)

{
cout << user_SSN << endl;
cout << accountNumber

<< endl;
}

This is valid.
Friend function can access

private members.

10

friend class

� Concept of friend can be extended to a class from
a function.

� A class gives access to its private members to its
friend classes.

class account class bank
{ {

… …
friend class bank }

}

Members of bank have access to private members of
account

11

Virtual functions

� Function “double computeInterest()” is
defined in both base and child classes.
� Supposed to return different values

� virtual double Account::computeInterest ()
{ return 0; }

� double CheckingAccount::computeInterest ()
{ return 10.0; }

� double IRA_Account::computeInterest ()
{ return 100.0; }

12

Virtual functions … contd.

main()
{
Account *x = new CheckingAccount();
x→computeInterest();
// Will this return 0 or 10.0?

}
� This will return

� 0, if the function is NOT virtual
� 10.0, if the function is defined virtual

13

Why are virtual functions needed?

� Mainly to enforce class specific
functional implementation.

� Should not call base class function
from a child object.

� An account object may take different
“forms” at different times
� Checking account, IRA account, etc.
� computeInterest() should compute
derived class specific function.

⇒ Polymorphism

14

Example

Account *x;
for (each object obj)
{
x = &obj; // polymorphism
i->computeInterest();

}

Here computeInterest() of derived
classes should be called.

15

Abstract classes

� Consider an object of Account.

� It makes sense to have
� A specific type (e.g., checking) of account

� Not just a generic account object.

� A user should be able to create
� Specific object types.

� NOT generic objects.

� An abstract class is the generic class.

16

Abstract classes … contd.

� Properties of abstract classes.
� Defines a generic base class

� Class definition has attributes and methods

� Other classes are derived from it.

� Derived classes implement the methods
defined in abstract class.

� Can NOT instantiate objects of base class.

� Can instantiate only objects of derived
classes.

17

How do we create abstract classes?

� Set ANY virtual function to 0.
class Account
{

virtual double computeInterest () {} = 0;
}
class CheckingAccount : public Account
{

double computeInterest () { … }
}

Account x; // Will NOT work.
CheckingAccount y; // Will work.

