
1

Lecture-2

� Concepts of class/object

� Data encapsulation

� Constructor and destructor

� Inheritance

� public, private and protected members

� friend functions

� friend classes

2

C++ ─ Philosophically different from C

� High level features of C++
� Uses concepts of “object oriented
programming” (OOP)

� Everything that works in C works in C++
� C syntax, operators, structures, control statements,
etc. work in C++

� Reverse is NOT true

� Object Oriented Programming
� Concept of class/object, methods, inheritance,
encapsulation, abstraction, polymorphism

� Key concepts in this
� Separation of data and methods

3

Data types, IO, control statments

� C data types, IO and control
statements work in C++

� C++ defines additional IO.
� Popular among that

� cout
� cin

� Advantage of cout and cin over
printf, scanf
� No need fo %d, %s, %c, etc

4

Data encapsulation

� Hide the data from end user

� Need to know what methods are
implemented

� Not how they are implemented

� E.g. To compute interest in a bank an
user
� Needs to know what function to call

� NOT how the function is implemented

5

Data encapsulation … contd.

Method OutputData

User

� Methods act on data to provide output.
� User needs to see only method, not data.
� User should not be affected by

� Implementation details of methods.
� Changes in implementation of methods.

Hidden from user

6

A simple “account” example

class account
{
private:
int user_SSN; // attribute (data)
int accountNumber; // attribute (data)

public:
void withdrawMoney (int amount); // method
void depositMoney (int amount); // method
void computeInterest(); // method

};
account x; // x is an object of class “account”

7

Account example … contd.

� class has both “attributes” and “methods”.
� Attributes and methods are “members” of
a class

� An instance of a class is an object.
� A class should typically correspond to some
meaningful entity.

� A class uses methods to interact with
other classes/functions.

� private members accessible only to the
class (and friends)

� public members are accessible to every
class and functions

8

Back to data encapsulation

� How can data be hidden?
� Only class should have access to data

� Class methods use data

� Define every class member to be one of
� public – accessible to every class, function

� private – accessible only to class and friends

� protected – accessible only to class, friends
and children

9

Data encapsulation in account example

� In an object of account
� user_ssn and accountNumber are declared private

� Accessible only to account objects (and friends)

� Methods are public
� Anyone can access them.

� Example
void function1 () // function, not defined in Account
{

account x;
x.user_ssn = 123; // Will NOT work
x.computeInterest (); // Will work

}

10

How do we initialize and cleanup objects?

class account

{

private:

int user_SSN;

int accountNumber;

public:

account(); // constructor – to initialize account object

account(int ssn, int acctNum); // constructor

~account(); // destructor – used to cleanup resources

void withdrawMoney (int amount);

void deposityMoney (int amount);

};

11

Constructor and destructor … contd.

Constructor
o A function with the same name as the class
o Called when an object is created
o A class can have more than one constructor

Destructor
o Called when an object is cleaned up (goes out of
scope)

o One class can have only one destructor
Examples

account x; // constructor code is called
account *y = new account(); // constructor code is called
delete (y); // destructor code is called

12

Constructor and destructor
Constructor code
account::account()
{ user_ssn = -1; accountNumber = -1; }

account::account() : user_ssn (-1),
accountNumber(-1) { }

account::account (int ssn, int acctNum)
{

user_ssn = ssn;
accountNumber = acctNum;

}
Destructor code
~account::account()
{ // Any memory/resource cleanup, etc. }

13

Class methods

Syntax:
<ret_type> class::functionName(args)
{
// code

}

Method code can be present in class definition
• Outside the class definition
• In a separate file

Example
Void account::withdrawMoney (int amount)
{
// code

}

14

Inheritance

� Let’s take the account example again

� There are many types of accounts
� Checking, saving, money market, IRA, etc.

� All accounts may have
� Some common members.

� Account number, user SSN, etc.

� Some class specific members.

� Method implementation may be
� Same in different classes

� Different in different classes.

15

Inheritance – base class & derived class

� Base class
class account
{
int user_SSN;
int accountNumber;
void deposit (int amount);
void withdraw (int amount);

};
� Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
int lastCheckCleared; // not present in account
void showAllChecksCleared();// not present in account

};

16

Inheritance – base class and derived
classes

� Base Class

class account

{

private:

int user_SSN;

int accountNumber;

public:

void deposit (int amount)

void withdraw (int amount);

};

� Derived (or child) class-1

class checkingAccount : public account

{

int lastCheckCleared;

void showChecksCleared ();

};

� Derived (or child) class-2

class IRA_account : public account

{

void buyFund (int fund_ID);

void sellFund (int fund_ID);

};

17

Inheritance – continued.

� Important points to note:
� Derived classes have access to members of
base classes in this example.

� Derived classes can have their own members.
� E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

� Members of one derived class are not accessible
to another

18

Examples

� Valid usage in an external function
� account acct(123456, abc);

� checkingAccount

� acct.deposit (700);

� acct.withdraw (300);

� checkingAccount.deposit (1000);

� checkingAccount

� Invalid usage in an external function
� acct.user_SSN = 1234; // Can’t access user_SSN

� acct.accountNumber = 567;

19

friend functions

� What if a function genuinely needs to
have access to private data?
� E.g. showAccountInfo (Account acct)

� Need to give access ONLY to that
function, not others.

� Use friend function definition

� friend functions of a class have access
to private members of the class.

20

Example – friend function

class account
{
private:
int user_SSN;
int accountNumber;

public:
void deposit (int amount)
void withdraw (int amount);

friend showAccountInfo
(class Account)

};

void showAccountInfo
(Account acct)

{
cout << user_SSN << endl;
cout << accountNumber <<

endl;
}

This is valid.
Friend function can access
private members.

21

friend class

� Concept of friend can be extended to a class from
a function.

� A class gives access to its private members to its
friend classes.

class account class bank
{ {
… …
friend class bank }

}

Members of bank have access to private members of
account

