COMS W3101-1 Programming
Language: C++ (Fall 2007)

o S

Ramana Isukapalli

i Lecture-1

s Course overview

= See
http://www.cs.columbia.edu/~ramana

s Overview of C
= Introduction to C++

i Prerequisites

= A good knowledge of C programming is
recommended.

= A good background in at least one
programming language is required.

i Syllabus Overview

= Overview of C

= We will NOT cover details of C
programming
= Object Oriented Programming
principles wrt C++

= Concepts of class/object, methods,
inheritance, polymorphism, abstraction,
data encapsulation

i Overview of C programming language

= Basic data types

= char, short, int, long, long long, unsigned, float, double, long
double, ...

= Operators:
= Arithmetic: +, -, *, /, o, ++, --

= Logical: ==, Iz, >, <, >=, <=, &&, ||, !
= Bitwise: &, |, 7, «, », ~

= Complex data types
= Struct

= Input, output

= Control statements
« if else

= for

= while

= switch, case

i C structs

s C struct

= used to contain > 1 basic data types
= Can contain other structs

= Eg.,
typedef struct
{

inta, b, c;
float x,y,z;
} myStruct;

myStruct m;
m.a = 1;

i Input, Output

= Lnput

= scanf - read input from std. input

= E.g. scanf ("%d %s", &i, str);

= Reads the values of i and str from std. Input
= Others

= fscanf, read, fread - we will not use in this class

= Output

= printf - print output to std. Output
= E.g. printf ("%d %s", i, str);
= Print values of i and str to std. Output
=« Others

= fprintf, write, fwrite - we will not use in this class

i Control statements ... if

if (<expr_1>)

{
<body of if expr_1>

}

else if (<expr_ 2>)

{
< body of if exp 2>

else /* default */
{

= Example-1
if (i > j)

printf (“i is larger\n”);
m Example-2
if (1 > j)

printf (“i is larger\n”);
else

printf (“j is larger\n”);
= Example-3
if (i > j)

Else if (1 > k)

Else

i Control statements - for

= For (<start_expr>; = Example-1/* print 0 to 9 */
<termination_cond>; {0" (i=0:i<10; i++)
I ' >
{ <loop_increment>) orint (“%d: \n", i)
<body_of_for> = Example-2
} For (; ;) /* infinite loop */

{
/* do something */

}

i Control statements - while

= Similar to for statement = Example-1 /* print O to 9 */

= while (<while_cond>) while (i < 10)
{ {
<while_body> printf ("%d\n", i);
} }
C EXGmple-Z
while (true) /* infinite loop */
{

/* do something */
}

10

i Control Statements - switch, case

| int x = 2;
?wnch (x) switch (x)
case vall: { case 1:
<vall_body>; procedurel();
break; break;
case val?2: case 2. ’
<val2_body>; procedure2(); /* executed*/
break; break;
default: default:

<default_body> default_procedure();

11

i C++ — Philosophically different from C

= High level features of C++

= Uses concepts of "object oriented
programming” (OOP)
= Everything that works in C works in C++

= C syntax, operators, structures, control statements,
etc. work in C++

=« Reverse is NOT true

= Object Oriented Programming

= Concept of class/object, methods, inheritance,
encapsulation, abstraction, polymorphism

= Key concepts in this
= Separation of data and methods

12

i A simple "account” example

class account

{
int user_SSN; // attribute (data)
int accountNumber; // attribute (data)
void withdrawMoney (int amount); // method
void deposityMoney (int amount); // method
>

account x; // x is an object of class "account”

Note:
1. class has both “attributes” and "methods”.
2. Attributes and methods are "members” of a class
3. An instance of a class is an object.
4. A class should typically correspond to some meaningful entity.

B. A class uses methods to interact with other classes/functions.
13

i Class methods

Syntax:
<ret_type> class::functionName(args)
{
// code

}

Method code can be present in class definition
- Outside the class definition
* Inaseparate file

Example
Void account::withdrawMoney (int amount)

{
// code

}

14

How do we initialize and cleanup objects?

class account

{
int user_SSN;

int accountNumber;
account(); // constructor - used to initialize account objects

account(int ssn, int acctNum); // constructor

~account(); // destructor - used to cleanup resources
void withdrawMoney (int amount);

void deposityMoney (int amount);

}
Constructor
o A function with the same name as the class

o Called when an object is created
o A class can have more than one constructor

Destructor
o Called when an object is cleaned up (goes out of scope)
o One class can have only one destructor s

Constructor and destructor

Constructor code
account::account()
{ user_ssn = -1; accountNumber = -1; }

account::account() : user_ssn (-1), accountNumber(-1) { }

account::account (int ssn, int acctNum)
{
user_sshn = ssn;
accountNumber = acctNum;
}
Destructor code
~account::account()
{ // Any memory/resource cleanup, etc. }

Examples
account x; // constructor code is called
account *y = new account(); // constructor code is called
delete (y). // destructor code is called 16

