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Abstract
Obtaining labels can be expensive or time-
consuming, but unlabeled data is often abundant
and easier to obtain. Most learning tasks can be
made more efficient, in terms of labeling cost,
by intelligently choosing specific unlabeled in-
stances to be labeled by an oracle. The general
problem of optimally choosing these instances is
known as active learning. As it is usually set in
the context of supervised learning, active learn-
ing relies on a single oracle playing the role of
a teacher. We focus on the multiple annotator
scenario where an oracle, who knows the ground
truth, no longer exists; instead, multiple labelers,
with varying expertise, are available for query-
ing. This paradigm posits new challenges to the
active learning scenario. We can now ask which
data sample should be labeled next and which
annotator should be queried to benefit our learn-
ing model the most. In this paper, we employ
a probabilistic model for learning from multiple
annotators that can also learn the annotator ex-
pertise even when their expertise may not be con-
sistently accurate across the task domain. We
then focus on providing a criterion and formu-
lation that allows us to select both a sample and
the annotator/s to query the labels from.

1. Introduction
Most research on supervised learning techniques rely on an
often overlooked (still reasonable) assumption that a sin-
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gle domain expert can provide the required supervision;
for example, ground-truth labels in classification problems.
However, it is becoming more common for supervision to
be available in many forms as data can be shared and pro-
cessed by increasingly larger audiences. This makes it pos-
sible for not just one but many experts (and non-experts)
to offer some form of supervision. A very clear example
is that provided by Crowdsourcing (Howe, 2008) mecha-
nisms such as Amazon Mechanical Turk (AMT), but it can
be as implicit as many forms of on-line user interactions
(e.g., product ratings, opinions, user clicks, etc.).

This phenomena renders most supervised learning ap-
proaches sub-optimal and clearly motivates a necessary
shift in machine learning towards models that are annota-
tor aware. Some annotators may be more reliable than oth-
ers; some may be malicious; some may be correlated with
others; there may exist different prior knowledge about
annotators; and in particular annotator effectiveness may
vary depending on the data instance presented. Thus, this
seems to indicate that in this new multi-labeler scenario, la-
bels provided by different annotators should in general be
treated differently.

The use of information from multiple annotators is moti-
vated by a multitude of factors that can be summarized as
follows: 1) It is difficult, and in some cases impossible, to
collect a single golden ground-truth in some problem do-
mains. For example, in the radiology field, specialists regu-
larly disagree on the diagnosis for the same radiological im-
age; thus, often requiring a biopsy which can be difficult or
impossible to collect. 2) It is often the case that an annota-
tor does not have the appropriate knowledge for annotating
all the data, even for a particular domain. Some annotators
will be accurate for certain situations, while some will have
a highly variable accuracy, and some annotators will have
specific biases. 3) In many instances, collecting annota-
tions from multiple non-expert annotators can be less costly
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than collecting annotations just from one expert. 4) Collab-
oration and knowledge sharing is becoming more common,
and thus technology for combining multiple opinions (an-
notations) will become necessary.

Very recently, a few approaches that aim at addressing the
challenges provided by this new setting have been pro-
posed. These include (Yan et al., 2010; Raykar et al., 2009;
Snow et al., 2008). The common topic in this family of
work is how to properly utilize the labels provided by each
annotator in a distinct and more optimal manner instead of
treating all labels equally.

We address a new aspect of this problem motivated by the
fact that while multiple annotators may be available, labels
still have a cost. In fact, in many learning tasks the labeled
data is limited in quantity or expensive to obtain, but the
amount of unlabeled data is large or easy to obtain. If we
want to efficiently label the unlabeled data to make the most
gain (e.g., learn the most at a given cost), traditional su-
pervised learning need only to efficiently identify the most
useful data point to label given the information obtained so
far. In this new multi-labeler scenario, an additional, inter-
esting problem arises: How do we efficiently identify the
most useful annotator given the information provided by
the multitude of annotators?

Thus, the main goal of this paper is to address the key ques-
tion: can we automatically choose the most appropriate an-
notator for a particular task so that learning can be sped up
or be made more efficient in general (e.g., less costly)? That
is, we address the problem of active learning from multiple
annotators.

2. Related Work
In the active learning scenario (Lindley, 1956; MacKay,
1992; Seung et al., 1992), unlabeled data are available and
at each iteration an algorithm is able to choose an example
for a user/oracle to label. There is normally a cost incurred
for requesting each label. The objective is that of learning
the appropriate concept with certain accuracy while incur-
ring the lowest cost. An alternative problem is that of max-
imizing accuracy at a fixed cost. When examples can be
chosen from an unlabeled data set this is normally referred
to as pool-based active learning. In contrast, when a de-
cision to label an example has to be made sequentially as
each example becomes available, this is referred to as on-
line active learning. In this paper we focus on pool-based
active learning.

Active learning can drastically lower labeling costs. It has
been shown that the number of data points needed for learn-
ing some functions can be reduced drastically (exponen-
tially) if these points are chosen appropriately. For a class
of noiseless, deterministic classification problems, active

learning requires O(log(1/ε)) labels to find the classifi-
cation boundary guaranteeing ε error while passive learn-
ing requires O(1/ε) examples (Freund et al., 1997). Even
though strict error bounds like the above can be analytically
obtained only for a limited class of problems, empirical ev-
idence suggests that active learning can be efficient in more
practical scenarios (Cohn et al., 1996; McCallum & Nigam,
1998).

One way to categorize active learning (AL) methods is by
contrasting the underlying criteria that are optimized. Ac-
tive learning by uncertainty sampling, such as (Lewis &
Gale, 1994; Cohn et al., 1996), is the process of select-
ing the unlabeled data point whose label has highest uncer-
tainty given the current model. The rationale behind this
approach is the notion that by querying data points in the
most uncertain areas, the model will efficiently improve its
performance. A different criterion is provided in (Roy &
McCallum, 2001) where the data point of choice is that
which, when labeled, minimizes the estimate of expected
(future) error. While this criterion attempts to directly op-
timize performance, an analytical expression for the ex-
pected error rarely can be obtained, and sampling needs
to be employed. However, appropriately sampling from a
distribution of interest is by itself a difficult task in prac-
tice. Moreover, this method requires retraining the model
for every point that is considered for labeling; this can be
computationally prohibitive.

Query-by-Committee (QBC) active learning (Seung et al.,
1992; Freund et al., 1997), offers a different perspective:
the data point that reduces the most the size of the version
space, a measure representing the number or volume of pa-
rameters that are consistent with the data, is selected. An
approximate solution is to choose that point for which a
set of independently trained models disagrees the most (re-
garding its label). In QBC, the model only needs to be
evaluated, not retrained, for every competing data point.

Despite the extensive work in active learning. We are not
aware of any approaches that take into account the multi-
labeler scenario. The closest approach to active learning in
this area has been the use of repeated labeling (Smyth et al.,
1995; Donmez & Carbonell, 2008; Sheng et al., 2008).
This relies on the identification of what labels should be
reacquired in order to improve classification performance
or data quality. The idea of trying to model different levels
of expertise among labelers has been addressed in (Raykar
et al., 2009; Yan et al., 2010) and later in (Kasneci et al.,
2011). However, none of these approaches addressed the
active annotator selection based on individual annotator
properties. More recently, the approach in (Paquet et al.,
2010) proposed a form of learning where annotators are
chosen randomly and then their responses corroborated us-
ing a separate model.
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The active learning problem is challenging in the multi-
labeler setting due that annotators in general provide differ-
ent amounts of information for the learning model. This in-
formation content is dependent of the available data points.
Therefore, an effective approach should simultaneously se-
lect the data point and annotators that provide the most use-
ful information given what has been learned so far.

3. A Probabilistic Multi-Labeler Model
Let us consider N data points {x1, . . . ,xN}. We denote
the label for the i-th data point given by annotator t as y(t)i .
In general, the labels from individual labelers may not be
correct, may be missing, and may not be consistent with
each other. Let us denote the true (unknown) label for the
i-th data point as zi. In our formulation we let xi and zi
for i ∈ {1, ...N} be random variables in the input space
X and output space Z respectively. Similarly, we let y(t)i

be random variables over the space of labels Y , where t ∈
{1, ..., T}. In general, all the variables zi and some of y(t)i

are not observed1.

3.1. Model Definition

For compactness, we set X to be the collection of points
x1, ...,xN and Y to be the collection of associated labels
that have been provided by all annotators (observed). Given
training data, X and Y , the model we will utilize shall pro-
duce an estimate for the ground-truth, denoted by Z, a clas-
sifier function for predicting the label z for new instances
x, and a model of the annotators’ expertise as a function of
the input x.

We train our classifier by assuming a probabilistic model
over random variables x, y, and z with a graphical model
as shown in Figure 1, previously introduced in (Yan et al.,
2010). Unlike this work, in our active learning scenario
we are interested in cases for which not all labelers have
provided a label for some data points; that is, Y is not fully
observed. The conditional distribution is then given by:

p(Y,Z|X) =
∏
i

p(zi|xi)
∏

t|t∈Ti

p(y
(t)
i |xi, zi), (1)

where T N
i is the set of annotators that provided a label for

the i-th data point.

This model posits that the annotation provided by labeler
t depends on the true (but unknown) label z and the input
x. This is both an interesting and realistic scenario as an-
notators may not necessarily have the knowledge to label
all the data with equal accuracy. Instead their accuracy de-
pends on what input they observe. We believe this is a valid

1In some applications a number of variables zi may be ob-
served, but in general we assume none is available.

x zy

N

Figure 1. Graphical Model for x, y, and z.

assumption in particular for non-expert annotators (for an
experimental validation see (Yan et al., 2010)). Note also
that labelers are assumed independent given the input and
the true label.

In order to fully define our model, p(y
(t)
i |xi, zi) and

p(zi|xi) need to be specified. Various options are possi-
ble depending on the problem domain. We use the defi-
nitions given in (Yan et al., 2010) for the labeler model.
p(y

(t)
i |xi, zi). Two instances are considered:

A Gaussian model:

p(y
(t)
i |xi, zi) = N (y

(t)
i ; zi, σt(xi)), (2)

where the variance depends on the input x and is specific
to each annotator t. For binary classification σt(x) is a
logistic function of xi and t:

σt(xi) = (1 + exp(−wT
t xi − γt))−1. (3)

A Bernoulli model:

p(y
(t)
i |x, zi) = (1− ηt(x))|y

(t)
i −zi|ηt(x)

1−|y(t)
i −zi|, (4)

where ηt(x) is also a logistic function of the input and the
labeler identity t.

The Gaussian model allows for assigning a lower vari-
ance to input regions where the labeler is more consistently
correct relative to areas where there are inconsistencies.
Similarly, the Bernoulli model assigns a higher probability
of the labeler being correct to certain input areas relative
to other areas. Ideally this differentiation can be learned
from data.The distribution p(zi|xi) can take various forms.
Since we are interested in classification, we use the logistic
regression model:

p(zi = 1|xi) = (1 + exp (−αTxi − β))−1. (5)

A straightforward extension is to use multinomial logistic
regression in case we are interested in multi-class classifi-
cation or a Gaussian model for regression.

3.2. Learning

Given our model, we estimate the set of all parameters,
θ = {α, β, {wt}, {γt}}, by employing the maximum like-
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lihood criterion. A standard approach to solve our max-
imum likelihood problem, with missing variables zi and
various y(t)i , is to employ the expectation maximization
(EM) (Dempster et al., 1977) algorithm. The relevant math-
ematical derivation, including the form of the E and M
steps is given in (Yan et al., 2010).

Note that in the active learning scenario, not all the in-
put data points will have complete labels (i.e., a point may
be labeled only by certain labelers during active learning),
Eq. 1 is used instead of the joint distribution of the fully
observed labels employed in (Yan et al., 2010)). The only
subtle difference is that the product over data points does
not include those terms associated to labels not provided
by the respective labeler.

Once the parameters α, β have been estimated in the learn-
ing stage, a new data point x can be classified by utiliz-
ing Eq. 5. This is equivalent to inferring z for a new data
point x (not labeled by any labeler) using the given graph-
ical model.

4. Active Learning: Optimally Selecting New
Training Points and Annotators

Given a trained model of multiple annotators as described
in the previous section (Eq. 5), we want to simultaneously
select the data point and labeler that will allow the model to
learn efficiently (once this point/label is added to the train-
ing set). We have divided this problem into two goals:

a.) To pick a new training point to be labeled and added to
the training set such that our model performance efficiently
improves (usual active learning goal).

b.) To pick the appropriate labeler among the set of avail-
able labelers by choosing the one that will provide the most
confident label for the new chosen training point.

In the next two subsections we propose two simple but ef-
fective strategies that can be combined to achieve these two
goals in a optimal fashion.

4.1. Which new training point to pick?

One of the simplest and widely used strategies for querying
new training samples in active learning scenarios is uncer-
tainty sampling (Lewis & Gale, 1994). Under this strategy,
an active learner queries samples for which the correspond-
ing predictions are the most ambivalent, or least certain.
Since we are considering a binary classification probabilis-
tic model, under this simple strategy, we are interested in
potential samples for which the probability of p(z = 1|x)
is close to 1

2 , in other words we want to query points that

are solutions to the following simple optimization problem:

min
x

(
1

2
− p(z|x))2

Using Eq. 5, we have:

argminx[
1

2
− p(z|x)]2

= argmaxxp(z = 1|x)(1− p(z = 1|x))

= argmaxx
exp(−α′x− β)

(1 + exp(−α′x− β))2
(6)

For convenience, we denote x̃ , [x′1]′ and α̃ , [α′β]′

and simplify Eq. 6 as:

max
x

f(x) = max
x

exp(−α̃′x̃)
(1 + exp(−α̃′x̃))2

(7)

The gradient of the above formulation is:

∇f(x) = exp(−α̃′x̃)(exp(−α̃′x̃)− 1)

(1 + exp(−α̃′x̃))3
α̃ (8)

We can assume without loss of generality that α̃ is not zero.
It is easy to show that α̃ is orthogonal to x̃ (x̃ ⊥ α̃), or
more specifically α′x+β = 0 which basically corresponds
to points on the classifier hyperplane. Since we know

exp(−f)
(1+exp(−f))2 is a concave function w.r.t f which takes the
only maximum at f = 0, we have that α′x+β = 0 defines
a unique hyperplane that characterizes the space of samples
x that interest us most.

4.2. Which expert to pick?

Uncertainty sampling does not provide a clear criterion to
the problem of choosing an annotator. In our approach,
among all the infinite set of points that reside on the afore-
mentioned hyperplane, we choose one for which there exist
a labeler that can provide a new label with (relative) maxi-
mal confidence. For a given x, Eq. 3 provides information
about how confident a labeler t would be in providing a
label. So ideally we want a tuple (x∗, t∗) that solves the
following optimization problem:

min
t,x

σ̃(x, t) (9)

Where σ̃(x, t) = σt(x) = (1 + exp(−wT
t x − γt))−1 and

t ∈ {1, . . . , T}.

Unfortunately, this problem is very complex and com-
putationally expensive to solve (non-convex, non-
differentiable) which makes it not a feasible option in
an active learning setting. However, using the fact that
f(x) = (1 + exp(−x))−1 (for x ∈ <) is a monotonically
non-decreasing function, we can consider the following
alternative bi-convex optimization problem:

min
x,p

C(α′x+ β)2 + p′[w1, w2, . . . , wT ]
′x+ p′γ (10)
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constrained to: C ≥ 0, p ≥ 0,
∑

t p = 1, where
p , [p1, p2, . . . , pT ]

′, γ , [γ1 γ2, . . . , γT ]
′ and C ≥ 0

is a trade-off between the two competing goals: most un-
certain points and points labelers are confident on labelling.
The components of p � 0 are automatically determined
and can be thought of as terms that weigh annotator impor-
tances when minimizing variances.

This formulation defines a linearly constrained, bi-convex
optimization problem for which solutions can be effi-
ciently found using any Newton or Quasi-Newton opti-
mization method. In our case we use a variation of the
BFGS method for linearly constrained problems (Nocedal
& Wright, 2003).

In general, when solving formulation (10) we obtain an op-
timal x∗ to be labeled. This may be problematic in pool-
based active learning (our experimental setting) as x∗ may
not be in our candidate pool. To address this problem, we
search through our sample pool to find the most similar
(closest in the Euclidean sense) sample to be added to our
training set in the next iteration. We summarize this ap-
proach in Algorithm 1.

Algorithm 1 Multi-Labeler Active Learning Algorithm
Inputs: model parameters α, β, w1, . . . ,wT , γ, C, and
number of steps K;
s = 1;
while s <= K do

Use Eq. 10 to find the current best sample template
xtem ;
Find the nearest point x∗ to xtem;
Use Eq. 3 to find the most reliable/confident annotator
for x∗ given the model learned up to this point;
Re-train the model with new data point and label (up-
date α, β, w1, . . . ,wT , γ);
s = s+ 1;

end while
RETURN α, β, w1, . . . ,wT , γ;

5. Experiments
In this section, we compare our active learning multi-
ple labeler algorithm, active learning+multi-labeler (blue),
against baseline methods on text data from scientific sen-
tences (Rzhetsky et al., 2009) with multiple annotations
and on three UCI Machine Learning Repository (Newman
et al., 1998) benchmark data (ionosphere, bupa and pima)
with simulated multiple annotators. There are no existing
active learning methods for the multiple annotator model;
thus, we compare our method against the following base-
lines, testing different aspects of our model: (1) our active
learning component for selecting the sample to train, but
instead of selecting the annotators and learning from the

multi-labeler approach, we use all annotators and simply
use the majority vote to learn a logistic regression classi-
fier, active learning+majority vote (green); (2) we apply
our multi-labeler algorithm to learn the classifier and select
the annotator/s to label the new sample and apply random
(from a uniform distribution) selection to sample instances
for labeling, random sample+multi-labeler (red); and, (3)
random sampling to perform active learning and the ma-
jority vote of all annotators to learn a logistic regression
classifier, random sample+majority vote (magenta). We
report the accuracies and area under the receiver operating
characteristic curve (AUC) of the various approaches.

5.1. An Illustrative Example

We present a simple example to illustrate our approach. For
this example, we used the galaxy dim data described in
(Odewahn et al., 1992) which contains 4192 samples and
14 features for which binary labels are available. For sim-
plicity and visualization, we picked the two features with
the highest correlation with the labels for this experiment
(Figure 2(l)). We assumed that there were labels available
from 3 simulated annotators, by clustering the data into 3
parts (using k-means (Jain et al., 1999)) and assuming that
each annotator is an expert on one single cluster (with la-
beling accuracy: 80%), but not familiar with the other two
clusters (with labeling accuracy: 55%). Annotators exper-
tise is represented in Figure 2(c).

We also divided the dataset into three subsets: 1000 data
points for initial training; 2000 samples for active learn-
ing and 1192 for testing. We then tracked what exactly
our model was selecting after 600 iterations, and in each
iteration which annotators were selected to label the sam-
ples. As shown in Figure 2(r), we found that, the majority
of the selected samples were close to the class boundary
(as expected), and not surprisingly, the annotators label-
ing the selected boundary samples were in effect the ones
who were confident with the boundary samples (annotators
2 and 3). Annotator 1 was never required to label sam-
ples since her/his confident cluster was far away from the
boundary.

5.2. Text Data

Rzhetsky et al. (2009) prepared a publicly available corpus
of 10, 000 sentences from scientific texts (PubMed and Ge-
neWays corpus) each of which has been annotated by 3 out
of 8 labelers. It contains sentences labeled based on dif-
ferent dimensions. Here, we use the polarity, focus, and
evidence labels and binarize them into two classes. We
utilize the 1000 data set from the second annotation cy-
cle where each sentence is labeled by five annotators. After
feature processing and normalization, we converted each
sentence by recording the frequency (numbers of appear-
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Figure 2. (left) Labels, (center) Areas of Labeler expertise and (right) annotator selection information for the simplified two-
dimensional Galaxy Dim Data.

ance time) of the most common words in these data sets,
and it ended up with a numerical feature matrix with 1000
samples and 292 column features. Then, we randomly se-
lected 300 samples as the initial training for the four differ-
ent competing methods mentioned above, 300 points for
active learning sample selection, and the remaining 400
points to test the methods (i.e., measure the test accuracy
and AUC) in each selection step.

To test our active learning approach, we plot the test accura-
cies as the various methods learn each additional sample se-
lected in every active learning step. Figures 3(l), (c) and (r)
are the accuracy plots for label: polarity, evidence and fo-
cus respectively; while Figures 4(l), (c) and (r) are the AUC
plots. As shown in all six figures, active learning com-
bined with the probabilistic multi-labeler model (indicated
as active learning+multi-labeler) maintained the best per-
formance under both accuracy and AUC measures, the sec-
ond best is our multi-labeler model but with random sam-
pling in selecting samples to learn next. This makes sense
because our multi-labeler could extract information avail-
able among the annotators and query the annotations from
the most reliable annotator for incoming samples. The third
best is majority vote+active learning, since the model for
training simply accepts the majority vote from all annota-
tors but without analyzing their annotation qualities, which
makes it inappropriate for situations with difficult annota-
tion tasks (i.e., when experts’ annotations may be varying
and unreliable). Nevertheless, because of its active learn-
ing component, it is still better than the worst approach,
regression+random sample.

5.3. UCI Benchmark Data

We also performed experiments on three sets of UCI
(Asuncion & Newman, 2007) benchmark data: pima (351,
33), ionosphere (768, 8), and bupa Liver (345, 7), (# sam-
ples, # features). Since multiple annotations for any of
these UCI datasets are not available, we need to simulate
several labelers with different “labeler expertise” or accu-

racy. In order to simulate the labelers, for each dataset,
we proceeded as follows: first, we clustered the data into
five subsets using k-means. Then, we assume that each one
of the five simulated labelers i, i = 1 . . . 5 is an expert on
cases belonging to cluster i, where their labeling coincides
with the ground truth; for the rest of the cases (cases be-
longing to the other four clusters), labeler i makes a mis-
take 35% of the time (we randomly switch labels for 35%
of the data samples).

We randomly divided the data into three sets: pima
(100,100,151); ionosphere (200,200,368); bupa
(100,100,145), where the items in the parenthesis
stands for the number of samples in the initial model
training, active learning set, and test set respectively. We
repeat these random split five times for each of UCI data
sets and measure the average and standard deviation of the
accuracies and AUC at each active learning step.

In figures 5-6, we plot the average accuracies and area un-
der the curve with their standard deviations on the four
competing methods at each learning step. Again our active
learning+multi-labeler dominated all of the other meth-
ods. In most cases, random sample+multi-labeler comes
in second, except on the pima data (Figure 6. Here ran-
dom sampling hurts its performance. The figures show
that active learning does improve model performances
compared to random sampling for both multi-labeler and
majority vote regression classifiers. Interestingly, active
learning+majority vote has performances close to ran-
dom sample+multi-labeler in later steps for the iono-
sphere and bupa data (Figures 5-6) and even beat it in
early steps for the pima data. Somehow the active learn-
ing and multi-labeler components help each other in im-
proving classification performance. When one component
is missing, depending on the data characteristics some-
times active learning+majority vote is better than random
sample+multi-labeler or vice versa. Not surprisingly, ran-
dom sample+majority vote which does not utilize multi-
labeler information nor select the most informative sample
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Figure 3. Accuracy comparisons on text data for the polarity, focus and the evidence labelings.
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Figure 4. AUC comparisons on text data for the polarity, focus and the evidence labelings.
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Figure 5. Accuracy comparisons on the Ionosphere, Bupa and Pima datasets.
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Figure 6. AUC comparisons on the Ionosphere, Bupa and Pima datasets.
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lead to the worst performance.

6. Conclusions
Unlabeled data is most often abundant, but obtaining la-
bels is expensive or time-consuming. Instead of simply
labeling all the data or randomly selecting data to be la-
beled, the goal of active learning is to intelligently choose
unlabelled instances to be labeled by an oracle to achieve
higher accuracy with as few training labels as possible. In
the multiple annotator paradigm, an oracle, who knows the
ground truth, no longer exists; instead, multiple labelers,
with varying expertise, are available for querying. This
paradigm posits new challenges to the active learning sce-
nario. We must ask which data sample should be labeled
next and which annotator should we query to benefit our
learning model the most. We are not aware of previous
approaches to address this active learning problem in the
presence of multiple annotators. In this paper, we employ
a probabilistic multi-labeler model that allows for learning
from multiple annotators, whose expertise across the data
space may vary. We provide an optimization formulation
that allows us to select the most uncertain sample and the
annotator to query the labels from for active learning. Ex-
periments on multiple annotator text data and on three UCI
benchmark data show that our active learning approach to-
gether with taking advantage of information from multiple
annotators clearly improves upon the learning rates (and
performance) of baseline methods.
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