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Abstract
Location proximity schemes have been adopted by social
networks and other smartphone apps as a means of balanc-
ing user privacy with utility. However, misconceptions about
the privacy offered by proximity services have rendered users
vulnerable to trilateration attacks that can expose their lo-
cation. Such attacks have received major publicity and, as a
result, popular service providers have deployed countermea-
sures for preventing user discovery attacks.

In this paper, we systematically assess the effectiveness of
the defenses that proximity services have deployed against
adversaries attempting to identify a user’s location. We pro-
vide the theoretical foundation for formalizing the problem
under different proximity models, design practical attacks
for each case, and prove tight bounds on the number of
queries required for carrying out the attacks. To evaluate the
completeness of our approach, we conduct extensive experi-
ments against popular services. While we identify a diverse
set of defense techniques that prevent trilateration attacks,
we demonstrate their inefficiency against more elaborate at-
tacks. In fact, we pinpoint Facebook users within 5 meters
of their exact location, and 90% of Foursquare users within
15 meters. Our attacks are extremely efficient and complete
within 3-7 seconds. The severity of our attacks was acknowl-
edged by Facebook and Foursquare, both of which have fol-
lowed our recommendations and adopted spatial cloaking to
protect their users. Furthermore, our findings have wide
implications as numerous popular apps with a massive user
base remain vulnerable to this significant threat.

1. INTRODUCTION
Location-based services (LBS) have become an integral

part of everyday life. However, accessibility to fine-grained
location information has raised significant privacy concerns,
as users are exposed to various threats, ranging from the
inference of sensitive data [33] (e.g., medical issues, politi-
cal inclination and religious beliefs) to physical threats such
as stalking [10]. Furthermore, apart from the revelations re-
garding mass user surveillance by government agencies, arti-
cles have revealed that law enforcement agencies also follow
more targeted, and unorthodox, tactics. Fake profiles are
used to befriend users and gain access to personal data, as
well as track their whereabouts by monitoring their check-
in behavior [6, 8]. Therefore, the information accessible by
users’ contacts is a significant aspect of their privacy.

Revealing a user’s location is considered a significant pri-
vacy breach [46], and services are adopting the more privacy-

preserving approach of location proximity : notifying users
about who is nearby, and at what distance. However, when
the exact distance to a user is revealed by the service, trilat-
eration attacks become feasible, with several examples being
presented in the media recently. Articles have also reported
that the Egyptian government used trilateration to locate
and imprison users of gay dating apps [7,9]. While the use of
trilateration has not been confirmed, such reports highlight
the potential severity of such attacks, and the importance of
preserving the locational privacy of users. Naturally, these
reports have caught the attention of popular services, which
in turn have deployed defense mechanisms to prevent local-
ization attacks [2].

In this paper, we explore the privacy guarantees of 10
popular social networks and LBS. We audit the services and
identify the mechanisms deployed to protect the location
privacy of their users. To evaluate the defenses that have
been adopted by the industry, we formalize the problem of
locating users as a search problem in the discrete Euclidean
plane. To our knowledge, this is the first formal treatment of
user discovery attacks in proximity services. We prove tight
bounds on the number of queries required to attack a service
under different proximity models, and devise optimal algo-
rithms that realize those attacks. The lower bounds on the
query complexity of our techniques provide useful insight on
the effectiveness of mitigations against localization attacks,
such as rate limiting the number of queries.

We evaluate our attacks against four of the audited ser-
vices that employ a diverse set of countermeasures. We show
that user discovery attacks against proximity services may
require complex techniques; our attacks include geometric
algorithms that gradually reduce the candidate bounding
area where a user resides, the employment of colluding ac-
counts for obtaining side channel information on the distance
between users, and the utilization of statistical algorithms
for coping with the randomization used by services as a de-
fense mechanism. Our results demonstrate that, despite the
defense mechanisms in place, our attacks are still very ef-
fective and time-efficient, and practical for use at scale and
on a continuous basis (real-time tracking). In particular,
using a single account, we pinpoint Facebook users within
5 meters of their actual location in 3 seconds, and 90% of
Foursquare’s Swarm users within 15m in 7 seconds. We
even stress-test our attacks and demonstrate the feasibility
of tracking moving targets in real time. Due to the recent
events [9], Grindr hides the distance information for citizens
of oppressive regimes. Even without any distance informa-
tion disclosed, we are able to carry out successful attacks by
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inferring the distance to our target. Using a pair of collud-
ing accounts, and the distance-based ordering of users by
Grindr, we pinpoint 67% of the users within 10m of their
exact location, and 98% within 19m. Similarly, even though
Skout implements a sophisticated randomization defense, we
are able to pinpoint its users within 37.4m on average.

Our findings reveal that there is no industry standard for
ensuring the locational privacy of users; attempts are based
on ad-hoc approaches that often exhibit a lack of under-
standing of the technical intricacies of localization attacks.
Despite the active effort to prevent such threats, every ser-
vice we audited was vulnerable to, at least, one of our at-
tacks. To provide a robust solution, we revisit an obfuscation
mechanism from the literature, namely spatial cloaking [19],
and apply it to the domain of distance-based proximity ser-
vices. By quantizing the plane and mapping users to points
on a grid, the service can prevent adversaries from pinpoint-
ing users to a finer precision than that of a grid cell. To in-
centivize services to adopt this defense, we provide a precise
characterization of both the privacy obtained (under certain
assumptions), and the tradeoff between privacy and usabil-
ity. After our disclosure, Facebook and Foursquare acknowl-
edged the severity of our attacks and, following our guide-
lines, adopted spatial cloaking for protecting their users.

The main contributions of this paper are:
• We present a formal treatment of user discovery attacks

within a proximity service. We model the problem, prove
the lower bounds on the query complexity, and design
algorithms that match the corresponding lower bounds.
• We evaluate the privacy of popular proximity services

through extensive experimentation, and reveal the short-
comings of existing proximity models and defenses. The
disclosure of our findings to the services resulted in Face-
book and Foursquare adopting spatial cloaking.
• We analyze the practical aspects of our attacks, and iden-

tify key characteristics that affect their performance and
accuracy. We provide guidelines for impairing the attacks
and ensuring a minimum level of privacy without incur-
ring a significant deterioration of the quality of service.
• We release an open-source auditing framework for assist-

ing developers and researchers in assessing the privacy of
proximity services. Our framework has already been used
by Facebook for evaluating their newly-adopted spatial
cloaking mechanism.

2. MODELLING DISCOVERY ATTACKS
In this section we provide the theoretical modelling of our

user discovery attacks. For simplicity, we refer to the adver-
sary as Mallory and the target user as Wally.

Threat Model. The adversary can be any entity inter-
ested in determining a user’s location; a government or law
enforcement agency conducting user surveillance ( [6, 8]), a
third party (e.g., insurance company) interested in inferring
private data or a malicious individual (e.g., stalker) [10]. To
highlight the inefficiency for existing designs and counter-
measures, we adopt a weak adversarial model: the adversary
uses only the distance information revealed by the service.

Our attacks do not require prior knowledge of the user’s
whereabouts, and the only requirement is to have an account
in the service so as to obtain some type of information about
the distance to the user. In Section 5 we demonstrate that
we can identify a user’s location with high precision, and
also track a moving target in real time.

Problem Formulation. We formulate our problem as
a search problem in the discrete Euclidean plane. This is
justified by the fact that both services and protocols (e.g.,
GPS) cannot provide arbitrary accuracy. By modelling it
as a discrete problem, we can adapt the size of the input to
match the accuracy provided by the service.

We consider a target user u residing at a point pu of the
discrete Euclidean plane. The attacker can request proxim-
ity information regarding the location of the user u. This is
obtained through an oracle, which we refer to as a proximity
oracle P . Since the attacker can fake her own location, she
can query the proximity oracle from any point within the
Euclidean plane. Thus, the proximity oracle accepts a point
p and returns proximity information for the point p and
the location pu of the target user. We denote by Pu(·) the
proximity oracle which, for an input of a point p, outputs
some function of p, pu. Also, we define as dist(p1, p2) the
Euclidean distance between two points p1, p2. We proceed
to define the user discovery problem, our main algorithmic
problem, in the context of location proximity services.

Definition 1. User Discovery Problem (UDP): Let
pu be a point in the discrete Euclidean plane and A an area
containing pu. In the User Discovery Problem the goal is to
identify the point pu, given as input the area A and black
box access to a proximity oracle Pu.

In the following sections we will describe three different
implementations of the proximity oracle that capture the
protocols used by real services. For each of these oracles,
we describe how to solve UDP given access to the respective
oracle.

2.1 Disk User Discovery Problem
We start by giving the definition of the first oracle.

Definition 2. Disk Proximity Oracle: A disk proxim-
ity oracle Pr,u(p) with radius r, accepts as input a point p
in the discrete Euclidean plane and is defined as:

Pr,u(p) =

{
1 if dist(p, pu) ≤ r
0 otherwise

This model captures services and protocols that inform the
user whether another user is within a certain distance of
his current location; otherwise the user is not in proximity
and no further information is given. We define the Disk
User Discovery Problem (DUDP) to be the UDP given black
box access to a Disk Proximity Oracle. We solve DUDP
by partitioning the problem into two subproblems, which
require a different approach in order to be solved: first, we
wish to restrict the user within a single disk of radius r and,
second, to search that disk for the target point pu.

In the former subproblem, the user is given a, possibly
large, area A which she wants to cover with disks of radius r
in order to restrict the search area within a single disk. We
call this problem the Disk Coverage Problem. To achieve an
efficient attack, we wish to cover the area with the minimum
number of disks.

Definition 3. In the Disk Coverage Problem, the in-
put is an area A in the discrete Euclidean plane and a num-
ber r > 0. The goal is to cover the area A with the minimum
number of disks of radius r.
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After the target user’s location is restricted within a single
disk of radius r, one has to use the proximity oracle to fur-
ther refine the user’s location up to a single point. We call
this subproblem the Disk Search Problem.

Definition 4. In the Disk Search Problem the input
is a single disk of radius r along with a proximity oracle
Pr,u(·). The goal is to uniquely pinpoint the point pu within
the input disk.

Notice that the Disk Search Problem is exactly the DUDP
when the input area is restricted to a disk of radius r. Be-
cause the two cases are handled in a different manner, we
address them separately. Next, we examine each subprob-
lem and describe algorithms for solving them.

Solving Disk Coverage. To generalize our attack, we
assume that the only information the attacker has is a very
coarse-grained approximation of the location of the targeted
user; for example Mallory might know which state Wally
lives in. Given a total area in which the user might reside,
our first goal is to to pinpoint the user within a disk of radius
r, as provided by the proximity oracle.

A problem that corresponds precisely to the Disk Cover-
age Problem is the Minimum Dominating Set (MDS) prob-
lem in a special class of graphs called Unit Disk Graphs
(UDG). In the MDS problem, one is given as input a graph
G = (V,E) and the goal is to find a set D ⊆ V such that
for every v ∈ V there exists a u ∈ D for which (u, v) ∈ E.
UDG are a special class of geometric graphs; even though a
number of equivalent definitions exist, we will use what is
referred to as the proximity model [15]:

Definition 5. (Proximity model for UDG) Consider a
set P of n points in the plane. The Unit Disk Graph for
the points in P is the undirected graph G = (P,E) where P
is the set of n points and for every u, v ∈ P , we have that
(u, v) ∈ E iff dist(u, v) ≤ k, for some predefined k > 0.

The MDS problem in UDG has been studied extensively.
While it is NP-Hard [32], the approximation ratio that has
been achieved is much better than for the general MDS prob-
lem which cannot be approximated better than O(logn).
Specifically, there exists a 5-approximation in linear time [27],
a 3-approximation in time O(n18) [16] and a PTAS [35]
whose complexity is impractical for the problem instances
we aim to tackle.

Notice that the areas that one needs to cover might spread
across entire cities or even larger areas. Thus, the respec-
tive graphs may contain millions of nodes. At that scale,
even algorithms with quadratic complexity may result in
prohibitively large running times. Fortunately, for the MDS
problem there exists a straightforward, linear-time algorithm.

The algorithm works by taking an arbitrary node from the
graph, adding it to the dominating set, removing all neigh-
boring nodes that are already covered by the chosen node,
and repeating the process until the graph is empty. It is
easy to see that the algorithm will run in time O(|V |). If
the graph is a UDG, the algorithm provides a covering with
a size at most 5 times the minimum covering [27]. We create
the points of our set by tiling the 2-dimensional plane with
hexagons, a common technique for ensuring coverage with
minimum node placement in cellular networks [43]. Each
hexagon edge is equal to

√
3r, where r is the radius for the

lookup granularity. While the construction is heuristic, since
no two points in our set are at a distance less than r, our

S Input set of points to DiskSearch(·)
R(S) Circumscribed rectangle of set S
k Length of the short edge of R(S)
d Length of the long edge of R(S)
IR(S) Set of points within R(S)
Cr(p) A disk centered at point p with radius r
pm Middle point of the short edge of R(S)
lm Line parallel to the long edge of R(S) and crossing pm

S1 S ∩ Cr(p)
S2 S \ S1

Table 1: Notation used for the DiskSearch(·) algorithm.

algorithm creates a 5-approximation of the minimum cover-
ing, and constructing the points takes O(|V |) on average.

Solving Disk Search. After the user is restricted to a
disk of radius r, the goal is to refine the location to a single
point. We present an algorithm that solves the Disk Search
problem usingO(log r) queries. One can easily show that the
result is optimal. Our algorithm works like a binary search
algorithm, using the oracle to cut down the candidate points
that the user resides in by half with each query. Notice, that
we might not always be able to split the candidate points
into two equals sets in every cut, however, as we will show,
the overall number of queries required is still O(log r).

We start by providing some definitions that will be used
throughout the algorithmic description: for a given set S
of points in the Euclidean space, we denote with R(S) the
circumscribed rectangle that includes those points, and by
IR(S) the points in the rectangle R(S). The two edges of
R(S) are referred to according to their lengths, namely,
“short edge” and “long edge” with lengths k, d where k ≤ d.
For a point p, we denote with Cr(p) the points in the disk
centered at p with a radius r. We say that the algorithm
performs a cut on a set S, resulting in two subsets S1, S2,
when the proximity oracle Pr,u is queried on a point p and
S1 = S ∩Cr(p), S2 = S \S1. We denote the middle point in
the short edge of R(S) by pm. Finally, let lm be a line par-
allel to the long edge of R(S) passing through pm. Table 1
provides an easy reference of our notations.

The algorithm DiskSearch(S) proceeds recursively:
1. For input of a set S, if |S| = 1 return p ∈ S.
2. For each point pi in lm, starting at a distance r from
R(S), and moving towards R(S), check the size of the set
S ∩ Cr(pi). If for a point pi it holds that |S ∩ Cr(pi)| >
|S|/2, then set p = pi−1.

3. Make a call to the proximity oracle on point p:
– If Pr,u(p) = 1 recurse on S1.
– If Pr,u(p) = 0 recurse on S2.

The correctness of the algorithm is evident once we bound
the number of recursive calls that the algorithm makes. For
the running time analysis we assume that the calls to Pr,u(·)
require constant time. We prove the following theorem.

Theorem 1. The DiskSearch(·) algorithm has a time com-
plexity of O(r log r), and will do at most O(log r) queries to
the proximity oracle Pr,u(·).

We will start by proving a number of useful lemmas:

Lemma 1. Let S be a set of points, k be the short edge
of R(S) and p, p′ two successive points on lm. Furthermore,
let S1 = S ∩ Cr(p) and S′1 = S ∩ Cr(p′). Then

|S′1| ≤ |S1|+O(k)

Proof. The number of points that are added into the
disk by shifting the cut by one point are, at most, propor-
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tional to the length l of the arc segment with chord length
k. We will show that the length is O(k).

First, notice that the length of the arc is less than the
perimeter of the circumscribed rectangle around the arc seg-
ment. Therefore, if h is the height of the arc segment then
we have that l ≤ 2k + 2h. We want to bound the height h
to be less than k. Therefore, we have:

h ≤ k

⇒ r −
√
r2 − k2/4 ≤ k

⇒ k ≤ 8r
5

If k > 8r
5

, then we have that l ≤ π · r ≤ O(k) therefore the

lemma holds trivially. On the other hand, if k ≤ 8r
5

we have
that l ≤ 2k + 2h ≤ 4k ≤ O(k).

To facilitate computations, we work with the circumscribed
rectangles of the sets that result from the cuts of the algo-
rithm. The next lemma shows that the number of points
within the sets resulting from cuts and the number of points
in their circumscribed rectangles are of the same order.

Lemma 2. Let S be the input set in any iteration of the
algorithm. Then we have that |S| = Θ(|IR(S)|).

Proof sketch. We will show that if the point sets that
are input to the algorithm satisfy the invariant before the
cut, then the new sets will also satisfy the invariant.

• Base Case: The first input is all the points in a
disk, which is of the order of π · r2. The circum-
scribed polygon (in this case a square) contains (2r +
1)2 points, therefore clearly in this case we have that
|S| = Θ(IR(S)).

• Inductive Step: Assume now that we are at some
iteration where the input set satisfies the invariant.

Consider the short edge of R(S) with length k. Then,
|IR(S)| = Ω(k2). Moreover, because |S| = Θ(|IR(S)|)
by the inductive hypothesis we have that k = O(

√
(|S|).

Let S1, S2 be the two subsets after the cut. Then by
lemma 1 we have that

|S|/2 ≤ |S1| ≤ |S|/2 +O(k) ≤ |S|/2 +O(
√
|S|)

Therefore, |S1| = Θ(|S|). In addition, we have that

|S|/2 ≤ |IR(S1)| ≤ |IR(S)| ≤ O(|S|)

where the last inequality also holds from the inductive
hypothesis. Consequently, |IR(S1)| = Θ(|S|) and thus,
|S1| = Θ(|IR(S1)|) which concludes the proof for S1.
The proof for the set S2 is similar and, thus, omitted.

The next lemma states a bound on the size of the cuts
performed by the algorithm, and is basically proven in the
inductive step of lemma 2. Thus, we omit its proof.

Lemma 3. Let Sl ∈ {S1, S2} be the largest subset of S
after a cut of the algorithm. Then we have that |S|/2 ≤
|Sl| ≤ |S|/2 +O(

√
|S|).

We now proceed with the proof of theorem 1:

Proof of Theorem 1. Notice that since our initial set
S contains all the points in a disk of radius r, the number
of points that one should test during the linear sweep is at
most r at each iteration. In addition, since each iteration
makes one query to the proximity oracle, all that remains is
to bound the number of iterations of the algorithm.

Using lemma 3 we can bound the total number of queries
as follows; We have that queries of the algorithm are bounded
by the following recursive equation:

T (n) = T (n/2 +K(n)) + 1

for some function K(n). Notice now that, because K(n) ≤
O(
√
n), there exists an integer c such that, for all n > c, we

have that K(n) ≤ n/4. Therefore, for all n > c we have that

T (n) ≤ T (n/2 + n/4) + 1
≤ O(logn)

When n ≤ c the algorithm would need a constant number of
additional queries and, therefore, the total number of queries
to the proximity oracle is at most O(logn), which concludes
theorem 1.

Moreover, we prove the following theorem showing the
optimality of our algorithm.

Theorem 2. Let Pr,u(·) a proximity oracle with radius
r, and A be a set of points in the discrete Euclidean plane.
Denote by OPTMDS the minimum size of a dominating set
for the Unit Disk Graph spawned from the points in A. Then,
any deterministic algorithm solving the DUDP in the set A
will have to make Ω(OPTMDS + log r) queries to the disk
proximity oracle Pr,u(·) in the worst case.

We prove the theorem by first showing a lower bound for
the Disk Search problem.

Lemma 4. Any algorithm solving the Disk Search problem
has to make Ω(log r) queries to the proximity oracle Pr,u(·).

Proof. Consider the binary decision tree of the algo-
rithm based on the results of the proximity oracle queries.
Then because there are Ω(r2) possible points where the user
might reside, the tree must have Ω(r2) leaves and, therefore,
the height of the tree must be at least Ω(log r).

Now we proceed with the proof of Theorem 2.

Proof of Theorem 2. In the case thatOPTMDS ≥ Ω(log r)
we have that, in the worst case, at least OPTMDS queries
will be needed in order to cover the area and we are done. In
the opposite case that OPTMDS ≤ O(log r), one has to at
least search a circle of radius r which as, we showed above,
cannot be done in less than Ω(log r) queries.

2.2 Rounding User Discovery Problem
Now we turn to a different oracle implementation. This

proximity oracle model computes the distance between p
and pu but rounds the resulting value up to some predefined
accuracy. To correctly define the oracle in this model, we
define the notion of a rounding class.

Definition 6. (Rounding class) For an interval Ik =
(a, b) ⊆ R+ we define the rounding class Rk to be the tu-
ple (Ik, δk) where δk ∈ R+ is a rounding value.
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Algorithm 1: Algorithm for the RUDP

Input: Rounding Proximity Oracle PS,u(·), Area A;
Output: Location of the target user in the Euclidean plane;
Area0 = A;
i = 1;
l = |S|;
while i < l ∧ |Areai| > 1 do

Areai = Trilaterate(Areai−1, PS,u(·));
i = i + 1;

end
Pr,u = SimulateDiskProximityOracle(PS,u(·));
pu = DiskSearch(Areak, Pr,u(·));

Some services (e.g.,Facebook) apply different rounding de-
pending on the distance between two users. This motivates
the notion of a rounding class family, which we define below
so as to capture this behavior.

Definition 7. (Rounding Class Family) We define a fam-
ily of rounding classes S = {(I1, δ1), . . . , (In, δn)} to be a set
of rounding classes such that the following hold:
1. The set I = {I1, . . . , In} forms a partition of R+.
2. For i, j we have that i < j ⇒ δi < δj.
3. For k > 1, it holds that δk ≤ inf Ik.

The first condition implies that for every possible distance
there is a corresponding rounding value. The second condi-
tion asserts that the rounding values monotonically decrease
as the distance decreases. The third condition intuitively
states that the rounding added is small compared to the
actual distance. Conditions 2,3 are not necessary for our
attacks to work; however they are natural constraints which
we found in all services, and simplify the description and
analysis of our algorithms.

Next, we define the operator dxeδ that rounds x to the
closest number x′ ≥ x such that δ

∣∣ x′1. Notice that, one can
similarly define the operators b·eδ and b·cδ. Indeed, when at-
tacking real services, we consider rounding classes that also
use these operators. However, the algorithms themselves
does not change in any way and. For simplicity, we will use
the d·eδ operator throughout the presentation and analysis.

Definition 8. A Rounding Proximity Oracle PS,u(p)
indexed by a family of rounding classes S is defined as:
Let (Ik, δk) ∈ S be a rounding class such that dist(p, pu) ∈
Ik. Then, PS,u(p) = ddist(p, pu)eδk .

We define the Rounding User Discovery Problem (RUDP)
as the UDP given access to a Rounding Proximity Oracle.
Our problem definition also covers other models. E.g., an
oracle that outputs exact distances is a rounding proximity
oracle with the rounding class family S = {(R+, δ)}, δ → 0.

Solving RUDP. Intuitively, if we have the exact dis-
tance to the target user, a simple trilateration will give us
his location. However, in our case, the rounding operation
is applied, which adds noise to the result. Thus, the result
of applying a trilateration on a rounded distance is to re-
duce the area where the user resides. Next, we exploit the
fact that for each rounding class Rk = (Ik, δk) we have that
δk ≤ inf Ik. Reapplying the trilateration algorithm within
the reduced area will result in getting smaller rounding er-
rors and, thus, further reducing the search area. This pro-
cedure is repeated until we have reached R1 = (I1, δ1), in
1 Since δ might not be an integer, we abuse the notation
here to denote by δ

∣∣ x that x is an integer multiple of δ.

which case we use the rounding value of R1 to define a disk
proximity oracle and execute the DiskSearch(·) algorithm
we presented. Specifically, we define the disk proximity or-
acle Pr,u(·) for a radius r = δ1 as follows:

Pr,u(p) =

{
1 if PS,u(p) ≤ δ1
0 Otherwise

Notice that, after the last trilateration, the remaining
points to search are located in an area of size δ21 . Therefore,
a disk of radius δ1 is large enough to run the DiskSearch(·)
algorithm. Algorithm 1 shows the implementation of the at-
tack. We define a procedure B = Trilaterate(A,PS,u(·))
which accepts as input an area A and a rounding proximity
oracle, and by querying PS,u(·) performs a trilateration to
reduce the possible area, the user is residing in, to B. The
details of the trilateration algorithm are known [22] and thus
omitted; finally, the procedure SimulateDiskProximityOr-

acle creates a disk proximity oracle as described before.
Analysis. The iterative application of trilateration is

guaranteed to reduce the search area into a smaller rounding
class every time, because we know that for a rounding class
Rk we have that δk ≤ inf Ik. Albeit natural, this restriction
is not necessary; indeed, if at any point the algorithm can-
not guarantee that trilateration will provide a reduced search
area, then we can define the proximity oracle similarly to the
way we defined it above and then execute the DiskSearch(·)
algorithm. The number of queries the algorithm makes to
the oracle is 3 · |S|+O(log δ1) where δ1 is the rounding value
of the smaller rounding class R1. Additionally, the time re-
quired by the trilateration procedure is also constant and,
thus, the total running time is O(|S|+ δ1 log δ1).

Next, We prove two lemmas that establish a lower bound
on the query complexity of any deterministic algorithm solv-
ing the rounding user discovery problem.

Lemma 5. Let PS,u(·) be a rounding proximity oracle in-
dexed by a family of rounding classes S = {R1, R2, . . . , Rl}
and an area A in the discrete Euclidean plane. Then, any
deterministic algorithm solving the Rounding User Discov-
ery Problem in the area A given access to PS,u(·) requires
Ω(log δ1) queries to PS,u(·) in the worst case.

Proof. Let S = {(R+, δ)} and let A be a disk of radius
r = δ/2− ε, for some ε, 0 < ε < δ/4. We will show that the
rounding oracle PS,u(·) can be simulated by an oracle which
outputs only one bit of advice on each query. Afterwards,
a straightforward application of the decision tree technique
allows us to obtain a Ω(log δ) lower bound on the number
of queries required to locate the user since the area contains
at least Ω(δ) points.

More formally, consider a query PS,u(p) on a point p. De-
note by pc the center point of the disk of the area A. Then,
by the triangle inequality we have that

dist(p, pc)− r ≤ dist(p, pu) ≤ dist(p, pc) + r

Notice that, within the interval [dist(p, pc)−r, dist(p, pc)+r]
there exists at most one integerm such that δ

∣∣ m. We define
an oracle Ou(p) as follows:

Ou(p) =

{
0 if ddist(p, pu)eδ = ddist(p, pc)− reδ
1 Otherwise

Now the rounding oracle PS,u(·) can be simulated as follows:

PS,u(p) = ddist(p, pc)− reδ +Ou(p) · δ
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Now we can use the same argument as in lemma 4: The
binary decision tree based on the answers of the oracle Ou(·)
must have Ω(δ) leaves and therefore a height of at least
Ω(log δ).

Lemma 5 is interesting in the sense that it demonstrates
that after the area is reduced into the order of the small-
est rounding value, the rounding proximity oracle answers
provide at most one bit of additional information in each
query. Our next lemma states a lower bound on the queries
required to reduce the distance to pu into the interval of the
smallest rounding class.

Lemma 6. Let PS,u be a rounding proximity oracle in-
dexed by a family of rounding classes S = {(I1, δ1), . . . , (In, δn)}
and an area A in the discrete Euclidean plane. Then, any al-
gorithm for finding a point p ∈ A, such that dist(p, pu) ∈ I1
requires at least |S| − 1 queries to PS,u in the worst case.

Proof sketch. Let S be a rounding class family of size
n such that for any rounding value δi, i > 1, we have that
δi ∈ Ii−1 ∧ δi > π · (inf Ii−1 + δi−1). Moreover consider an
area A where |A| > π · (inf In + δn)2. We will show that any
problem instance in which the set S and the area A satisfy
the above constraints requires at least |S|−1 queries to PS,u
in the worst case. The proof is by induction on the size of
S.

• Base case: For |S| = 2, since |A| > π · (inf I2)2 at
least one query is required in the worst case.

• Inductive step: Now, let us assume that for every
set S of size at least k, any algorithm given as input
an area A with size |A| > π · (inf Ik + δk)2 requires at
least k − 1 queries to the proximity oracle PS,u.

Consider now a family S, with |S| = k + 1 and a sin-
gle query of the algorithm at any point within an area
of size |A| ≥ π · (inf Ik+1 + δk+1)2. Then, notice that
for any query of the algorithm on a point p, there ex-
ists at least one candidate point for the user such that
dist(pu, p) > inf Ik+1 and therefore, the candidate area
for pu is of size at least δ2k+1 > (π · inf Ik + δk)2 >
π · (inf Ik + δk)2. Therefore, the algorithm now has to
search an area A′ where |A′| > π · (inf Ik + δk)2 with
the family of rounding classes Sk = S \ {(Ik+1, δk+1)}
and by the inductive hypothesis this requires at least
k − 1 queries.

The following theorem follows easily from the two lemmas
above, thus we omit its proof.

Theorem 3. Any deterministic algorithm solving RUDP
given access to a proximity oracle PS,u indexed by a fam-
ily of rounding classes S = ((I1, δ1), . . . , (In, δn)), requires
Ω(|S|+ logδ1) queries to PS,u in the worst case.

2.3 Randomized User Discovery Problem
Under this model, the proximity oracle query result for

a point follows a probability distribution rather than being
a deterministic function of the distance. We capture this
using the following definition:

Definition 9. A randomized proximity oracle PD,u(p) in-
dexed by a probability distribution D is defined as follows:

PD,u(p) ≈ D(pu, p)

In other words, each point queried to the oracle will get its
value from a probability distribution D based on the point
queried and the location of the target user.

We define the randomized user discovery(RNDUDP) to be
the UDP given access to a randomized proximity oracle. We
also assume that the distribution D is known. Although it is
unlikely in practice for a service to publish the distribution
used, an attacker can employ a dummy victim user with a
known location and collect a large number of samples from
the distribution in order to create an estimation of D.

Notice that the way RNDUDP is defined, there exist cer-
tain probability distributions for which it is impossible to
locate the targeted user. For example, in the case where D
is the uniform distribution over {0, 1}, querying the oracle
will not provide any information on the location of the user.

Nevertheless, such distributions will also fail to offer any
real functionality for the users of the service and therefore,
they are not encountered in practice. Usually, the oracle
PD,u will return the correct proximity information with some
probability and an incorrect value otherwise.

For the following, we consider an intuitive randomization
model which we denote as the disk search with Gaussian
noise. Under this model the following randomized proxim-
ity oracle is defined.

Definition 10. A randomized disk proximity oracle with
radius r and standard deviation σ is defined as follows:

Pr,σ,u(p) = (1− zpu(p))Pr,u(p) + zpu(p)(1− Pr,u(p))

where Pr,u is a disk proximity oracle with radius r and zpu(p) ∈
{0, 1} is the error function satisfying

Pr[zpu(p) = 1|dist(p, pu) ∈ [a, b]] =

∫ b

a

f(x, r, σ)dx

where a, b ∈ R+ and f(x, r, σ) is the PDF of N (r, σ), the
normal distribution with mean r and standard deviation σ.

Intuitively, under this model, when an attacker attempts to
detect points in distance r from the user in order to perform
a cut, an increasing amount of noise is added forcing the
attacker to perform a wrong cut with the DiskSearch algo-
rithm and therefore stopping the attack. Moreover, the noise
is reduced as we move away from that “danger zone”, thus
not affecting significantly the experience of normal users.

Out of all the different defenses we encountered in our
research, this model was the most difficult to crack in the
sense that it requires a much larger number of queries than
the previous models. Below we present an algorithm in order
to solve the DiskSearch problem with Gaussian noise, and
also state a reduction showing that the problem of distin-
guishing between normal distributions with different mean
values reduces to this problem.

Solving Disk Search with Gaussian Noise. Here we
derive an algorithm to solve the DiskSearch problem with
Gaussian noise. Our algorithm is an application of the Maxi-
mum Likelihood Estimation (MLE) principle which is widely
applied in statistics and machine learning. Specifically, the
algorithm proceeds as follows:
1. Given as input an area A, let r′ be the radius of the min-

imum circle surrounding the area A. Then for a num-
ber k, given as input, sample k points randomly in dis-
tance d ∈ [r − r′, r + r′] from the centroid of A. Let
S = {(p1, l1 = Pr,σ,u(p1)), . . . , (pk, lk = Pr,σ,u(pk))}.
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2. Compute the MLE over the candidate points in A as:

pu = argmax
p̂u∈conv(A)

k∑
i=1

log Pr[Pr,σ,u(pi) = li]

where conv(A) denotes the convex hull of the area A.
Analysis. For more information regarding the MLE algo-

rithm we refer the reader to [21]. However, we note that the
reason behind selecting the points within the convex hull of
A is that since the probability density function of the Gaus-
sian distribution is log-concave, thus the problem above can
be written as a convex optimization problem and, if we se-
lect the points from within the convex hull of A, then one
may utilize efficient convex optimization algorithms [13] in
order to find the point with the maximum likelihood.

Moreover, we will show that solving the RNDUDP is at
least as difficult as distinguishing between two gaussian dis-
tributions with different means and the same standard de-
viation. The problem of distinguishing between two nor-
mal distributions has been studied extensively in the past.
We will show a simple lemma for the case of two univariate
normal distributions with the same standard deviation and
different means.

Lemma 7. Any algorithm distinguishing between the nor-
mal distributions N (r, σ) and N (r+ε, σ) with constant prob-

ability requires Ω(σ
2

ε2
) samples.

Proof. It is known that distinguishing between two dis-
tributions P,Q requires at least Ω(1/KL(P,Q)) samples [45],
where KL is the Kullback-Leibler divergence [24] of the dis-
tributions. The KL divergence of two normal distributions
is

KL(N (µ1, σ1),N (µ2, σ2)) = log
σ1

σ2
+
σ2
1 + (µ1 − µ2)2

2σ2
2

−1/2

Replacing with the parameters of our distributions we get
the result.

We will show that that solving RNDUDP is at least as
difficult as distinguishing between two normal distributions
with different means and the same standard deviation. The
two results together give a lower bound on the number of
queries required to solve RNDUDP. In the following, accu-
racy denotes the distance between the point returned by the
RNDUDP algorithm and the point pu where the user resides.

Theorem 4. Let Pr,σ,u be a randomized proximity oracle
instantiated with a normal distribution N (r, σ). Then, any
algorithm solving RNDUDP with constant probability and

accuracy ε � r, requires Ω(σ
2

ε2
) queries to the randomized

proximity oracle Pr,σ,u.

Proof sketch. We consider an easier case ofRNDUDP
where there are only two candidate points for the targeted
user in distance ε. Without loss of generality assume that
the candidate points are p1 = (0, 0) and p2 = (0, ε). The
attacker has therefore to choose between the targeted user
being in point p1 or point p2. Notice now, that in case
the attacker makes all his queries on the line defined by
points p1 and p2, then the problem reduces to an instance of
distinguising between the distributions N (r, σ) and N (r +
ε, σ). Moreover, any query performed in a different angle is
suboptimal; indeed, let p be any point in the plane. Then
by the triangle inequality we have that

dist(p, p1)− dist(p, p2) ≤ ε

with equality holding only in points lying on the line de-
fined by p1, p2. Thus, under different angles the attacker
will have to distinguish between normal distributions with
a mean that differ less than ε which, by lemma 7, is harder
than distinguishing two distributions with mean difference
ε. Thus, the best strategy for the attacker is to make all
the queries in the line defined by p1, p2 essentially reduc-
ing to the problem of distinguishing between N (r, σ) and
N (r + ε, σ).

3. PRACTICAL DIMENSIONS OF UDP
Here we describe the practical aspects and challenges of

carrying out the attacks against actual services.
Search space. Depending on the adversary’s knowledge,

the search space may be significantly large. Chaabane et
al. [14] found that 29% of users publicly disclose their cur-
rent city, while 48% disclose it to their contacts. Such in-
formation can, potentially, also be obtained through a geo-
inference attack [23]. While our attack is very efficient, col-
lateral information can reduce the size of the search space.

Proximity Oracle Querying. As the attack requires
interaction with a service, the following become relevant.

Connections. Services may restrict which users can ob-
tain proximity information. Dating apps that offer a plat-
form for meeting new people follow a less restricted approach
and disclose that information to users that are not connected
(i.e., strangers). Social networks have more privacy-oriented
default settings, and disclose the information to the users’
contacts. While this might seem like an obstacle, the adver-
sary can employ fake accounts to befriend the user. Previ-
ous work (e.g., [12]) has explored this topic extensively, and
demonstrated that users are very likely to accept requests
from unknown accounts. For the remainder of the paper
we assume that, if required, the adversary is connected to
the user within the service. Nonetheless, we minimize the
number of attackers; when a social connection is required
we employ a single account.

Detection. As it is trivial to send fake coordinates, services
may deploy mechanisms for detecting this. To identify the
mechanisms and their thresholds, we follow the approach
from [36]. By knowing the exact thresholds, we minimize
the duration of the attack while avoiding detection.

Attack Accuracy. The accuracy is unavoidably depen-
dent on the GPS precision of the user’s device. In our ex-
periments, distances are calculated from the coordinates re-
ported to the service. Thus, we measure the exact accuracy
of our attacks. In practice, the accuracy may be influenced
by the error of the device’s GPS. However, smartphones are
becoming increasingly accurate, with GPS accuracy being
within 10m and researchers demonstrating improvements of
30% [44]. Furthermore, the accuracy of our attack is such
that GPS errors do not alleviate the threat to targeted users.

Projection Errors. No map projection perfectly rep-
resents all areas, and a given projection is constructed to
preserve only a few properties (e.g., shape) of the real ge-
ographical area. While the attacks are not dependent on
the projected coordinates, the coordinates of the search area
should be transformed using the projection most suitable for
that area, to minimize the error introduced. We use the ap-
propriate equidistant conic projection for the continent we
are searching in, centered at our area of interest.
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Facebook 1-5B � 7 7 7 3 7

Swarm 5-10M , 3 7 7 3 3

Grindr 5-10M � | ∅ 7 7 3 7 7

Skout 10-50M � 7 7 3 3 3

MeetMe 10-50M , | � 7 3 7 3 7

Lovoo 10-50M � 7 7 7 7 7

Tinder 10-50M � 7 7 7 3 7

SayHi 10-50M � 3 7 7 7 7

Jaumo 5-10M � 3 7 7 7 7

HelloWorld 1K-5K � 7 7 7 7 7

Distance: exact � | rings � | disks , | none ∅
Table 2: Popular services with location proximity.

4. LOCATION PROXIMITY: A CASE STUDY
Here, we provide an overview of our audit of popular apps

that offer location proximity. We analyse several aspects of
the apps, to verify the applicability of our attacks. Table 2
presents their description, and the number of downloads (#)
reported by Google’s Play Store. Upon auditing these apps,
we found that our theoretical formulation of the discovery
problem and the proximity oracle constructions are com-
plete, and can model the proximity functionality of existing
services. For each app, we explore the following:

Distance information. The services may reveal the dis-
tance in various forms (e.g., disks, rings etc.).

GPS coordinates. The user’s GPS coordinates may be
shared with other users; this can be done explicitly (e.g.,
exact location shown) or implicitly (app receives coordinates
of contacts for calculating distance).

Grid. The service may use a grid when calculating dis-
tances. In Swarm, while a grid is employed, it does not affect
the calculation. In MeetMe, the distance is calculated from
the adversary’s grid point to the victim’s actual location.
Thus, neither perform spatial cloaking.

Query limiting. The service may enforce query rate limit-
ing that prohibits a straightforward execution of the attack.
Unless a very strict limit is enforced, one can simply increase
the waiting time between queries.

Speed constraints. The service may enforce a limit on the
speed with which users travel between locations.

Rand. The service adds random noise in the distances
returned by the proximity oracle.

Next, we provide details for the selection of apps that we
evaluate in Section 5. This set of apps allows us to examine
our proximity oracle construction against all forms of dis-
tance disclosure. Furthermore, they have adopted a diverse
set of countermeasures designed to prevent user discovery
attacks and, thus, pose interesting challenges.

Swarm was deployed by Foursquare and is built around
location proximity. Friends are assigned to location disks
of six sizes: (i) 300 m, (ii) 1.5 km, (iii) 15 km, (iv) 30 km,
(v) 64 km, and (vi) everything over 64 km. The API used
by Swarm has not been made public. As such, we reverse
engineer the communication protocol between the app and
servers. Our experiments reveal that Swarm employs a static
grid, with users being assigned to their nearest grid point.
The grid cells’ dimensions are 252m ∗ 274m. There are two
relevant API calls; UpdateLocation updates the location
and is periodically sent by the app. Activities_Recent is
sent upon interaction with the app and contains the user’s
current location. The response contains the active contacts’

grid point coordinates and their distance to the sent loca-
tion. The sent location is not saved, but only used to cal-
culate the distance to the contacts. We use this API call
to place our attacker at arbitrary positions. Swarm limits
the number of API requests to 500 per hour. Furthermore,
speed constraints are only enforced for UpdateLocation (we
bypass them by using Activities_Recent).

Facebook. Two private Graph API calls implement the
required functionality; updating the current location and
querying for friends in proximity. Our experiments reveal
that the coordinates sent with the nearby-friends call, are
not correlated to those received by the update-location call
which is considered the user’s last known location. While
Facebook enforces speed constraints, attackers can exploit
this discrepancy to bypass them. Thus, the adversary can
carry out the user discovery attack and query the service
from multiple vantage points without any speed restriction.

Grindr. To prevent user discovery attacks [2], the new
default setting for users located in countries with oppressive
regimes is to completely hide the distance information. For
other users, exact distances are disclosed. However, the app
displays nearby users sorted by distance, regardless of their
settings. While this prevents trilateration attacks, Grindr
remains vulnerable to our attack. As Grindr is intended for
meeting new people, no social connection is required.

Skout. We reverse engineer the app, and identify two
API calls that use SOAP request and response headers. One
sets a user’s location, while the other takes as input a userID

and retrieves the user’s information (including the distance).

5. EXPERIMENTAL EVALUATION
Here we evaluate our attacks against actual services. We

deploy virtual users that play the role of the target. As our
attack system sets the users’ exact location (ground truth)
in the service and uses it to calculate the distance, our evalu-
ation presents the exact accuracy of our attack and does not
contain any measurement error (e.g., due to GPS). Since
Foursquare and Facebook require a social connection, we
demonstrate our attacks using a single attacking account. As
no connection is required in Grindr and Skout, the attacks
can use multiple accounts in parallel to reduce the duration;
thus, we do not report an attack duration for those services.

5.1 Foursquare - Swarm
Our experiments show that location updates are dissemi-

nated in under a second, enabling real time user tracking.
Projection Error. To measure the impact of our projec-

tion error, we run 100 attacks in each USA state, with Wally
placed randomly within the state. The response to our API
call contains the coordinates of the grid point that Wally has
been mapped to, and a distance to Wally. Here we consider
Wally’s location to be the grid point and discard the dis-
tance information. Using the coordinates of the grid point
we simulate a disk proximity oracle: we measure the dis-
tance from Mallory’s location and select the corresponding
disk size, as shown in the Swarm app (see Section 4). Sub-
sequently, we run our DUDP and DiskSearch algorithms to
identify Wally’s location. In the majority of states the pro-
jection error is negligible and we achieve distances of less
than 1 meter, by centering the projection over the state.
For 15 states the distance increases to less than 5m, and
for 5 states to less than 10m. These results are sufficiently
precise for evaluating our attack. We run our experiments
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Figure 1: Rounding distance classes in
Swarm.
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Figure 3: DUDP&RUDP attack accu-
racy for moving user in Swarm.

in New York where the error is less than 1 meter.
Complete attack. Next, we evaluate the accuracy of

our attack in identifying Wally’s exact location and not the
grid point he has been mapped to. As such, we also use
the distance information returned. Our experiments reveal
that the returned distances are calculated based on Wally’s
actual location and not the grid point. As can be seen in Fig-
ure 1, Swarm returns quantized distances in rounding classes
of 30m. Furthermore, an amount of randomness, which de-
pends on the victim’s position within the grid cell, affects
the rounding process as an extra measure of privacy. Us-
ing our empirical measurements, we translate the returned
distance into a location ring. We follow two attack method-
ologies. In one case, we run the Disk User Discovery, Round-
ing User Discovery, and DiskSearch algorithms and achieve
maximum accuracy (with an overhead in terms of queries).
In the other, we only employ Rounding User Discovery, and
DiskSearch. While the accuracy slightly deteriorates, the
attack is more efficient in terms of queries and can be used
in services with strict query limiting or speed constraints.

DUDP&RUDP attack. Figure 2 presents 100 experiments
carried out in the state of New York using a combination of
the DUDP and RUDP algorithms. Apart from accurate, the
attack is also efficient, with an average of 55.9 queries and
6.87 seconds required for each attack. Half the users are pin-
pointed within 9 meters, and 95% within 16 meters. When
it comes to the bounding area in which the targeted victim
can be found, in 20% of the cases it is less than 700m2. For
half the attacks it is up to 1,160 m2, and up to 2,000 m2

for 95%. Thus, for 95% of the users the attack reduces the
bounding area by at least 99.29%, compared to the smallest
disk disclosed by the service. If Mallory’s goal is to bound
the user within a specific area for inferring personal data
(e.g., a clinic close to the returned location), she can proba-
bilistically bound the user to an arbitrarily small disk, based
on these empirical measurements. For example, there is a
50% chance of of the user being located within a bounding
area of 255m2 (a disk with a 9m radius). Depending on
the attack scenario, the adversary can select a different area
size, based on the area/probability trade-off.

RUDP attack. Figure 2 also presents 100 runs of the
resource-efficient attack, which employs the RUDP algo-
rithm; 40% of the users are found within 10m, and 95%
within 30m. The bounding area is also less accurate, with
22% up to 1, 000m2, and 50% less than 2, 600m2. Thus,
for half of the users, the bounding area is reduced by 99%.
While less accurate, this approach is far more efficient with
an average of 18.2 queries and a duration of 2.59 seconds.

Maximum Area. The disk coverage algorithm can cover
the entire continental USA with 850 queries, when using

disks with r ' 64.3km (maximum supported by Swarm).
Considering the 500 query limit, one can cover a ∼ 6, 1×106

km2 area with 475 queries prior to launching DiskSearch.
Thus, the attack is very practical even at a continent-level.
At a state-level, the area can be covered with significantly
less queries (e.g., at most, 98 for Texas, 28 for New York).

Moving Targets. We explore if our attacks can track
a moving user in real time, and test speeds ranging from
that of a human running to a vehicle moving in a city. Both
Swarm and Facebook update the location every several min-
utes, and upon interaction with the app. Thus, updates are
too infrequent to impact the attack, and our accuracy re-
mains the same. Thus, we run an experiment to “stress
test” our attack, with users moving at constant speeds and
their location updated every 10 seconds. Then, at random
intervals, we run our attack against those users, and calcu-
late the distance between the inferred and exact locations
at that moment in time. While not a realistic setup, as in
reality targets are not in continuous motion but stop inter-
mittently (e.g., traffic lights), it poses a worst-case scenario
and demonstrates how users can be tracked even when in
motion. In practice, the accuracy will be even higher.

For the moving victim, we modify the algorithm to pro-
vision for the changing location of the victim. Since the
user is moving, even if he is bound within a particular area
Pi at a certain time ti, it does not necessarily hold that he
will also lie within the same area in a future point at time
tj > ti. If at time tj we query the oracle for the location of
the victim and the response is an annulus Aj , normally the
new polygon in which the victim is bound is Pj = Aj ∩ Pi.
For a moving victim though, it may hold that Aj ∩ Pi = ∅.
In those cases we set Pj = Aj ∪ Pi. We do not utilize any
information regarding the user’s speed.

Figures 3 and 4 present the results for the accurate (DUDP
& RUDP) and efficient (RUDP) attacks respectively, for
users moving at speeds of {10, 20, 40, 60} km/h. For tar-
gets simulating a user running (10kmh), our accurate at-
tack is almost the same as for static users, with 90% located
within 16.5 meters, while the efficient one locates 67% within
20m. As expected, the attack’s accuracy deteriorates as the
speed increases. Nonetheless, even when the user maintains
a steady speed of 60kmh (average speed for US cities is 28-
70 kmh [1]), the accurate attack achieves a distance less
than 10m away for 60% of the experiments, and 85% is up
to 20m. The efficient attack pinpoints 60% of the victims
within 20m. For users moving at 60kmh, ten experiments
returned a location more than 75m away, due to the loca-
tion being updated during the attack. Depending on the
update frequency, the adversary can provision against this
by running successive attacks. Since the goal is to track the
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Figure 6: DUDP attack accuracy for
static user in Grindr.

user while moving, and not to identify a specific location,
the bounding areas do not affect the objective of the attack.

Overall evaluation. By disclosing the (rounded) dis-
tance from the user’s actual position, the privacy that could
be guaranteed by the grid is lost. The randomness intro-
duced is insufficient for preventing our attack, which elimi-
nates the noise without using the RANDUDP algorithm.

Demonstration. We have a front-end for visualizing our
attacks2. Our back-end carries out an attack in real time,
and the front-end visualizes it at a lower speed.

5.2 Facebook
Facebook rounds the distance information (0.5 mile gran-

ularity for distances less than 1 mile, and 1 mile granularity
for distances up to 100 miles). Thus, we employ the RUDP
attack algorithm. We evaluate the effectiveness of our at-
tack by carrying out experiments for static and moving vic-
tims. For each experiment, we place the victims randomly
in 100 locations in New York. Each attack requires about
20.5 queries and is completed within 3.05 sec. As shown in
Figure 5, when targeting a static user, the estimated loca-
tions are always less than 5m away from the user’s exact
location, and the victim in bound within an area less than
100m2. For moving victims, the quality of the attack is sig-
nificantly reduced for larger speeds: for targets moving at
40km/h, 40% of the users are less than 110m from the es-
timated location. Due to the RUDP attack lasting slightly
longer than for Swarm, there is an increased chance of the lo-
cation being updated during the attack, which results in the
decreased accuracy. Nevertheless, adversaries can still track
a user in motion. Overall, our results demonstrate that dis-
tance rounding is ineffective at preserving privacy, as static
users are pinpointed within 5m of their exact location.

5.3 Grindr
Due to the sorting of users, if Mallory knows the loca-

tion of another user she can deduce information about the
distance to Wally, by comparing that user’s index (position
within the user list) to Wally’s. Mallory can leverage this
information for defining a disk proximity oracle with a ra-
dius of her choice. The attack is then reduced to an instance
of the disk user discovery problem. Mallory creates two ac-
counts, and issues a disk proximity oracle query Pr,u(p) for
a point p as follows. The attacker is placed at the point p,
and the colluder is placed at a distance r from p. The at-
tacker pulls nearby users from the service. If the target has
a smaller index than the colluder, the oracle replies to the
query with 1, otherwise with 0.

2
A demo can be found at: http://youtu.be/7jCr36IT_2s

Query responses contain the 50 nearest users in ascending
order. Due to the large number of users within an entire city,
which results in an increased number of requests towards the
service for fetching the pages with users from each probing
point, we opt for a modified attack setup. We run experi-
ments where Mallory knows that Wally is in a certain area
of New York; we set that area to be a disk with a 600m
radius, resulting in a search space of (1.13 ∗ 106)m2. The
results from our experiments are shown in Figure 6. Again,
the attacks are very effective with 67% of the users located
within 10m, 98% within 19m, and in one case 25m away.
All users are bound within a 100m2 area, while the attack
requires a total of 58 queries on average. This includes re-
questing extra pages when Wally is not found within the 50
first results. An adversary can deploy real time attacks in
much larger areas, by employing multiple accounts.

This case highlights an important detail; if Mallory can
discover even a bit of information for inferring the user’s
proximity to a point in the plane, she is able to precisely
determine the location. This is useful for assessing the pri-
vacy of models that conceal the precise distance, but still
leak some side channel information about it.

5.4 Skout
Skout implements a randomized proximity oracle for de-

fending against user discovery attacks. Previous work [25]
reported that Skout only used quantized distances. Our ex-
periments reveal that the current version has a far more
advanced defense mechanism, which adds Gaussian noise to
the reported distances as described in section 2.3. To evalu-
ate the efficiency of the implemented defense, we deploy our
RANDUDP attack. We stress that sampling many points
at a close distance for estimating the error probability in a
specific area does not work, because points in Skout are la-
beled in clusters, with nearby points getting the same label
(either correct or incorrect) with very high probability.

In order to estimate the error probability distribution we
employed two accounts and measured the probability of get-
ting an erroneous distance in different locations and dis-
tances. In Figure 7 we show the error distribution as a
function of the distance and the resulting Gaussian distri-
bution obtained from the samples. In order to fit the sam-
pled distribution in a Gaussian distribution we used the
Levenberg-Marquardt algorithm [29], from which we ob-
tained a Gaussian with mean µ = 0.5 miles and standard
deviation σ = 0.039 miles.

Even though Skout uses rounding classes (all distances
are rounded up using the d·e0.5 operator) by using a RUDP
attack we reduce the candidate area A to an area which can
be enclosed in a circle of radius r′ = 0.1 miles. Therefore, the
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problem effectively reduces to an instance of the disk search
problem with Gaussian noise. Afterwards, we execute the
algorithm for solving the disk search problem with Gaussian
noise, with the parameters described above.

In Figure 9 we use a red pin to depict the points for which
Skout returned a distance of 1.0 and a yellow pin to depict
those reported as being 0.5 miles away. We notice that, even
though the points that are at most 0.3 miles are consistently
rounded up to 0.5, as Mallory enters the range between 0.4
and 0.6 miles, the returned distances approximate the Gaus-
sian distribution. The green pins represent candidate points
for the location of the target, with darker colors denoting
higher likelihood. Wally’s estimated location is shown with
a blue pin and the real location with the red pin.

To evaluate our approach, we perform 100 attacks with
the user placed randomly in New York. For the MLE cal-
culation, we use 600 sample points. Each attack requires an
average of 1,400 queries, and we use multiple accounts for
efficiency. The attack’s accuracy is shown in Figure 8; on av-
erage we pinpoint Wally’s location within 37.4m despite the
advanced defense mechanism employed. Our attack achieves
substantially better results than previous attempts [25], even
though Skout now implements a far more sophisticated de-
fense. While this attack requires a much larger number
of queries, Skout does not require a social connection for
obtaining proximity information. Thus, while this defense
would significantly raise the bar in a service that requires a
connection (e.g., Facebook), its effect in Skout is diminished,
as creating multiple accounts is not a major obstacle.

6. PREVENTING DISCOVERY ATTACKS
Based on our theoretical models and experimental evalu-

ation, we explore the use of spatial cloaking for ensuring a
minimum level of privacy in proximity services. We set the
following requirements for the service:
• The system should ensure that the user cannot be bound

to an area smaller than a fixed region.
• Users’ coordinates should never be explicitly disclosed to

other users (or sent to the app on their device).
Spatial Cloacking. Employing grids for creating cloak-

ing regions has been proposed in the past. We revisit the
concept and analyze its properties based on the character-
istics of our attacks. The solution we present is similar to
the proximity protocols presented in [41], in the sense that
it works by rounding the coordinates of the user’s location,
effectively creating a grid over the Euclidean plane. This
can be easily adopted by any proximity service.

Grid construction. Assume that a user is located at a
point p = (x, y) in the Euclidean plane. The service uses
a predefined rounding value δ and maps the user to the lo-

cation pc = (bxeδ, byeδ). This rounding operation maps all
locations within a square grid cell of edge length δ to the cen-
troid of that grid cell. The main questions that we would
like to answer for our construction are:

1. How much privacy does a grid cell of size δ offer?
2. Is usability maintained at an acceptable level?
Privacy. We first notice that the bounding area for a

static user inside a grid cell cannot be better than δ2. The
attacker however, wants to minimize the distance from the
target user. Let’s first assume that an attacker runs our
attack and finds the grid cell of the user; lets also assume
that the user is randomly placed at a point pu within the
cell. To minimize her distance from the targeted user she
will place herself at the centroid pc of the grid cell. Since
the accuracy of an attack depends on the distance between
the attacker and the user, we would like to estimate the
expected value of dist(pu, pc). In appendix A.1, we prove
the following:

E[dist(pc, pu)] ≈ 0.382598 · δ
For example, using a grid size of 0.5 miles the attacker will

be able to find the user within 0.19 miles on average. The
expected distance value is an appropriate metric for evaluat-
ing the privacy offered by a grid cell of edge length δ in the
context of user discovery attacks. As the user won’t always
be at a random location within a grid cell, social informa-
tion can be used to further refine his location after the grid
cell is detected. Our metric quantifies the privacy obtained
by a grid cell of a certain size, when the adversary lacks
knowledge of a user’s past movements.

For proximity protocols where the sender can select the
receiver’s grid size ( [34, 47]), if a safe minimum size is not
enforced, an adversary can deploy our attacks and bound
the user within a small cell that fails to offer any privacy.
As our attack algorithms are designed for a discrete plane,
they can handle grids without modifications.

Usability. Another important parameter is quantifying
how much this solution will affect the usability of the service.
Let us assume that two users u1, u2 are mapped to different
grid cells p1, p2 with a grid edge of length δ. Computing the
distances from the rounded coordinates incurs only a small
error in the computation. With a simple application of the
triangle inequality we have that:

dist(p1, p2) ≥ dist(bp1eδ, bp2eδ)−
√

2δ
dist(p1, p2) ≤ dist(bp1eδ, bp2eδ) +

√
2δ

Dist(p1, p2) is at most
√

2δ off from the actual distance.
Tradeoff. We discuss the performance of our solution com-

pared to current implementations, where rounding is applied
to calculations, in terms of usability and privacy. As an ex-
ample, we consider Facebook: the minimum rounding value
applied is 0.5 miles. Consider now a grid cell of length 0.5
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miles: as shown, a grid size of 0.5 miles will provide the
user with an average privacy of 0.19 miles from attacks, and
the distance provided to other users will be off by at most√

2 · 0.5 ≈ 0.7 miles. Thus, compared to the current im-
plementation, the grid will add an additional error of at
most 0.2 miles to the distance calculations, while providing
a much better privacy guarantee. For distances over 1 mile,
which are rounded up by 1, this does not incur any addi-
tional error to the rounding already added by the service.

Protecting Moving Users. While a grid ensures privacy
down to a certain granularity for static users, maintaining
the same level of privacy for moving users becomes compli-
cated. By polling for a user’s location, the adversary can in-
fer a user’s speed and direction of movement. Based on that
knowledge, and identifying when the user crosses the bound-
aries of a cell, the user can be bound within an area smaller
than the cell. A large body of work has explored meth-
ods for protecting [18, 39, 40, 42] and attacking [20] moving
users. The solutions vary based on the information avail-
able to the attacker and the threat model. Most share a
common assumption: the existence of an obfuscation mech-
anism which, given the user’s precise location, generates a
pseudo-location. Thus, our grid proposal is orthogonal to
the privacy schemes for protecting moving users, as it pro-
vides the necessary foundation for deploying them. In ad-
dition, the formal framework by Shokri et al. [39], supports
our grid construction as an obfuscation mechanism, and can
quantify the location privacy of moving users, given a spe-
cific Location Privacy Protection Mechanism.

Location Verification. A crucial aspect of the attack is
the ability to arbitrarily change positions when querying the
oracle. Implementing a mechanism for verifying the user’s
location could significantly impact the attack.

Mitigation. We discuss measures that are trivial for the
services to implement and can impact the attacks’ perfor-
mance without degrading usability, until a grid is deployed.

Query rate limiting. Adversaries should be prohibited
from flooding the service with queries for a specific user.
Even if the oracle can only be queried once every 5 minutes
for a user, the attack would require significantly longer time
(90 minutes for the efficient attack in Swarm, 100 minutes
in Facebook). Nonetheless, adversaries will still be able to
identify locations where the user remains for long periods
of time. If no connection is required, the adversary can use
multiple accounts, to carry out the attack faster. The cost
of creating accounts should not be considered prohibitive.

User movement constraints. Services may employ detec-
tion mechanisms for identifying users that change locations
unrealistically fast. To avoid detection the adversary will
have to remain beneath a speed threshold when moving be-
tween probing points, which will increase the attack’s du-
ration. However, while the attack’s duration will increase,
for these measures to be able to significantly impact the at-
tack, the service would have to impose strict constraints that
would also impede legitimate users. Furthermore, adver-
saries can identify the thresholds and configure their attack
to maximize the efficiency while remaining undetected [36].

Distance disclosure. If large distances are disclosed by
the service (e.g., 10km), the adversary can employ the disk
coverage algorithm and greatly reduce the search space with
a few queries. Thus, the service should only disclose small
distances, which are large enough to retain usability.

Auditing Framework. We have developed a framework

to facilitate researchers, developers, and privacy-sensitive in-
dividuals, in assessing proximity services. This can lead to
the evaluation of a large collection of apps, and help improve
the privacy offered by existing services. It has been imple-
mented in Python and released as an open source project3.
The framework provides tests for automatically evaluating
services with disk or rounding proximity oracles against our
attacks. We are currently expanding it to also handle ran-
domized proximity oracles. It also provides a set of libraries
that facilitate common operations on geographical coordi-
nates (natural and projected). Since we cannot predict the
requirements of each app, auditors have to implement the
app-specific calls for (i) setting a user’s location and (ii)
getting the distance to a user. Once the auditor implements
the above calls, both the constraints-testing and the attacks
work out of the box. If a service is not a straightforward
application of the RUDP or DUDP proximity oracles (e.g.,
as is Grindr, where the oracle is constructed based on the
ordering of users), auditors can specify their own proximity
oracle, which can be passed as a parameter to our framework
for automatically evaluating the service.

7. ETHICS AND DISCLOSURE
Disclosing attacks against services raises ethical issues as,

one might argue, adversaries may have previously lacked
the know-how to conduct such attacks. However, recent
events demonstrated that adversaries are already targeting
users. While the attacks seen in the wild were straightfor-
ward, and preventable by existing defenses, it is crucial to
assess the privacy guarantees of popular services and pre-
vent future atttacks. The false sense of security cultivated
by the services and major media, due to misconceptions of
the privacy offered [4, 5] and flawed recommendations (e.g.,
rounding distances [3]), exposes users to significant threat.
We contacted the services we evaluated, and provided them
with a detailed analysis of our attacks, our guidelines for
preventing them, and an analysis on the privacy/usability
tradeoff of our spatial cloaking approach. As a result of our
disclosure, Foursquare and Facebook have adopted spatial
cloaking. Furthermore, the Facebook security team used our
testing framework for evaluating their cloaking mechanism.
Grindr and Skout have not yet informed us of changes.

8. LIMITATIONS AND FUTURE WORK
Past locations. When previous locations of the user

are known, the adversary can potentially reduce the search
space of the attack. Even if the service uses spatial cloaking,
the adversary may probabilistically map the user to certain
locations within the grid cell; i.e., if the user is known to
frequent locations X and Y, and the adversary traces the
user to a grid cell which contains X and Y, then it is likely
that the user may be at one of those locations. Tempo-
ral information may further increase the probability (e.g.,
the user visits X every Friday night). Allowing the user to
dynamically configure the size of grid cells as certain sensi-
tive areas, could increase the number of potential locations
within a cell and decrease the certainty of the attacker for
each location. This, however, remains out of scope of this
paper, and is considered future work.

3
Code available at: http://www.cs.columbia.edu/nsl/projects/

vpsn/
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Client side. Our proposed solution can be adopted in-
dependently by users and retain the same guarantees for us-
ability and privacy, as if it were constructed by the service.
Similarly to apps that spoof GPS coordinates, an app can
generate a quantized version of the coordinates, effectively
supplying services with a cloaked grid point instead of the
real location. In rooted Android environments where more
control is given over individual permissions, we can enforce
different grid sizes for each service. We plan to develop such
an app to assist users in maintaining their privacy, even if
services fail to correctly obscure their location.

9. RELATED WORK
Location Proximity. Zhong et al. [47] presented three

private proximity protocols. Similarly, Narayanan et al. [34]
proposed multiple protocols for private proximity testing
where untrusted servers mediate communication. However,
in their system the sender configures the grid’s size, which
allows adversaries to use our attack technique and bind the
user within a cell which is too small to offer any privacy.

Mascetti et al. [31] proposed privacy-preserving techniques
and explored the trade-off between achievable privacy and
quality of service. In [30] they presented an attack against
users that obfuscate their location with dummy queries; it
uses clustering, population density data and trilateration, to
bound users within an area. The attack only works for users
located in large cities and under unrealistic assumptions of
uniform user density. Even then, the bounding area is too
large to locate users or infer sensitive data.

Puttaswamy and Zhao [37] proposed moving application
functionality to client devices, and treat services as untrusted
storage for encrypted data: thus, sensitive information in
never disclosed to untrusted parties. Šikšnys et al. [41] pre-
sented FriendLocator, which employs multiple levels of grids
of varying size to calculate proximity while hiding the loca-
tion from the service. Our attack can be carried out, starting
at the level with the largest cells and recursively descending
levels until the smallest cell is reached. If the smallest cell is
sufficiently large a minimum level of privacy can be ensured.

Location Verification. Narayanan et al. [34] proposed
location tags for proximity verification protocols. Lin et
al. [26], explored the use of GSM cellular networks for cre-
ating location tags. While a promising approach, it presents
significant practical limitations, as users must be connected
to the same base station tower. Marforio et al. [28] proposed
the use of smartphones in a location verification scheme for
sales transactions. A similar approach could potentially be
employed by proximity services for verifying users’ location.

Location Privacy. Gruteser and Grunwald [19] intro-
duced spatio-temporal cloaking for providing coarse-grained
information to a service, while retaining functionality. Shokri
et al. [39] provided a formal framework for quantifying the
privacy guarantees of location privacy protection mecha-
nisms, and a model for formulating location information
disclosure attacks. In follow up work [40], they presented
a framework that enables a service designer to find the opti-
mal privacy preservation mechanism tailored to each user’s
desired level of privacy and quality of service. Their model
is designed for passive adversaries (eavesdroppers), while
we focus on active adversaries that interact with the ser-
vice. Andres et. al [11] employ randomization to protect
the location privacy of users through the notion of geo-
indistinguishability. Nevertheless, the level of privacy pro-

vided by their mechanism degrades linearly with the number
of queries to the LBS. A comparison to RANDUDP is an
interesting future research direction. Fawaz and Shin [17]
present a client side framework for protecting the location
privacy of users that employs the approach of [11].

Recent work has demonstrated straightforward trilatera-
tion attacks against services that return exact distances [38].
In an independent recent study, Li et al. [25] explored user
discovery attacks and highlighted the significance of this
threat. The main limitation of that work is the inability to
effectively account for the noise introduced by these services
as a defensive measure, which manifests as location inaccu-
racy and leads to tracking results that are too coarse for
most urban settings and many other interesting scenarios
(e.g., identifying the user’s home or workplace). Further-
more, the substantial duration of their attacks (6.5 to 30
minutes) is prohibitive for realistic attack scenarios. On the
contrary, we follow a systematic approach and formulate the
attacks as algorithmic problems, which enables the design of
optimal attacks against all types of proximity services that
we have encountered. We extensively explore the details and
challenges of deploying such attacks in practice, and demon-
strate the effectiveness and efficiency of our attacks against
a wide range of defenses.

10. CONCLUSIONS
In this paper, we explored the privacy guarantees of lo-

cation proximity services. We formalized the problem of
user discovery attacks, and designed algorithms with query
complexities that match the proven lower bound within a
constant factor. We systematically evaluated four popular
services and identified the practical challenges of deploying
user discovery attacks in the wild. Even though services
have deployed countermeasures to prevent trilateration, our
experiments demonstrated that they remain vulnerable to
more advanced attacks. Based on the insight obtained from
the experiments, and the characteristics of our attacks, we
proposed a set of guidelines for implementing spatial cloak-
ing in proximity services, which ensures a minimum level of
privacy. Disclosure of our findings and guidelines led to the
adoption of spatial cloaking by major social networks. Thus,
we have made a concrete contribution to user privacy, which
resulted in the protection of users against the very effective
and efficient class of attacks we have demonstrated. How-
ever, many popular apps remain vulnerable, exposing their
users to significant threats. As such, we have released an
auditing framework for assisting developers and researchers
in evaluating the privacy offered by proximity services.
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APPENDIX
A. APPENDIX

A.1 Expected Distance Lemma

Lemma 8. Let G be a square with edge length ` and con-
sider the centroid pc of G. Let pr ∈ R2∩G selected uniformly
at random. Then,

E[dist(pr, pc)] ≈ 0.3825978 · `

Proof. Consider a square of side ` which, without loss of
generality, is centered at (0, 0). Let pr = (X,Y ) where X,Y

are random variables and also let D(x, y) =
√
x2 + y2. The

distance of pr from the centroid pc = (0, 0) of the square is
given by

dist(pc, pr) = D(X,Y ) =
√
X2 + Y 2

If d(x, y) is the probability mass function for D(x, y), since
the random variables X, Y are independent, it holds

d(x, y) = d(x)d(y) = (1/`)(1/`) =
1

`2

where d(x), d(y) are the probability mass functions for the
distances on the x and y axes respectively. Therefore, the
expected value of the distance is

E[dist(pc, pr)] =

∫ `/2

−`/2

∫ `/2

−`/2
d(x, y)D(x, y) dx dy

=

∫ `/2

−`/2

∫ `/2

−`/2

1

`2

√
x2 + y2 dx dy

≈ 0.3825978 · `
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