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Abstract

The popularity of instant messaging (IM) services has

recently attracted the interest of attackers that try to send

malicious URLs or files to the contact lists of compro-

mised instant messaging accounts or clients. This work

focuses on a systematic characterization of IM threats

based on the information collected by HoneyBuddy, a

honeypot-like infrastructure for detecting malicious ac-

tivities in IM networks. HoneyBuddy finds and adds

contacts to its honeypot messengers by querying pop-

ular search engines for IM contacts or by advertising

its accounts on contact finder sites. Our deployment

has shown that with over six thousand contacts we can

gather between 50 and 110 malicious URLs per day as

well as executables. Our experiments show that 21% of

our collected executable samples were not gathered by

other malware collection infrastructures, while 93% of

the identified IM phishing domains were not recorded by

popular blacklist mechanisms. Furthermore, our find-

ings show that the malicious domains are hosted by

a limited number of hosts that remain practically un-

changed throughout time.

1 Introduction

Instant messaging is one of the most popular Internet

activities. According to an older survey [7], more than

82 million people in Europe and 69 million people in

North America use an instant messenger. A more recent

study by Leskovec et al. [29] reveals that the number of

MSN messenger (the most popular IM client) users has

reached 240 million, with 7 billion exchanged messages

per day. Reports estimate over 400 million registered

Skype users [18], and 2.1 billion instant messages sent

per day by AIM users[2].

This large user-base and the fact that IM is a near real-

time form of communication, in contrast to other forms

such as e-mail, make IM networks an attractive platform

for attackers to launch their campaigns. Attackers either

exploit vulnerabilities of the IM client software, or steal

account information through phishing schemes. Once a

user account has been compromised, the attack propa-

gates by targeting the victim’s contacts. The attack vec-

tors are either file transfers or instant messages that con-

tain URLs of websites controlled by the attacker. As

users tend to trust content sent from their contacts, the

probability of users accepting the transfer or clicking the

URL is higher than in the case of traditional phishing

campaigns or malicious websites.

This work focuses on the characterization and detec-

tion of attacks against IM users. Our proposed archi-

tecture, called HoneyBuddy, is based on the concept of

honeypots. Honeypots are closely monitored decoy ma-

chines that are not used by a human operator but rather

wait to be attacked [35]. In a similar fashion, we have

deployed IM honeypots: decoy IM accounts with hun-

dreds of contacts on their friend list, that wait for com-

promised IM accounts to send them malicious URLs or

files. Unlike traditional honeypots which wait for at-

tackers passively, HoneyBuddy follows a more active

approach. By crawling the web or by advertising the

accounts on several sites, we have managed to find ac-

counts of real users and invite them to be our friends.

Our decoy accounts have over six thousand users in their

contact lists and receive between 50 and 110 unsolicited

URLs per day.

In this paper, our main goal is to present an in-depth

analysis and characterization of the collected URLs and

malware. Our results show that 93% of the phishing

URLs caught by HoneyBuddy are not present in other

popular existinging blacklist mechanisms, such as the

Google blacklist. Additionally, as much as 87% of all

malicious URLs collected by our infrastructure is incor-

rectly flagged as safe by commercial anti-phishing prod-



ucts, such as Norton Safe Web. We also cross-reference

the malware caught by our system with other collec-

tion infrastructures and find that 21% of our samples

are zero-day malware instances. During our analysis

of the top-level domains that host malicious URLs we

trace the phishing domains back to a small number of IP

addresses, revealing a large network of collaborating at-

tackers. We also found that 10 of those domains belong

to fast-flux networks. Our study reveals that scams that

propagate through IM networks are specifically crafted

for this communication channel and are different from

those found in email spam.

We provide an attacker profile based on our findings

and describe two different strategies for deploying spam

campaigns. We argue that different technical aspects

of the IM attacks lead to radically different spamming

strategies. Next, we examine the effectiveness of IM at-

tack campaigns based on the launching of our own (be-

nign) attack campaigns. This experiment reveals that

12% of the users visit URLs sent to them by our dummy

accounts, and 4% are willing to run an executable of

unknown origin. Finally, we deploy the prototype im-

plementation of our myMSNhoneypot service, an early

detection service that can inform users if their accounts

or IM clients have been compromised.

The remainder of the paper is structured as follows.

In section 2, an overview of related work is presented.

Section 3 describes the various attacks that target IM

users. Section 4 provides a detailed description of the

HoneyBuddy architecture, while sections 5 and 6 are an

analysis of the data collected by our infrastructure. In

section 7 we provide an attacker profile based on our

findings, and in section 8 we describe our own benign

campaign and present the results. In section 9 we pro-

pose defenses against IM attack campaigns. Finally, we

summarize and conclude in section 10.

2 Related Work

Xie et al. propose HoneyIM [39], a system that uses

decoy accounts in users’ contact lists, to detect content

sent by IM malware. HoneyIM can be deployed in a en-

terprise network and alert network administrators of ma-

licious content, provide attack information, and perform

network-wide blocking. HoneyIM has a limited view

of the IM attack landscape due to its passive architec-

ture and enterprise deployment. To overcome these dis-

advantages, HoneyBuddy is an active architecture that

constantly adds new “buddies” to its decoy accounts,

transcending the narrow confines of an enterprise level

deployment, and monitors a variety of instant messaging

users for signs of contamination. Furthermore, the use

of pidgin [15] prevents their system from detecting at-

tacks that exploit vulnerabilities in dominating instant

messaging software such as the MSN live messenger

[11].

Trivedi et al. address the problem of instant messag-

ing spam (spim) and how to utilize honeypots to extract

network and content characteristics of spim[37]. They

set up an open SOCKS proxy that only allows outbound

connections to IM servers. The analysis of the collected

data reveals several characteristics of spim campaigns.

An interesting result is that advertised URLs lead to a

small number of websites, something that is confirmed

by our findings. However, there are several major dif-

ferences with our work. While they focus on spim cam-

paigns, our honeypot detects all types of instant messag-

ing threats mentioned in section 3, and also handles ma-

licious file transfers. Furthermore, they propose a pas-

sive architecture that waits for spimmers to connect to

their open proxy while our system actively broadens its

view by connecting with a diverse and wide-spread set

of IM users. Finally, their approach will not work with

encrypted instant messaging traffic, such as Skype traf-

fic.

Mannan et al. conduct a survey and provide an

overview of threats against instant messaging users and

existing security measures[33]. Several scenarios of at-

tacks against IM users are presented, as well as the

weaknesses of default security and privacy features pro-

vided by IM client software. They conclude that ex-

isting public and enterprise IM systems fail to provide

sufficient security and protect users from existing IM

threats. Hindocha[28] provides an overview of several

IM clients and protocols, threats to instant messaging

like worms and trojans, and issues regarding IM block-

ing.

Liu et al. [31] propose an architecture, for detect-

ing and filtering spim, that incorporateswidely deployed

spam-filtering techniques and new techniques specific to

spim based on the analysis of spim characteristics. In

follow-up publications [32, 30], the authors focus on in-

stant messaging worms. In [32] worm propagation is

modeled and traced through multicast event tree trac-

ing, while in [30] a formal IM worm modeling based on

branching process is presented. Williamson et al. [38]

apply virus throttling as a mitigation measure against

viruses and worms that spread through instant messag-

ing. They explore how several throttle parameters delay

propagation without interfering with normal traffic.

Provos et al. [36] follow a different approach than

ours for locating URLs that distribute malicious content.



They actively scan a large number of URLs to locate ma-

licious actions and focus only on drive-by downloads,

while we passively collect URLs from spam messages

in IM traffic. A very interesting fact is that their find-

ings show that there is a difference between the domains

of the frontend servers that contain URLs that exploit

vulnerabilities in users’ browsers or plugins, and the do-

mains of the backend servers that distribute the malware.

However, our results based on URLs collected by the

HoneyBuddy infrastructure do not reveal any such fron-

tend servers. All malware samples were downloaded

from the same domain without redirection to a different

domain. This highlights a different approach to malware

distribution between drive-by downloads and phishing

campaigns.

3 Attacks on Instant Messaging networks

The high population of IM networks makes them an

attractive target for attackers that try to exploit them

for malicious purposes, such as spreading malware and

scamming. We identify four different scenarios of at-

tacks on IM networks.

Malware infection. Recent malware instances [27]

can attach to a victim’s instant messaging client and

start sending URLs that point to malicious websites, or

spread themselves by sending executables. In the most

common case the malware instance logs in to the IM net-

work, randomly selects users from the victim’s contact

list, sends the malicious URLs or files and then immedi-

ately logs out. In order to be more appealing to potential

victims, the URLs point to domains whose name con-

tains the username of the recipient, for example http:

//contact_username.party-pics.com . The

vast majority of the attack campaigns we have detected

send messages in English. However, we believe that at-

tackers will soon shift towards localized messages, as is

the case with one localized phishing site that we have

detected.

Compromised accounts. Attackers can also use

compromised credentials to log in as several different

users and flood the victims’ contact lists. Many ser-

vices, like MSN, use unified credentials for e-mail and

instant messaging, making life easier for attackers. At-

tackers can harvest IM accounts by setting up phishing

sites for the service, by planting key-loggers or through

social engineering. A relatively known attack campaign

is that of websites advertising a service that can reveal

to users if someone has blocked them. If the user en-

ters her IM credentials in the website, she is redirected

to a page from another domain where nothing happens.

Figure 1. Screenshot from an MSN phish

ing site.

Later on, the phishing site owner logs in as the user and

sends messages to the victim’s contact list. A screenshot

of such a phishing site is displayed in Figure 1. A study

of the phishing domains is presented in section 5.

Exploiting weak privacy settings. Even in the ab-

sence of malware infection or stolen credentials, some

messengers provide the option to allow incoming mes-

sages from people who are not in the user’s contact list.

We tested the latest client versions of the most popular

IM services: MSN live messenger (version 14.0.8089),

Skype (version 4.1), Yahoo (version 10) and AIM (ver-

sion 7.1). MSN live messenger is the only IM client

we tested that has a privacy setting enabled by default

that blocks messages from accounts not contained in the

contact list. Skype, Yahoo and AIM by default allow

anyone to send instant messages to our account, but this

setting can be opted-out. Attackers exploit these settings

to send unsolicited messages to IM users.

Exploiting client software. IM client software suf-

fers from the problem of monocultures. Once an exploit

is discovered, then automatically millions of clients can

be infected immediately [26]. While in the case of mal-

ware infection exploits take advantage of the IM client to

spread, this case involves the attack where the IM client

is used to infect the rest of the machine.

4 Design and implementation

HoneyBuddy was designed taking into consideration

the four attack scenarios described in section 3. In con-

trast to previous work[39], HoneyBuddy does not use

modified versions of open source alternatives. It rather



uses the latest version of the original clients, the same

software most users install. The main reason for this

choice is that direct attacks on IM client software will

be detected. The basic concept behind HoneyBuddy is

to add random accounts to a decoy IM account and mon-

itor the incoming connections. As HoneyBuddy is in

fact a honeypot, any incoming communication is by de-

fault suspicious. For our prototype we chose the MSN

service due to its popularity. However, the design of

HoneyBuddy is generic enough to allow the fast imple-

mentation of other services as well, like AIM, Skype and

Yahoo messengers. Furthermore, MSN live messenger

2009 inter-operates with Yahoo, and is planned to intro-

duce interoperability with Google Talk, AIM and other

services, rendering our architecture deployable for all

major instant messaging services1. All deployed mes-

sengers run in a fully patchedWindows XP SP3 system.

4.1 Architecture

HoneyBuddy has three main components; a harvest-

ing module, a script-based engine that handles the MSN

messenger clients and the inspection module.

The harvesting module is responsible for gathering

accounts that will later be added to the decoy accounts.

All harvested accounts are inserted in CTT files (MSN

contact files) that are imported in the messengers and

all accounts listed are automatically invited. Another

way is to search for e-mail addresses that belong to the

@hotmail.com and @live.com domains. Other poten-

tial sources are sites where users advertise their MSN

account, such as [10]. A more advanced method is to

harvest account names from popular social networking

sites.

The script-based engine starts the messengers and in-

vites all contacts gathered from the harvesting module.

Based on the AutoIt software [3] , we can automatically

start the application, import CTT files and invite other

accounts to our friend list. The AutoIT software allows

the manipulation of the windows of an application the

same way a user would manually click, monitor the sta-

tus of the application and check for new windows (in

order to check for incoming messages). After encoun-

tering an attacker that waited for a reply to his initial

message before sending the malicious URL, we modi-

fied our system to send a random automated response

to each incoming message. When an incoming mes-

sage comes and includes a request for a file transfer,

the engine automatically accepts the transfer. As each

1An experimental deployment of Skype and Yahoo honeypots col-

lected too few URLs to extract any conclusions.

messenger can only have a limited number of friends

in its contact list, it is preferable to run multiple mes-

sengers. For resource efficiency reasons, we used MSN

Polygamy [12] in order to run multiple MSN messen-

gers on a single platform without the need of additional

virtual machines.

The inspection module monitors the logs of the mes-

sengers for malicious URLs. It additionally checks the

default download folder for new file transfers. An inter-

esting finding is that we received URLs and malware in

the Hotmail inboxes of our accounts. Thus, we extended

the inspection module to also fetch and analyze e-mails,

so as to extract URLs and executable attachments. All

malicious URLs are stored in a database and are queried

every one hour to check their uptime status.

4.2 Contact sources

We used two major sources for finding and adding

contacts. The first one was queries for contact files

and e-mail accounts belonging to the @hotmail.com and

@live.com domains. Simple queries like “filetype:ctt

msn” or “inurl:’@hotmail.com” were able to provide us

with thousands of contacts. We also harvested e-mail

accounts from other popular sites like buddyfetch.

com[4], from which we extracted 38,000 hotmail ad-

dresses. Overall, we have invited 14,912 contacts to be-

come friends with our accounts. 3,012 of those (20%)

accepted our invitation. The exact number of invitations

and acceptances per decoy account is displayed in Fig-

ure 2. The five decoy accounts denoted in Figure 2 as de-

coy accounts 14 to 18, sent a thousand invitations each,

to addresses extracted from buddyfetch.com. We

plan on adding the remaining accounts to our system in

the near future. More advanced methods of harvesting

[17] can be based on popular social networking sites like

Facebook. By crawling such networks, one can collect

IM accounts from accessible profile pages.

Other potential sources are sites where users adver-

tise their MSN account, such as messengerfinder

[10]. The messengerfinder site contains more than

25,000 active messenger contacts that are advertised by

their owners for social networking purposes. We adver-

tised our accounts on this site and instructed our honey-

pot messengers to accept any friend request. So far, we

have added 3,505 contacts while this number increases

daily. The exact number of contacts per decoy account

is shown in Figure 3.

4.3 Hardening against direct attacks

HoneyBuddy runs the latest version of the original
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IM client software and is, thus, vulnerable to infections.

In order to prevent infections that will render our hon-

eypot useless and make it a platform for further attacks,

the honeypot messengers run inside Argos[34]. Argos

is a containment environment that is based on memory

tainting techniques. In a nutshell, Argos marks all bytes

coming from the network as dirty and tracks their flow

in the system memory. If a dirty byte is passed to the

processor for execution, then we have an exploitation

attempt since honeypots never download software to ex-

ecute. When an exploit is detected, the application under

attack is restarted and all attack information is logged to

an alert file. This way, our system cannot be used as

an attack platform as it is immune to remote exploits.

A disadvantage of containment environments is that ap-

plications run 20 to 40 times slower than in a vanilla

system. However, in the case of HoneyBuddy this is

not a problem as messengers are hardly demanding in

terms of computing power and memory requirements,

since most of the time they are idle and wait for incom-

ing messages. In our experiments, each MSN client’s

memory footprint is 50-80 MB and consumes negligible

CPU resources.

We have to note, however, that during our experi-

ments we have not yet encountered any attempts from

attackers trying to exploit the IM client software. While

this type of attack may not be common now, we believe

that when IM attacks become more widespread, our im-

plementation will provide useful information for such

attacks.

5 Collected data analysis

In this section we provide an analysis of data col-

lected by the HoneyBuddy infrastructure, from the 27th

of February to the 16th of September 2009. Despite the

technical simplicity of our system, we were surprised

by the fact that popular defense mechanisms had not de-

tected the majority of our collected data. During the col-

lection period, the HoneyBuddy infrastructure collected

6,966 unique URLs that belong to 742 unique top-level

domains.

During the first weeks of Honeybuddy operation we

were able to fetch all URLs through the wget tool. How-

ever, malicious sites changed their behavior to avoid

these fetches. Their pages now serve an obfuscated

piece of Javascript code that changes the window loca-

tion to a URL like http://www.malicious.com/

?key=<randomkeyhere>. If a user has not visited

the page with the key, then all subsequent requests are

ignored and eventually her IP address is blocked for 24

hours. This behavioral change has forced us to fetch

URLs through the Crowbar [6] environment that allows

running javascript scrapers against a DOM to automate

web sites scraping.

Our first step was to provide a simple classification

for those URLs. Our five major categories were phish-

ing, porn, dating, adware 2 and malware. The results are

summarized in Figure 4. 1,933 of the URLs in 142 top-

level domains were phishing for MSN accounts, 1,240

2We characterize sites that promote third-party addons for the MSN

messenger (like extra winks, emoticons etc.) as adware sites
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were porn, 567 were dating services and 251 sites were

adware. While porn, dating and adware can be consid-

ered as harmless, the phishing sites pose a security dan-

ger for users. Furthermore, 77 URLs redirected to exe-

cutable files or to pages that contained a direct link to a

“.exe” or “.scr” file. We classify these URLs as malware.

We also spotted several sites that advertise

subscription-based services for mobile phones. When

the users enter their mobile phone number, they receive

a subscription request. Once they subscribe to the

service, they get charged for receiving SMS messages.

These sites claim to give away free mobile devices to

the subscribers of the service or promote quiz games

that may attract victims, such as love calculators etc.

These sites are highly localized. We visited them

from different geographic locations using the Planetlab

infrastructure [16] and got different pages in the lan-

guage of the origin country. An interesting fact is that

when the site cannot find the geolocation of the user, it

redirects her to an MSN phishing site.

Our second step was to analyze the uptime of the col-

lected URLs. The uptime graph can be seen in Figure 5.

On average, a site is functional approximately for 240

hours (10 days). We also plotted the uptime graph for

each category. We notice that porn and MSN phishing

sites present much higher uptime than adware and un-

classified sites. Half of the MSN phishing sites were

alive for up to 250 hours (ten and a half days), while ad-

ware present a shorter lifetime of up to 80 hours (three

and a half days).

5.1 MSN phishing

Attackers try to gather MSN credentials by tricking

the user into entering her MSN e-mail and password in

a bogus site. These sites falsely advertise a service that

will reveal to the user which accounts from her contact

list have blocked her. To validate that these phishing

sites actually steal user credentials, we created several

MSN accounts and entered them into the phishing sites.

Each account had one of our decoy accounts as a friend.

The decoy account received messages from the stolen

MSN accounts that advertised the phishing site. How-

ever, the attackers did not change the passwords of any

of the compromised accounts. After the attackers had

started using our victim accounts, we submited “friend

requests” towards these accounts. We wanted to see

whether attackers will interfere with such matters and

automatically accept requests. None of the submitted

requests were accepted.

All phishing sites we visited shared one of three dif-

ferent “looks”. A screenshot of such a site is shown in

Figure 1. We analyzed the source HTML code of all the

three “looks” and there was absolutely zero difference

among the pages with the same look. This means the

phishing pages with the same look had the exact same

size and contained the same images and forms. This

indicates that the majority of the different phishing cam-

paigns might be deployed by a number of collaborat-

ing attackers. We also detected a localized phishing site

which contained translated content, a technique used in

e-mail spam campaigns[20]. The number of syntactical

and grammatical errors revealed that the text translation

was done automatically. For the time being, simple pat-



tern matching for specific text segments is efficient for

detecting these sites. Another detection mechanism is to

query the various URL blacklists.

We queried the Google blacklist through the Google

Safe Browsing API [8] to check if it included the phish-

ing sites we discovered. From the 142 unique top-level

domains (TLD) that hosted phishing sites and were de-

tected by HoneyBuddy, only 11 were listed by Google

blacklist. That means that 93% of the domains captured

by HoneyBuddy were not listed elsewhere on their day

of detection, making HoneyBuddy an attractive solution

for MSN phishing detection. The average delay from

when our system detected one of the 11 sites until it was

included in the Google blacklist was around two weeks,

leaving a time window of 15 days for attackers to trick

users. Firefox, one of the most popular browsers uses

the Google Safe Browsing API as an anti-phishing mea-

sure. We also compared our findings with the blacklist

maintained by SURBL [22] and URLblacklist.com [24].

SURBL detected only 1 out of the 142 MSN phishing

domains (0.7%) and none of the adware domains. None

of the phishing or adware sites were listed by URLblack-

list.com.

A very interesting fact was that when resolved, all the

unique top level domains translated to a much smaller

number of unique IP addresses. This fact confirms our

initial theory that all these phishing campaigns lead to

a limited number of collaborating attackers. To further

investigate this behaviour, we conducted an experiment

for a period of almost two months, presented in Section

6.

At the time of writing this paper, our infrastructure

collected two new types of malicious URLs that demon-

strate an evolution in the behaviour of IM scam cam-

paigns. The first type is a phishing site that instead of

advertising a service for MSN users, has recreated the

exact “look and feel” of the Windows Live login page.

The second type is a site that offers a Java applet to con-

vert hosted images into a slideshow. The Java applet

is not signed from a trusted source and requires unre-

stricted access to the victim’s machine. Our disassem-

bly showed that the applet downloads a PE32 executable

from another domain and executes it.

5.2 Malware sample analysis

In this section we provide an analysis of the mal-

ware collected by the HoneyBuddy infrastructure, from

the 1st to the 31st of March 2009. Our infrastructure

collected 19 unique malware samples. We distinguish

the malware collected by the HoneyBuddy infrastruc-

ture into two categories, the direct malware set and the

indirect malware set. We present the two categories and

proceed to further analyze the collected samples.

The first category contains malware samples col-

lected either through direct file transfers (uncommon

case) or by visiting URLs that were redirected to exe-

cutable files. In the case of the URLs, the e-mail ac-

count of the victim was always appended as a parameter

to make it look more realistic. In some cases attackers

used popular keywords, like Facebook.

The second category, the indirect one, contains mal-

ware samples collected in two types of cases. In the

first case, users are presented with a web page that alerts

them that they need to download the latest version of

the “adobe flash plugin” so as to play a certain video

strip, and are prompted to download the installer which

is, obviously, malware. In the second case, users are

redirected to a page prompting them to install a screen

saver. This “.scr” file they are prompted to download

and install is a malicious file that infects the machine

upon execution.

Due to the small volume of files, we were able to

manually check these files using the Anubis analysis

center [1]. All of them were characterized as danger-

ous , while some of them were bots that connected to

an IRC C&C server. By joining the IRC network, we

downloaded even more malware samples (not listed in

this section).

In order to verify how original our samples are, we

submitted them to the VirusTotal [25] service. VirusTo-

tal is a large malware collection center with the primary

goal of providing a free online virus and malware scan

report for uploaded samples. The reason we chose to use

VirusTotal is twofold. First, VirusTotal receives around

100,000 samples every day from a multitude of sources

resulting in a large database of malware samples. The

second and most important reason is that VirusTotal col-

laborates with a large number of well known anti-virus

vendors3 and uses their anti-virus engines and, therefore,

can provide us with an accurate picture of the efficiency

of up-to-date, state-of-the-art defense solutions for home

users.

Four collected samples had not been seen by Virus-

Total before, that is 21% of our samples were previously

unseen malware instances. Figure 6 shows the relative

detection delay compared to the date the samples en-

tered the VirusTotal database. The base bar of the stack

graph (solid white) shows how many samples were de-

tected with a delay of one or more days, the middle bar

(solid black) displays the number of samples that were

3For a complete list refer to http://www.virustotal.com/

sobre.html
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Figure 7. Cumulative distribution function of
detection rate for collected samples based

on VirusTotal reports. 42% of the samples
were detected by 50% of the antivirus en

gines.

detected the same day as VirusTotal while the top bar

shows the number of samples not included in the Virus-

Total database. Five samples (26%) were collected the

same day they entered the VirusTotal database, while the

maximum detection delay was five days.

We also checked the VirusTotal analysis reports for

the collected samples. 42% of the samples were detected

by half of the anti-virus engines, while the maximumde-

tection rate was 77%. However, the dates of the analysis

reports were one month after the collection date as we

did not submit the samples the day they were captured.

The one month delay means higher detection rates for

the anti-virus engines as they update their signature files

daily. Even in that case, it can be observed that there are

samples that are recognized by only one third of the anti-

virus products. The cumulative distribution function of

detection rates can be seen in Figure 7.

5.3 Mailbox analysis

In this section we present an analysis of the emails

we found in the mailboxes of our decoy accounts. Our

analysis focuses on two aspects of the incoming emails.

First, whether the body of the email contains any URLs

and, second, whether the email contains any attach-

ments. The decoy accounts received a total of 4,209

emails, 403 of which contained a total of 1,136 at-

tachments. The emails contained 5,581 URLs which

were passed to our classifier. The goal of the classifi-

cation was to only identify phishing URLs and URLs

that downloaded malware. 26 of the received URLs be-

longed to phishing domains while 7 downloaded mal-

ware samples.

While the majority of the attachments were pictures,

several were windows media files and office documents.

We checked the VirusTotal database for the MD5 hashes

of the files but found no matches. This was expected,

since hotmail scans incoming emails for malware and

blocks executables. The most interesting attachments

were two “.zip” files. Once extracted, the zip files re-

turned a “.lnk” file. Upon inspection, we found that the

files were command line scripts that connect to an FTP

site and download and execute malicious software. For

a more detailed analysis of the file refer to this report by

F-Secure [9].

5.4 Comparison to email spam

An important aspect of IM based attacks that we

wanted to explore was whether they are scams that

use other commmunication channels as well or if they

are unique to this attack medium. In particular, we

wanted to explore similarities between the campaigns

collected by HoneyBuddy and scams that propagate

through emails that are collected by spam traps. We ob-

tained 458,615 spam emails collected by Spam Archive

[19] from the 27th of February to the 16th of September

2009. From these emails we extracted 467,211 unique

URLs that belonged to 52,000 unique TLDs. We com-

pared them to our 6,966 unique URLs and found only

one common instance of a well-known benign website.

This result was expected since URLs in IM attacks usu-
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ally contain the target’s username. Next, we compared

the unique TLDs and found 21 common domains, 9 of

which were popular and benign domains. From the 12

suspicious domains, 3 were classified as porn, 3 hosted

malware, 2 were for dating, 1 was for adware and 3 were

not assigned to a known category. None of the common

TLDs hosted msn phishing scams, the prevalent threat of

IM networks. Therefore, we can conclude that attackers

have crafted scams specific to this new attack medium

that are fundamentally different to existing email spam

campaigns.

The results of this comparison are a strong indication

that scams that propagate through IM networks are new

campaigns and not email spam campaigns that utilized

a new attack channel. They present their own unique

properties that differentiate them from traditional scams

that propagate through spam emails.

5.5 Comparison to commercial antiphishing
product

Multiple anti-virus vendors provide software prod-

ucts designed to protect users from malicious sites. To

verify whether the URLs we collect have already been

seen by large vendors that offer anti-phishing products,

we evaluated our URLs using such a service. We used

the Norton Safe Web service [13] provided by Symantec

[23], where users can submit a URL and receive a re-

port that contains information regarding possible threats

from the specific website. We submitted the 2,010

phishing and malware URLs collected by our infrastruc-

ture after the collection period. Submitting the URLs af-

ter the collection period and not each URL individually

upon collection, results in a potentially higher detection

rate for the Norton Safe Web service. Even so, Nor-

ton Safe Web flagged only 13% of the submitted URLs

as dangerous or suspicious. Specifically, 246 phishing

and 10 malware-distributing URLs were reported as ma-

licious while all other pages were characterized as safe.

That means that over 87% of the malicious URLs col-

lected by HoneyBuddy had not been properly catego-

rized as dangerous by one of the largest security ven-

dors.

6 Hosting analysis

The fact that all the top-level domains of the URLs

collected from our initial experiment translated to a very

small number of IP addresses, urged us to conduct a

new experiment that might reveal more information. For

a period of 50 days during July and August of 2009,

we periodically ran nslookup[14] for each of the unique

top level domains our system had collected up to that

moment, in order to gather more information regarding

how and where attackers host phishing and malware-

distributing domains. Here we present the results for

each category of domains separately and highlight their

particular behaviour.

The experiment gave us further insight in regards to

the small number of IP addresses that host a multitude of

phishing campaigns. All top level domains translated to

one or two IP addresses, while 98% of them translated

to only one. Furthermore, ten of the top level domains

belonged to fast-flux networks and translated to a differ-
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ent set of IP addresses each time. In Figure 8 we can

see that during the first days of the experiment, all 101

top-level domains translated to only 14 different IP ad-

dresses. The TLDs that belonged to fast-flux networks

are excluded from the graphs. This behaviour is con-

sistent throughout the duration of the experiment and as

new domains were added only a small number of new

unique IP addresses appeared.

Next we wanted to track down the country where the

domains were hosted. We used theMaxMind 4 database.

In Figure 10 we can see the breakdown of the percent-

ages of the countries that hosted the top level domains.

Honk Kong ranks first hosting 26% of the domains,

while the United states follow with 22%. A surprising

result is that only 13% of the domains were hosted in

China, which is quite lower than what we would expect

based on reports [21].

Next we present the results from the experiment re-

garding domains that distribute malware. Our initial

goal was to investigate whether the top level domains of

the malware-distributing websites also translate to only

a small number of IP addresses.

In Figure 9 we present the results from this exper-

iment. We can see that in the case of the URLs that

contain malware, the top level domains translated to dif-

ferent IP addresses. Unlike the phishing domains, here

each top level domain translated to a different IP ad-

dress, and only one to three IP addresses overlapped at

4http://www.maxmind.com/app/geolitecity

each moment in time. The IP address that hosted three

malware-distributing domains also hosted one of the

phishing domains and was located in the United States.

None of the other IP addresses hosted both a malware-

distributing and a phishing domain. The nslookup oper-

ation for all the top level domains returned only one IP

address, and only one of the domains belonged to a fast-

flux network pointing to a different address each time.

Since the IP addresses that host phishing domains are

more likely to be blacklisted, this result is not surpris-

ing. Another interesting fact is that none of the top level

domains is in both of the sets, meaning that none of the

domains hosted a phishing site and simultaneously dis-

tributed malware.

Similarly to the phishing domains, we wanted to trace

the country where the malware-distributing domains

were hosted. In Figure 11 we can see the breakdown

of the percentages of the countries. The United States

were responsible for hosting the majority of the domains

that distribute malware through IM traffic, reaching al-

most 86%. The remaining three countries, Canada Ger-

many and the Netherlands, hosted an equal amount of

domains. Once again, it is surprising that China did not

host any of the domains caught by our infrastructure.

7 Attacker profile

In this section we present statistics and observations

in an effort to outline the behaviour of IM attackers and

recognize different strategy patterns.
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that contacted our decoy accounts over time.
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by compromised accounts to our decoy ac
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First of all, in Figure 12 we present the number of

unique compromised accounts that had sent URLs to

our decoy accounts over time. We can see that the plot

line follows a sub-linear curve, with almost 100 new ac-

counts contacting us each month. This indicates that

over time legitimate users still follow malicious URLs

sent by compromised “buddies” and in turn get infected

too.

In Figure 13 we can see the CDF plot of the number

of URLs sent by each compromised account to our in-

frastructure throughout the duration of the experiment.

One should note that approximatelly 25% of the com-

promised accounts sent only one URL and 40% up to

two URLS. Based on the numbers we can identify one

possible strategy that attackers choose to follow.

Eventhough some of these accounts/hosts may have

been dis-infected before sending us another URL, it is

improbable to assume that all of them were “cleaned

up”. Therefore, this might indicate a cautious behaviour

on behalf of the attackers. With 55% of the compro-

mised accounts sending up to 4 URLs and 75% sending

less than 20, it is evident that one strategy that attack-

ers follow is to avoid aggressive spamming behaviours

so as not to raise suspicions among the compromised

accounts’ contacts. Such aggressive behaviours could

alert the user and lead to the dis-infection of the ac-

count/machine. However, this cautious behaviour could

also be attributed to technical reasons. If the attack is

propagated through a worm that infects the client, then

a low rate of worm propagation would be used so as not

to trigger antivirus or intrusion detection systems.

Furthermore, approximately 12% of the attackers

sent at least 100 URLs to our decoy accounts. This

aggressive strategy of massively dispatching spam mes-

sages, indicates a category of attackers that don’t try to

remain beneath a certain threshold. This can also be at-

tributed to technical reasons. Specifically, amongst the

top ten compromised accounts that sent us the largest

number of URLs, we found all the victim accounts

whose credentials we had entered in phishing sites.

Therefore, the attackers use tools to send messages from

these compromised accounts without relying on worms

that infect the IM client software. Thus, we can recog-

nize a second more aggressive strategy, where it is not

necessary for attackers to adopt a stealthy propagation

rate. Finally, it is interesting to note that attackers send

URLs from all the categories, as well as malware, and

do not focus on one specific type.

8 Real-case Evaluation

We were interested in investigating the potential ef-

fectiveness of an IM attack campaign. To do so, we de-

cided to launch our own benign campaign targeting the

contacts of one of our honeypots. Therewere two factors

to be taken into consideration. The first one was local-

ization. Several users would get suspecious if we sent

them messages that were not in their native language.



We queried the profile pages of most of the contacts we

had at our disposal but unfortunately we could not re-

trieve country information for most of them, so we de-

cided not to localize the messages sent. The second one

was whether a conversation would take place before ac-

tually sending the URL. A message containing a URL

without any prior conversation might get flagged as sus-

picious immediately.

Nonetheless, we decided to launch a simple spam

campaign that imitated the ones caught by Honey-

Buddy, that would not provide biased results. We

logged in one of our honeypot accounts and sent

the following message to the online contacts: “Hey!

Check this out: http://mygallery.webhop.

net/gallery1/photo1.jpg”. The URL pointed

to a web server controlled by us and redirected the user

to a web page that asked the user to download a (benign)

executable. The executable was a harmless program that

just requested another URL, again from our own web

server. That way, we were able to track if and when

a user actually executed the file she downloaded. We

contacted each online contact only once for the whole

duration of the experiment.
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Figure 14. Time series of events that oc

curred during our benign campaign.

The results of the campaign are summarized in Fig-

ure 14. The bottom series plots the timestamps when

the message was sent to an online user. The middle se-

ries plots the timestamps when a contact visited the URL

contained in the sent message and downloaded the exe-

cutable. The top series displays the timestamps when a

contact actually ran the downloaded executable. During

our campaign we sent 231 messages. 27 unique users

(11.6%) visited the URL and downloaded the file, while

9 of them (4%) executed the downloaded file. We re-

peated the same experiment with two other accounts and

the results were almost the same.

9 MyIMhoneypot, a detection service

In this section we present an overview of existing de-

fense measures, and propose a service for the early de-

tection of attacks targeting instant messaging networks.

The existing defense mechanisms deployed by instant

messaging service providers and other vendors, are in-

sufficient for protecting users from the threats presented

in Section 3. Anti-virus products that scan files received

from instant messaging file-transfers fail to identify all

malware used by IM attackers, as shown by our find-

ings. Anti-virus vendors could provide more up-to-date

signatures for IM malware by deploying HoneyBuddy

for the early collection of such malware. Furthermore,

as shown in Section 5.5, anti-virus products designed to

protect users from phishing attacks fail to detect 87% of

the malicious URLs collected by our infrastructure. Pop

up messages from IM client software that alert users of

phishing, that are triggered by all messages that con-

tain a URL even if it is benign, are ineffective since

users tend to ignore warnings that are presented even for

well-known benign URLs. We propose that IM clients

should correlate received URLs with blacklists and alert

users only when they belong to malicious domains. We

present our client-side mechanism that is orthogonal to

existing defense mechanisms; myIMhoneypot, an early

detection service that can inform users if their accounts

or IM clients have been compromised. IM attacks try

to spread through the victim’s contact list by sending ei-

ther URLs or files to the victim’s friends. Any user that

wants to check if her account is compromised registers

with the myIMhoneypot service. Upon registration, the

service creates a unique IM honeypot account (for ex-

ample, a new MSN account that will be used as a decoy

account) and informs the user to add that honeypot ac-

count to her contact list. As the user will never start a

conversation with the honeypot account but an IM at-

tacker will (with great probability), the user can check

if something is wrong by visiting the website of the ser-

vice and checking the conversation logs with her unique

honeypot account. If there are entries in the conversa-

tion log of her decoy account like the example in Figure

15, then there is a strong indication that her IM client or

credentials have been compromised.

The reason that a unique IM account must be created

per user is twofold. First, if the service has only one or

a few honeypot accounts then they can be easily black-

listed (recall that anyone can subscribe to the service,

including attackers). The attacker should not be able

to distinguish whether a contact is a decoy account or

not. The service creates accounts with human-like nick-



Figure 15. A screenshot of the log pre
sented to a user whose IM account has

been compromised.

names. Second, the attacker can try to hack into the ser-

vice’s accounts once she knows the user is a subscriber.

Using a unique honeypot per user makes the attacker’s

life a lot harder. The attacker cannot correlate common

friends across accounts and has to try to compromise all

the accounts in the user’s contact list. Even if she does

that, most IM services (at least MSN and AIM) do not

keep conversation logs at the server side so she cannot

find her spam messages in the logs of decoy accounts.

The attacker could guess the decoy accounts by

checking the locally stored conversation logs. Normally,

a user will have conversations with all members of her

contact list except the honeypot account. Therefore, the

attacker could avoid sending messages to accounts for

which no conversation logs were found. This attack can

be easily circumvented by planting a fake conversation

log on the user’s side.

The myIMhoneypot service has a limitation. For

each registered user, a new IM account must be cre-

ated in order to be used as a decoy. This process in-

volves the solution of CAPTCHAs [5] which prevents

us from making it completely automatic. Although we

could claim that MyIMhoneypot is a legal case for laun-

dering CAPTCHAs, we did not implement it for obvi-

ous reasons. For the time being, we have to manually

create decoy accounts. However, we propose that this

service should be implemented by each IM provider as

a means of protection for its users. We implemented

a prototype of myIMhoneypot for the MSN platform.

We call it myMSNhoneypot and it can be found at

www.honeyathome.org/imhoneypot .

We also provide a service that does not require user

registration. Users can submit URLs they receive in in-

stant messages to correlate them with our database. As

mentioned before, suspicious URLs usually contain the

target’s username and, thus, searching for an identical

URL in our database would rarely result in a match.

Therefore, the service searches our database for any

URL that has the same top level domain with that of the

submitted URL, which is an indication that they might

belong to the same campaign. If a match is found the

user is presented with a small report containing the date

the URL was first caught by HoneyBuddy and the cat-

egory it was assigned by our classifier. Based on our

findings in Section 5 concerning the uptime of each of

collected TLDs, we assign the submitted URLs with a

value of how likely they are to still pose a threat to users

depending on the time window between being collected

by HoneyBuddy and being submitted by the user.

10 Conclusions

In this paper we propose HoneyBuddy, an active hon-

eypot infrastructure designed to detect malicious activ-

ities in instant messaging services. HoneyBuddy auto-

matically finds user accounts that belong to a supported

IM service and adds them to its contact list. Our system

monitors decoy accounts for incomingmessages and file

transfers, and extracts suspicious executables and URLs.

The suspicious data gathered by HoneyBuddy is cor-

related with existing blacklists, and malware collection

center databases. Despite the simplicity of our system,

deployment for the MSN service showed that 93% of

the identified phishing domains were not listed by popu-

lar blacklist mechanisms and 87% of all malicious URLs

were incorrectly flaged as safe by a commercial “web-

safety” product. Furthermore, 21% of collected malware

samples were also not listed by other infrastructures.

These findings confirm that existing security measures

of instant messaging services are insufficient, and also

indicate the effectiveness of our system as a comple-

mentary detection infrastructure. We further inspected

the top level domains that host the phishing URLs and

found that they translate to a very small number of IP

addresses suggesting the existence of a large network

of collaborating attackers. On the other hand, domains

that distribute malware do not follow the same tactics

and translate to a different set of IP addresses. We lo-

cated domains that belong to fast flux-networks in both

cases, however they are more common in the case of the

phishing domains, which have a higher probability of



being blacklisted. Based on the results from the analy-

sis of the IM attacks we caught, we provided a profile

of the attackers and their spamming strategies. An inter-

esting aspect of IM attacks that could not be measured

by our infrastructure was how successful anMSN phish-

ing campaign can be. To get an estimation, we deployed

our own benign campaign and found that almost 12% of

the users followed the URL and 4% ran the executable it

redirected to.

We also deployed myMSNhoneypot, a prototype im-

plementation of a service that is open to the public and

creates dedicated IM honeypots for users. This service

provides an early alerting mechanism for users whose

IM accounts or clients are compromised. It provides de-

coy accounts for users that register with the service to

add to their contact list. A message from the user to a

decoy account is an indication that the user’s credentials

or IM client are compromised, as the user would never

initiate a conversation with the decoy contact. We pro-

pose this type of service to be adopted and deployed by

instant messaging vendors. Finally, we offer a service

where users can submit a URL and receive a report in-

dicating if the top level domain has been classified as

dangerous.
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