
dead.drop: URL-based Stealthy Messaging

Georgios Kontaxis∗, Iasonas Polakis†, Michalis Polychronakis∗ and Evangelos P. Markatos†

∗Computer Science Department,
Columbia University, USA

{kontaxis, mikepo}@cs.columbia.edu
†Institute of Computer Science,

Foundation for Research and Technology – Hellas, Greece
{polakis, markatos}@ics.forth.gr

Abstract—In this paper we propose the use of URLs as
a covert channel to relay information between two or more
parties. We render our technique practical, in terms of band-
width, by employing URL-shortening services to form URL
chains of hidden information. We discuss the security aspects
of this technique and present proof-of-concept implementation
details along with measurements that prove the feasibility of
our approach.

I. I NTRODUCTION

The Internet’s public character mandates the need for
confidential communications in respect to users’ right to
privacy. Cryptography may not always suffice on its own,
as a user can be forced to surrender the key upon discovery
of an encrypted message1. For that matter, covert channels
offer the ability to communicate information in a clandestine
way so as to avoid raising any suspicions.

At the same time, more than 50% of the Internet’s traffic
is attributed to the World Wide Web [1], which presents
an excellent environment for piggybacking covert messages.
Empirical observations suggest that URLs are getting longer
and more complicated, increasing in depth and the number of
parameters they carry. For instance, links to pages of Google
Maps and Reader or Amazon may be 500 or 1000 characters
long. As a result, one could hide meaningful information in
such “noise” to establish a covert communication channel
with another party. However, as the channel has to blend in,
it is bound by the statistical properties of the URL population
in the network.

URL shortening has evolved into one of the main practices
for the easy dissemination and sharing of URLs. URL-
shortening services provide their users with a smaller equiv-
alent of any provided long URL. Currently, a plethora of
such services exists2 and are used extensively in a wide
range of sites, including blogs, forums and social networks.
Their popularity is increasing rapidly by as much as 10%
per month, according to Alexa3.

1http://www.schneier.com/blog/archives/
2008/10/rubberhose cry.html

2http://www.prlog.org/10879994-just-how-
many-url-shorteners-are-there-anyway.html

3http://www.alexa.com/siteinfo/bit.ly#trafficstats

In this paper we propose the use of URLs as a covert
channel to communicate information between two or more
parties. The basic idea is to encode the message using
the URL-permitted subset of the US-ASCII character set
[2] and masquerade it to resemble an actual URL. Such
straightforward approach is limited in terms of the amount
of data that can be encoded in each URL, due to the need
of blending in with the population of actual URLs. We
overcome such restrictions by employing URL-shortening
services to form URL chains of hidden information.
Multiple long, information-carrying, URL look-alikes are
arranged and digested in reverse order and each resulting
short URL is appended to the next long URL before it is
shortened. In the end, each short URL unwraps into an
information-carrying long URL which contains the pointer
to the next short URL, thereby forming a chained sequence
of messages. We discuss the security of our approach
and present the proof-of-concept implementation details
along with measurements that prove the feasibility of our
approach.

The contributions of our work are the following:

• We make it practical, in terms of bandwidth, to employ
URLs as a covert channel for communicating informa-
tion between two or more parties.

• We propose a novel use of URL-shortening services for
storing and transmitting short messages in a stealthy
way.

• We have a prototype implementation ofdead.dropas
well as a sample application that uses our API to handle
short files and message strings.

• We perform a security analysis of our proposed method
and prove that it holds the following properties: it is
unobservable against both static and dynamic analysis
and robust against straightforward message extraction.

• We study the traits and features of the most popular
URL-shortening services, along with the characteristics
of short URLs from a popular social networking site, in
respect to our goal of an unobservable communication
channel.



The rest of the paper is organized as follows: in Section II
we provide background on HTTP URLs and URL shortening
services. In Section III we present our design for a covert
messaging system. In Section IV we measure the feasibility
of our proposal in relation to the traits and features of
popular URL-shortening services and study a sample popular
of short URLs from a popular social networking site. We
present related work in Section VI and conclude in Section
VII.

II. BACKGROUND

In this section we provide some background on Uniform
Resource Locators (URLs) and URL-shortening services. In
our proposal, we employ URLs to carry messages in a covert
fashion and utilize URL-shortening services for overcoming
usual bounds and making the communication channel more
feasible and efficient.

Uniform Resource Locators. URLs are used to refer
to resources in protocols such as HTTP. An HTTP URL
is comprised of the host part, identifying the network host
serving content (e.g., web server), an absolute path to the
resource requested (separated by slashes) and finally the
query part, which begins with the questionmark character
and may contain data to be transmitted towards the net-
work host. Such data is split into variables separated by
the ampersand (&) character. Furthermore, HTML pages
may contain bookmarks to their content for easier user
access. Appending the hash (#) character and the name of
a bookmark at the end of an HTTP URL is acceptable
so that the browser will navigate to the specified book-
mark once the HTML content is loaded. Overall, a typical
HTTP URL resembles the format http://host/subfolder/p.
html?var1=val1&var2=val2#chapter2. URLs are written in
a subset of the US-ASCII character set: alphabet letters,
digits, the character plus (“+”), period (“.”) and hyphen (“-
”) are allowed. The rest of the ASCII characters are either
part of the control set or unsafe and must be encoded in
a hexadecimal representation. While originally only a few
characters needed to be written in HEX, today it is common
practice for URLs to contain non-Latin characters, e.g. to use
words in Greek or Japanese. Such strings are written using
the Unicode Transformation Format (UTF [3]) and then rep-
resented in hexadecimal form as the respective byte values
do not fall within the acceptable character set. As a result,
URLs like http://example.gr/%CE%B1%CE%B2%CE%B3/
%CE%B4%CE%B5%CE%B6.html are not only common
but may dominate network traffic at a local scale.

According to the RFC [4] for the HTTP protocol, there is
no a priori limit for a URL’s length. Microsoft4 has placed
a limit of 2,048 characters on the Internet Explorer browser.
Empirical data on browsers like Mozilla Firefox and Google
Chrome suggest that they can handle URLs that span to tens

4http://support.microsoft.com/kb/q208427/

or even hundreds of thousands of characters. Furthermore,
there is no specified limit on the depth of the URL (i.e.
length of the path segment) or the number of variables or
their maximum length. Such properties are implementation-
specific and depend on the file system, web server instance
and application running each time on the content host.

As mentioned earlier, URLs are resource locators, mean-
ing that one describes a resource on a host computer
and that resource may or may not exist. For instance,
http://www.example.com/page1.html may exist and return an
HTML page and http://www.example.com/page2.html may
not and yet both URLs are considered valid in syntax.
Therefore, the only way to evaluate a URL is by trying
to access the resource it describes. Even then, a failure is
acceptable as it is common for resources to be relocated
or mistyped (e.g. user makes a spelling error while typing
a URL in the browser). Furthermore, what happens when
a requested resource is not available depends upon the
implementation of the specific web server and application.
For instance, the web server may respond with a default
HTML page (e.g. the contents of the home page) or a page
with an application-specific error string. It may also respond
with an HTTP error 404 “Not Found” or with an HTTP 301
redirection message to a default valid resource (e.g. URL of
the home page). Therefore, it is very difficult to determine an
actual URL from a look-alike URL as access requests may
fail silently. Even if they fail, such behavior is not definitive
for characterizing a URL-like scheme. Even if there are a
few cases that a fake URL path returns a standard type of
error, when it comes to URL parameters (or query variables),
server behavior is ever more relaxed: invalid variable values
may be simply ignored or return an application-specific error
string. Unknown variables will always be ignored. Finally,
while hash locators (#) are never transmitted to the server
as part of a request, it is acceptable for URLs to carry one
of unspecified length as they having meaning inside the web
browser.

Overall, we consider it very hard to distinguish a look-
alike URL (i.e. encoded information masqueraded to follow
the same structure) from an actual URL. Such identification
is hard by statically examining the two strings, such as
checking for a similar length and number of parameters.
Also, as mentioned earlier, it is hard to dynamically distin-
guish them by attempting to access the resource they are
supposed to refer to. In light of that, we propose the use of
messages encoded in look-alike URLs and their subsequent
transmission or storage in a shared space, to form a covert
communication channel.

In order for look-alike URLs to be indistinguishable from
actual URLs in static analysis, they must carry the same
statistical properties in terms of structure (i.e. length,depth
and parameters). One could argue that maintaining these
properties severely limits the bandwidth of the communi-
cation channel. For that matter, we employ URL-shortening



services to implement URL chains. We will now discuss
such services and present the concept of URL chains in
section III.

URL-shortening Services. URL shortening services pro-
vide a persistent mapping from a long URL to a short one.
Their contribution resides in the fact that they provide an
efficient way for users to share long HTTP addresses. Instead
of posting the original URL, a short address that redirects to
the original one is supplied by the service and can be posted
in web pages, blogs, forums, social networking sites, e-mails
and instant messengers that are either incapable of handling
long inputs or inefficient in presenting them. For example,
if the user submits http://www.this.is.a.long.url.com/indeed.
html to bit.ly, a prominent shortening service, it will return
the following short URL: http://bit.ly/dv82ka. Any future
access to http://bit.ly/dv82ka will be redirected, by bit.ly,
to the original URL through an “HTTP 301 Moved Perma-
nently” response [4]. For any given input, the returned short
URL is comprised of an identifier 5-7 characters long under
the domain of the service. Some of these services return
a random short URL while others also support customized
ones. For example, the tinyURL service allows customized
short URLs, such as http://www.tinyurl.com/customalias.
Furthermore, such mappings are kept indefinitely in the vast
majority of services, if not all of them.

Different limitations are posed by each service regarding
the length and form of URLs to be shortened and, in some
cases, input several megabytes long is accepted. Further-
more, certain services do not check whether the submitted
content has a valid URL format, meaning it does not even
have to start with http:// while all special HTML characters,
from white spaces to symbols, are accepted and correctly
handled. This behavior can be exploited to hide arbitrary
content in URL shorteners. In section IV we present the traits
and features of the most popular URL-shortening services.

Despite the different limitations, the common characteris-
tic of all these services is that they store information (a long
URL) and point to it via a pointer (the shortened version of
the URL). Additionally, if the URL-shortening service is
known, one may only refer to a short URL by its identifier
which is only 5-7 characters long, resulting in a very efficient
way to address a very long string of information using a
pointer of less than 10 characters.

III. DEAD.DROP

A. Design and Operation

The idea behinddead.drop is that messages are mas-
queraded as one or more look-alike HTTP URLs and
subsequently shortened by one or more URL-shortening
services. The shortening process conceals the true length of
the information-carrying URL and makes it easier to blend
in a population of other URLs in the network, a social
networking site or an instant messaging session. Further-
more, URL-shortening exhibits some interesting character-

http://maps.google.com/?q=%E7%A5%9E%E5...
http://maps.google.com/?q=%56%47%68%70...

Listing 1. A real URL with unicode characters encoded in HEX versus a
look-alike URL carrying a hidden message.

istics that strengthen the covert nature of the system and
support advanced features such as message chains, which
are explained later on.

Message Encoding. Message strings are encoded into a
Base64 chunk and that chunk is split into blocks of arbitrary
size. These blocks are masqueraded as a look-alike HTTP
URL, either as part of its path or values to query variables
or location hashes.

For instance, the message string “This is a secret.” will
become “VGhpcyBpcyBhIHNlY3JldC4=” and that Base64
chunk will be split into blocks and form a URL like
the following: http://cnn.com/VGhpcy/html/BpcyBhIH/en/
news?id=NlY3#JldC4%%3D. That URL will be subse-
quently shortened using a URL-shortening service, such as
bit.ly to something like http://bit.ly/fGvq5h and the final
short URL will be the token which will be kept as a pointer
to the original message, or transmitted across communicat-
ing parties.

One could argue that the forged URL stands out, as
apparently meaningless strings of characters are present in
its path. However, we consider it hard to distinguish the fake
URL in the example of Listing 1 where the look-alike URL
is masqueraded as if carrying characters in the Unicode set
which are being represented by their hexadecimal values.
On a side note, the real URL is 205 characters long while
the message-carrying one is less than half its size.

The length of each block and their dissemination in the
various segments of the URL is deterministic, so that the
recipient of the hidden message may reverse it. Nevertheless,
it is based upon a pre-shared, secret, random seed between
the sender and receiver. Moreover, using that seed, blocks
are not placed in order in the URL but are transpositioned. In
the case of multiple URLs, such a transposition takes place
between different URLs so that two sequential blocks of the
original message are located in unrelated URLs. The seed
is essentially the “dictionary” that such protocols require so
that special meaning is assigned to seemingly meaningless
things. Furthermore, the secret determines which URL-
shortening services will be used and in which order. The
same thing happens with the selection of the domains in the
prefix of the URL (e.g. cnn.com), which are selected from
a pool based on the value of the secret. The secrecy of the
random seed makes it harder for the adversary to distinguish
a look-alike URL from an actual URL by statically observing
their structural properties. However, even if the secret is
revealed, we consider it non-trivial for one to detect an
information-carrying URL. The secrecy of the seed makes it
also hard to recover the hidden message from a captured and



[IN STR] DATA1DATA2DATA3
[STEP 1] http://cnn.com/#DATA3# ->

http://bit.ly/e2V3N0
[STEP 2] http://cnn.com/#DATA2#

http://cnn.com/#DATA2#e2V3N0 ->
http://bit.ly/evkkYf

[STEP 3] http://cnn.com/#DATA1#
http://cnn.com/#DATA1#evkkYf ->

[OUT URL] http://bit.ly/gGPWL1

Listing 2. Example creation of a URL chain.

known-to-be information-carrying URL. We do not consider
our encoding to be strong against cryptanalysis techniques
but the original message can be encrypted prior to its hiding
to preserve its secrecy even upon recovery.

On can argue that as the amount of encoded information
increases, the URL’s length will make it stand out among
others in a network trace. For that matter we measure the
amount of long URLs from a bit.ly trace we have obtained
from the Twitter social network. It turns out that 10% is
longer than 200 characters and 1% of the set is about 2K
characters long. We consider a range of 200-2000 characters
for encoding information in a single URL. In section IV we
present our findings in a more analytical fashion.

Short-URL Chains. To share messages longer than 2K
characters we use more than one information-carrying URL
and in each one append pointers towards the next. Such
practice is made possible by the use of URL-shortening
services that digest the long URLs and return very short
pointers. In detail: the message is encoded into multiple 2K-
character Base64 chunks. Each chunk is split into blocks
and encoded in its own look-alike long URL. Each URL is
shortened, starting from the last one moving towards the first
one. Listing 2 provides an example for creating such chain
of URLs. So if we want to share 3 2K-character chunks, we
will shorten the URL of chunk 3, next the URL of chunk 2
and finally the URL of chunk 1. The short URL produced
by URL 3 is appended to the end of URL 2, prior to its
shortening (steps 1 and 2). And the short URL produced
by URL 2 is appended to the end of URL 1, prior to its
shortening (step 3). Communicating party ’A’ will only have
to transmit the final short URL (http://bit.ly/gGPWL1) to
party ’B’. When ’B’ tries to unwrap the short URL, he will
extract the encoded information and find the address of the
next short URL appended at the end.

B. Implementation

We have implementeddead.dropusing a high-level mes-
saging and a low-level communication layer, similar to
the OSI model. The message layer provides read/write
functionality to applications usingdead.drop. It is respon-
sible for translating awrite() function call to a series of
message-splitting-into-blocks operations, masquerading the
information into URLs and, finally, digesting them into short

URLs. It is also responsible for translating aread() function
call into a short URL, decoding the URLs and, finally, re-
assembling the message. The communication layer is aware
of URL shortening services and interacts directly with them.
It implements the logic ofdead.dropat the lowest layer using
the URL-shortening services’ HTTP API to communicate
with them for URL shortening/unshortening operations.

Our prototype implementation ofdead.drop is written
in the C programming language. We employ the libcurl
library for handling the HTTP communication with the URL
shortening services. We also incorporate functionality from
the openSSL framework to perform AES encryption and
SHA1 hashing and base64 encoding. We have exposed a
C API, as part of the messaging layer, and written a sample
application, titled shortFS, for uploading/downloading small
files or message strings using the URL shortening services.

C. Use Case

Figure 1 presents an example interaction between two
parties who wish to exchange messages in a stealthy way,
using our system; Alice wishes to communicate message
m to Bob. She splits the message into variable-size blocks
and constructs look-alike URLs in reverse order, starting
from the last block (step 2a). Each URL is shortened and
appended to the next one (step 2b). Finally, the last URL is
uploaded in Twitter. Considering that 25% of messages in
this popular micro-blogging service contain some URL [5],
Alice’s action does not raise any suspicions. Bob receives
the URL through Twitter, reverses the process (steps 4a, 4b)
and reassembles Alice’s message. As shown, real-time com-
munication can be accomplished through a “live” channel
such as a social network or blog.

IV. STUDY OF URLS AND SHORTURLS

In this section we present several characteristics of the
top URL shortening services that we leverage so as to
incorporate them indead.drop.

A. Profile of Shortening Services

Table I outlines the traits and features of the most popular
URL shortening services, sorted by their Alexa5 rank.
Among their characteristics, we highlight whether they allow
the user toa priori determine the returned short URL,
their maximum allowed input URL length, the presence of
a URL-format validation mechanism and, finally, whether
there is an expiration date for their mappings.

The ability to customize the redirection URL enables
us to address blocks by their hash, thus providing a more
flexible design. Additionally, by selecting customized map-
pings from the namespace of a hash function we can
avoid collisions with short URLs already registered with the
service. The length of the input URL determines the block
size we are able to upload, with larger sizes enabling more

5http://www.alexa.com/



Alice

msg(0) ...msg(1)

http://…/ msg(0) / # ptr(1)

http://…/ msg(1) / # ptr(2)

http://…/ msg(N) / 

msg(N)

shorten()

...
(1)

(2a)

(2b)

(3)

Bob

h
tt
p
:/
/…

/ 
m

s
g
(0

) 
/ 
#
 p

tr
(1

)

msg(0) msg(1) msg(N)......

http://…/ msg(1) / # ptr(2)

http://…/ msg(N) / 

follow 

redirect

(4b)

(4a)

(5)

Figure 1. Use case fordead.drop; Alice splits message into variable-size blocks and constructs look-alike URLs in reverse order, starting from the last
block (step 2a). Each URL is shortened and appended to the next one (step 2b). Bob receives a single URL, the one for message block zero, and recovers
the message by reversing the process (steps 4a, 4b).

Service Mapping Input Input URL
Name Type Max Chars Check Expir.
bit.ly Custom 2,000 No Never
ow.ly Random 993 No -
tinyurl Custom 1,000,000 No Never
su.pr Custom 993 Yes -

tiny.cc Custom 8,000 Yes Never
is.gd Random 2,000 Yes Never
cli.gs Custom 1,000 Yes -
xrl.us Random 8,000 Yes 5 years
snipurl Custom 8,000,000 No Never
kl.am Custom 65,528 No -

Table I
TRAITS AND FEATURES OF THE10 MOST POPULARURL SHORTENING

SERVICES.

efficient transfers. As seen in Table I, in the worst case,
two URL shortening services allow us to upload 993 bytes,
while in the case of snipurl we can upload blocks of over
7.5 million characters. Finally, five of the top ten services
apply some form of input checking to make sure it complies
with the URL format. However, as our goal is to blend in the
population of URLs on the network, ourdead.dropURLs
are able to meet such demands.

B. Population of short URLs

Here we measure the properties of a large set of long
URLs collected from the Twitter social networking site. We
captured 1 million bit.ly short URLs and expanded them to

acquire our dataset. In detail, we measure: the length of the
long URLs, their depth (i.e. how many times the ’/’ character
is encountered in the URL) and the number of parameters
each one carries at the end.

As seen in Figure 2, 10% of the URLs is longer than
150 characters and 1% may be up to 2000 characters. This
observation affects the amount of information that may be
encoded in a single URL, as our goal is to blend in with
the rest of the URLs on the network. However, the use of
URL chains, as detailed in section III, allows us to transmit
a much larger amount of information.

Figure 3 gives an idea of the depth of the long URLs, i.e.
the number of levels, beneath the root of the web domain.
We can see that 10% of the URLs has a depth of at least
7, meaning we can place at least 7 blocks of information as
part of the URL’s path, as demonstrated in section III.

The same figure, also depicts the number of parameters
each long URL has. One may notice that 10% of the URLs
has more than 3 parameters. As a result, we can place
more than 3 blocks of information, masqueraded as URL
parameters, and have the URL blend among others.

To sum up, our measurements show that we can place
hidden information in a legitimate-looking URL and blend
in with 10% of the URLs in our set in the following way:
we can include at least 7 blocks of information as part of
the URL’s path and at least 3 blocks of information as part
a URL parameter. At any time, the size of each of those
blocks must be such that the total length of the URL remains



pe
rc

en
ta

ge
 o

f U
R

Ls

0

25

50

75

100

URL Length (chars)
0 82 150 300 2K

All URLs
HEX URLs

Figure 2. Length of 1M sampled URLs.

pe
rc

en
ta

ge
 o

f U
R

Ls

0

25

50

75

100

Count
0 1 3 5 67 11 40 60

URL Depth
URL Params

Figure 3. URL Depth and number of parameters.

between 150 and 2000 characters.
Evidently, there is obviously a tradeoff between unob-

servability and channel capacity; a tradeoff present in all
covert channels. One could blend in with more than 10%
(e.g. more than 30%) of a URL population by decreasing
the block size of his messages to less than 150 characters
(e.g. 100 characters).

C. Failure Transparency

In section II we talked about how Web servers handle
requests for invalid resources transparently and therefore it
is not always possible for someone to determine if a URL
is valid or not by simply inspecting the HTTP response
from the Web server. To verify this behavior we used the
same population of 1 million short URLs, expanded them
to their long equivalents and measured the extend to which
failures in the corresponding Web sites were transparent.
In detail, for each URL we tried accessing it, accessing the
root of the domain (e.g. http://www.example.com if the URL
was http://www.example.com/test/page.html) and accessing
a random path under the domain which was certain not to
exist. Overall, in 20% of the cases the Web servers returned
the same HTTP response code (HTTP 200) for both the
valid URL and the invalid URL (random path under valid
domain).

V. SECURITY ANALYSIS

A. Threat Model

Our adversary is a person with monitoring access to the
network, e.g. an administrator. He may be close to the mes-
sage sender or receiver or somewhere in the network path
between them. He is able to conduct deep packet inspection,
extract packet segments, e.g. HTTP headers, and perform
string matching. He routinely monitors network traffic of
instant messaging applications, e-mail and communication
with online forums and social networks (e.g. Twitter). He
is aware of our technique and tries to a) identify look-alike
URLs and b) recover their hidden message.

Our security requirements are a) to be very hard for
the adversary to distinguish a look-alike URL among a
population of URLs on the network and b) to require some

advanced form of analysis (e.g. cryptanalysis) in order to
extract the hidden message.

We also require that it is very hard for the adversary
to proactively apply some form of transformation on the
network packets as they leave or enter his network, so
that, without knowledge of a specific look-alike URL he
is able to destroy the hidden message while preserving the
functionality of a real URL, i.e., allowing a user to access
the actual resource being referenced.

B. Unobservability

Static Analysis. Such analysis tries to identify a look-
alike URL string in a population of URL strings. The
statistical and structural properties of URLs are employedto
highlight anomalies in the format, length, depth and number
of parameters of the URL. Additionally, semantical heuris-
tics can be employed to highlight URLs that appear non-
readable by humans. Our goal indead.dropis to conform
to the statistical and structural properties of a population
of URLs. In section IV we discussed how we are able
create look-alike URLs with the same properties as 10% of a
sample population of URLs. In addition, as URL-shortening
services are already very popular, their use bydead.drop
and their presence in any communication cannot constitute
a heuristic by which look-alike ULRs are identified. What
is more, asdead.dropemploys a plethora of shortening
services, as well as a great variety of real domains that are
included in the look-alike URLs, the covert channel cannot
be characterized by the persistency of certain services or
domain strings. Furthermore, while URLs used to be human-
readable, the common practice of including the hexadecimal
values of characters from UTF-8 charset to support URLs
in non-English languages has diminished that expectation.
As demonstrated in section III look-alike URLs can assume
such forms so that they are indistinguishable from actual
URLs. Moreover, in the sample population of 1M URLs
studied in section IV, more than 5% of them belong to
this category and we expect such a percentage to be much
higher or even be dominant in more localized URL samples
in countries like Greece or Japan.

Dynamic Analysis. Such analysis tries to evaluate a URL



and decide upon its validity. The adversary tries to access the
resource referenced by the URL and decide based on the web
server’s response whether it is an actual URL or a look-alike.
As mentioned in section II the web server’s or application’s
response to an invalid request is implementation-specific,
may silently fail and even if it fails hard, such behavior it
not definitive for characterizing a URL-like scheme as the
web is already populated with broken URLs6.

C. Robustness

Assuming an adversary has captured a known-to-be
information-carrying URL, our goal is to render the use
of some advanced form of analysis (e.g. cryptanalysis)
mandatory for the extraction of the hidden message. The
purpose ofdead.dropis not to preserve the secrecy of the
message once its container, the URL, has been discovered.
For that matter, the message can be encrypted using some
symmetric or asymmetric cryptographic function and then
covertly transmitted usingdead.drop. Nonetheless, message
extraction is not as trivial as concatenating the parts of a
URL string.

As described in section III, the way the message is
encoded and hidden is based upon a pre-shared, secret,
random seed between the sender and receiver so that two
sequential blocks of the original message are located in
unrelated segments of a URL or multiple URLs.

URL chains pose a certain risk, because if an adversary
discovers one link, he may be able to recover a subset or all
the URLs in that chain by following the address of the next
short URL. For that matter, the parts carrying the encoded
information from all the previous URLs are XOR-ed with
each other to form a keystream and the first k-characters of
that keystream are used to XOR the k-character address of
the next short URL. That way, one is unable to read the
actual address of the next short URL, from the end of the
current URL, unless he is in possession of all previously
exchanged URLs.

D. Countermeasures by the Adversary

As mentioned earlier, one of the requirements for
dead.dropis to be very hard for the adversary to proactively
apply some form of transformation to all URLs in packets,
entering or leaving his network, that would destroy hidden
information in look-alike URLs while leaving actual URLs
intact. We consider such practice to be infeasible at the
network level and discuss the case of a transparent HTTP
proxy at the application level.

An adversary close to the receiver can install a transparent
HTTP proxy so that outgoing HTTP requests are intercepted
and handled by the proxy. Initially, the receiver places a
request towards a URL-shortening service that is expected
to return a long look-alike URL. The URL-shortening ser-
vice responds with an HTTP 301 redirection message to

6http://try.powermapper.com/demo/statslinks.aspx

the request, containing the long URL. In the case of a
transparent proxy, the receiver is the proxy’s client. If the
proxy places the request on behalf of the client, there are two
possible scenarios: follow-up on the redirection and serve
the final response, i.e. HTML page, to the client or return
the redirection header and let the client issue a new request
towards the domain of the long URL.

If the proxy does the latter, the client immediately be-
comes aware of the long look-alike URL and is able to
recover the hidden message. If the proxy is configured to
silently follow-up on the redirection, the client is deprived
access to the look-alike URL string, which contains the
hidden information, and is provided with only the outcome
of the redirection. In a redirection towards an actual URL,
the right HTML page will be returned so that legitimate
URLs are not affected. However, in the case of a look-
alike URL the important part is the URL itself and not
the response, which may not even exist. This is a traffic
transformation case where legitimate URLs are not affected
but look-alikes are destroyed. However, this type of config-
uration is considered impractical and insecure as it allows
a third-party to poison the proxy’s cache or, if a zero-
cache proxy is used, bypass the same-origin-policy security
mechanism in the clients’ web browser. For that matter we
find it unlikely for such a solution to be widely adopted.
Nevertheless, if such practice is present, indead.dropwe
can hide messages in look-alike URLs using the HTTPS
scheme which prompts a TLS session with the remote host.
Proxies are not able to relay an encrypted session and as a
result the long URL must be returned to the client.

E. Countermeasures by shortening services

As we employ URL-shortening services to form URL
chains or to achieve first-level obscurity regarding the con-
tents of a look-alike URL, we consider possible measures
that can be taken by these services to prevent us from
utilizing them. It is our belief that the type of use taking
place does not deviate from standard usage nor does it
violate their terms of service.

Rate limiting . By limiting the amount of requests a user
can issue in a specific time interval, a shortening service can
affect a user transmitting a large volume of hidden messages
with the use of URL chains. However,dead.dropaims at
using many shortening services in parallel to avoid being
characterized by the use of a specific service. As a result, the
number of URL chains created is distributed among many
different services. Furthermore, several news sites or blogs
routinely utilize such services to acquire short links for a
large volume of articles as they are published.

Reduction of acceptable URL length. dead.droptraffic
must blend-in with actual URLs, and for that matter their
statistical properties such as URL length, must be preserved.
As a result, if any kind of input-length reduction is applied, it
is expected to affect a portion of the legitimate populationof



URLs, something not desired by a URL-shortening service.
In section IV we discussed how we blend-in with 10% of the
legitimate URLs, a significant portion that we are sure is not
to be discarded by these services. Furthermore, we present
that the vast majority of services permits input many times
longer that the bounds we have set fordead.drop. Finally,
let it be noted that the HTTP RFC does not define a limit
to the length of a URL.

Content inspection. Heuristics can be employed to verify
that submitted content follows the format of URLs, so as
to prevent the submission of arbitrary content. In section
IV we showed that only half of the top URL-shortening
services conduct such a check. However, as one of the
requirements ofdead.drop is to masquerade the hidden
information according to the structure of a legitimate URL,
we are not affected by such an inspection. Furthermore,
some shortening services attempt to verify the existence of
the domain or the actual page the long URL points to. Even
if they decide to do so, the ambiguity of web applications
when handling erroneous input, as we have already discussed
in section III, allows us to overcome such measures.

URL mapping expiration . In section IV we showed that
90% of the top URL-shortening services preserves mappings
indefinitely. Even if such practice ceases, the goal of a covert
communication channel, such asdead.drop, is to allow the
transmission of short-lived messages and therefore mapping
expiration will not affect us.

VI. RELATED WORK

Traditionally covert channels aim at storing information
that has to remain concealed in deprecated or unused spaces
inside network protocol headers.

In [6] the authors overload flags and fragmentation fields
in the IPv4 packet header to communicate “1” and “0”
bits between two cooperating parties. In [7] bit signaling
between two parties is achieved by utilizing the DNS query
recursion flag. To signal a bit of “1”, the sender issues a
DNS request with the recursion flag set. The receiver then
issues a query for the same hostname with the recursion
flag off. If he receives a valid record, then the sender is
signaling a bit of “1”. If no record is returned, the sender is
signaling a bit of “0”. In [8] the authors construct message
exchange through mixnets using a set of cooperating web
servers which include non-involved subjects who provide
cover traffic and propagate the messages for their protocol.
They masquerade the message reads and writes as a series of
HTTP requests towards CGI scripts. Oblivious web surfers
visit a series of carefully crafted pages, execute embedded
Javascipt code in their web browsers and, by that, facilitate
the transfer of messages among the mixnet nodes. Hiding
information in images [9] is perhaps one of the most popular
and well-know techniques. A common practice is to overload
the LSB with the bits to be signaled. Variations in the timing

of events, for instance in a network, may be employed to
signal information between two parties [10].

Although techniques as the ones aforementioned may be
hard to detect, it is quite easy to take preemptive actions
against them so as to neutralize and prevent potential mes-
sage recipients from accessing the information. For instance,
one could clear IP flags and fields that are not used in a net-
work, delay or reorder the arrival of events (e.g. in network
packets) or apply some form of modification to the image
(e.g. compression) that will not alter the visual outcome but
destroy any structure-specific information. Furthermore,in
the case of mixnets, a supporting infrastructure is required,
something which significantly impacts the practicality of this
technique.

Our proposed method of encoding information, in URLs
that blend-in, aims at addressing such weaknesses: our
goal is to make the detection of a URL, carrying encoded
information, hard and at the same time impossible for the
adversary to apply any transformation to the URL that will
destroy any encoded information but still remain functional.

Nikiforakis et al. [11] assess the security features of file
hosting services (FHS). Such services return a secret URI
for each uploaded file, which users can then divulge to other
people. In this sense, such services are similar to URL
shortening services, as they return a pointer to a specific
resource. While users expect that their files will only be
accessed by people they have revealed the URI to, experi-
ments demonstrated that for several services adversaries can
predict how secret URIs are create and access private files.

Antoniades et al. [12] conduct an extensive study regard-
ing the characteristics and access patterns of short URLs.
++++

VII. C ONCLUSION

In this paper, we present a technique for covertly relaying
information by hiding it in URLs. Our system forges URLs
that contain the information in various segments, such as
values of variables or subfolders located on the remote web
server. These URLs are subsequently digested through URL
shortening services, and in the case of multiple URLs, we
create chains of short URLs to hide the information. As an
important goal of our system is to create URLs that cannot
be distinguished from others in the network, we conducted
a study concerning the characteristics of URLs such as their
length, depth and number of variables. Based on those, we
craft URLs with characteristics found in 10% of the URLs
in the network. We also performed a security analysis of our
proposed method.

ACKNOWLEDGMENTS

This work was supported in part by the FP7-PEOPLE-
2009-IOF project MALCODE funded by the European Com-
mission under Grant Agreement No. 254116. Iasonas Polakis
and Evangelos Markatos are also with the University of



Crete. Most of the work of Georgios Kontaxis was done
while at FORTH-ICS.

REFERENCES

[1] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide,
and F. Jahanian, “Internet inter-domain traffic,” inProceed-
ings of the ACM SIGCOMM 2010 conference on SIGCOMM.

[2] “Rfc 1738 - uniform resource locators (url),” http://www.
rfc-editor.org/rfc/rfc1738.txt.

[3] “Rfc 2279 - utf8, a transformation format,” http://www.ietf.
org/rfc/rfc2279.txt.

[4] “Rfc 2616 - hypertext transfer protocol – http/1.1,” http://
www.rfc-editor.org/rfc/rfc2616.txt.

[5] “TechCrunch - Twitter Seeing 90 Million Tweets Per Day,
25 Percent Contain Links,” http://techcrunch.com/2010/09/14/
twitter-seeing-90-million-tweets-per-day/.

[6] K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in
Proc. Workshop on Multimedia Security at ACM Multimedia
’02, December 2002.

[7] “The dns dead drop,” http://landonf.bikemonkey.org/code/
security/DNSDead Drop.20060128201048.26517.luxo.
html.

[8] M. Bauer, “New covert channels in http: adding unwitting
web browsers to anonymity sets,” inProceedings of the 2003
ACM workshop on Privacy in the electronic society, ser.
WPES ’03, 2003.

[9] R. Ch, M. Kharrazi, and N. Memon, “Image steganography
and steganalysis: Concepts and practice.”

[10] I. S. Moskowitz, I. S. Moskowitz, A. R. Miller, and A. R.
Miller, “Simple timing channels,” inProceedings 1994 IEEE
Computer Society Symposium on Research in Security and
Privacy, 1994.

[11] N. Nikiforakis, M. Balduzzi, S. Van Acker, W. Joosen, and
D. Balzarotti, “Exposing the lack of privacy in file hosting
services,” inProceedings of the 4th USENIX conference on
Large-scale exploits and emergent threats, ser. LEET’11.

[12] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos,
S. Ioannidis, E. P. Markatos, and T. Karagiannis, “we.b: the
web of short urls,” inProceedings of the 20th international
conference on World wide web, ser. WWW ’11. ACM.


