The time separation of events (TSE) problem is that of finding the maximum and minimum separation between the times of occurrence of two events in a concurrent system. It has applications in the performance analysis, optimization and verification of concurrent digital systems. This paper introduces an efficient polynomial-time algorithm to give exact bounds on TSE's for choice-free concurrent systems, whose operational semantics obey the max-causality rule. A choice-free concurrent system is modeled as a strongly-connected marked graph, where delays on operations are modeled as bounded intervals with unspecified distributions. While previous approaches handle acyclic systems only, or else require graph unfolding until a steady-state behavior is reached, the proposed approach directly identifies and evaluates the asymptotic steady-state behavior of a cyclic system via a graph-theoretical approach. As a result, the method has significantly lower computational complexity than previously-proposed solutions. A prototype CAD tool has been developed to demonstrate the feasibility and efficacy of our method. A set of experiments have been performed on the tool as well as two existing tools, with noticeable improvement on runtime and accuracy for several examples.