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Abstract— The time separation of events (TSE) problem is that of
finding the maximum and minimum separation between the times of
occurrence of two events in a concurrent system. It has applications in the
performance analysis, optimization and verification of concurrent digital
systems. This paper introduces an efficient polynomial-time algorithm
to give exact bounds on TSE’s for choice-free concurrent systems,
whose operational semantics obey the max-causality rule. A choice-
free concurrent system is modeled as a strongly-connected marked
graph, where delays on operations are modeled as bounded intervals
with unspecified distributions. While previous approaches handle acyclic
systems only, or else require graph unfolding until a steady-state behavior
is reached, the proposed approach directly identifies and evaluates the
asymptotic steady-state behavior of a cyclic system via a graph-theoretical
approach. As a result, the method has significantly lower computational
complexity than previously-proposed solutions. A prototype CAD tool
has been developed to demonstrate the feasibility and efficacy of our
method. A set of experiments have been performed on the tool as well as
two existing tools, with noticeable improvement on runtime and accuracy
for several examples.

I. INTRODUCTION

This paper addresses the problem of finding the maximum and
minimum time separation of events (TSE) in concurrent systems.

A concurrent system is considered as a set of interacting processes
which communicate through channels. When a process initiates a
communication with one or more other processes, it waits for all
parties to respond before it proceeds. Such operating semantics is
said to obey the max-causality rule, or to operate under the max
timing constraint. This model can be applied to problems in a wide
range of domains. A “process” can correspond to the transition of a
signal at the circuit level, or to a partition of functional units at the
system level.

Several delay models have been used in modelling these systems.
A “stochastic model” is often used for the performance analysis of
these systems [11], [15]. However, for verification, a “bounded-delay”
model, where the computation time of each process is assumed to be
bounded below (min) and above (max) by non-negative real numbers,
with no distribution specified, is much more useful. In the special
case where the upper and lower bounds of the computation time are
identical, a “fixed-delay” model is said to be used.

This paper targets concurrent systems under a bounded-delay
model. To make the problem amenable for analysis, the system is
assumed to be decision-free; such systems can be modeled by marked
graphs [5], which are commonly used to capture concurrent behavior.

The TSE problem for bounded-delay systems has applications
to performance analysis, optimization of verification of concurrent
systems. In this case, while it is generally not possible to provide
accurate average case performance metrics, since no delay distri-
bution is given, one can usefully predict best case and worst case
performance metrics, such as system throughput. For the restricted
case of fixed-delay systems, TSE also becomes a performance mea-
sure of the system, as in this case the distribution of the delay is
trivially known (i.e. exactly one delay value per event in the system).
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Timing information for bounded delay systems can be exploited
for the optimization of asynchronous circuits, e.g. in lazy transition
systems [6], in which absolute knowledge of what event can happen
before or after another is used to reduce circuitry. The TSE problem
also has an important application in system-level timing verification.
Correct operation of a circuit often depends on strict ordering of
certain events. Verifying the maximum and minimum delay between
two events against a set of constraints specifications ensures correct
operation of the system.

There have been several previous approaches proposed for solving
the TSE problem for concurrent systems. Early research was limited
to systems with finite behavior, i.e., those that can be modeled
by acyclic graphs [7], [12], [3]. Basic approaches assume a max-
causality operating semantics, while some also handles min-causality,
where an event is triggered by the earliest arriving pre-condition.
More recent research in this area focuses on decision-free systems
with infinitely-repeating behavior, i.e., those that can be modeled by
cyclic graphs. Chakraborty et al. [4] proposed a heuristic method
to give approximate bounds for cyclic systems operating under both
max- and min-causality rules. Hulgaard et al. [8] gave exact bounds
on TSE’s for cyclic systems operating under the max-causality rule.
In [9], Hulgaard extended his approach to handle also systems with
linear timing constraints.

Like [4], [8] and [9], the approach proposed in this paper applies to
decision-free cyclic systems, and like [8], it gives exact bounds for
systems operating under the max-causality rule. However, there is an
important difference in the methods: while previous approaches are
based on graph unfolding, which performs a symbolic execution of
the system until the desired TSE number finally converges, the pro-
posed approach entirely avoids graph unfolding. For unfolding-based
methods, convergence to steady-state behavior can be a significant
bottleneck: (i) in cases, the ramp-up from an initial configuration to
steady-state may require large numbers of unfoldings; and (ii) the
system may not settle into a single fixed sequence of events, but
rather reach a stable periodic behavior, presenting difficulties both in
the identification of, and convergence to, steady-state behavior.

The key contributions of this paper are as follows. First, a novel
approach is proposed for solving the TSE problem for cyclic systems.
Unlike previous methods, the steady-state behavior of the system is
directly identified and used to solve the TSE problem, hence no graph
unfolding is required. Second, an integrated solution framework for
the TSE problem is proposed, in which solutions to general cases
of the problem are built upon those to the more restricted cases: the
approach handles both fixed-delay systems as well as the general
case of bounded-delay systems. Two classes of the problem, namely
“single-token systems” and “multi-token systems”, are highlighted
(definitions of these terms will be provided in Section IV of this
paper). Efficient polynomial-time algorithms are presented. Finally, a
prototype CAD tool has been developed to demonstrate the feasible
and efficacy of our method.

There are several advantages of the proposed approach over
existing work, beyond the avoidance of graph unfolding. Compared
to previous exact methods [8], our approach has low computational
complexity, while the previous approach has no clear complexity



bound. Our approach is also significantly more efficient multiple TSE
queries on the same graph: basic analysis of the system is performed
only once, and then TSE’s between different pairs of events can be
obtained with little additional cost, whereas [8] performs the analysis
(and therefore the unfolding) from scratch for each TSE query on
the same graph. Compared to previous heuristic methods [4], the
proposed approach can handle a larger class of designs. In particular,
multi-token systems cannot be directly handled by [4], pre-processing
must first be performed to transform them into single-token systems.
In addition, unlike the proposed exact method, the method in [4]
can produce inaccurate results, both as a inherent consequence of a
heuristic method and because the initial configuration of the system
is not taken into account.

A set of benchmarks has been run on the prototype tool, as well as
on those from [4] and [8]. Our tool shows significant improvement
in runtime over a previous exact method [8] in cases where the latter
requires a large amount of graph unfolding. Compared to the heuristic
tool from [4], the proposed approach provides more accurate results
in some cases. It is also shown that tool from [4] cannot directly
handle multi-token benchmarks.

The remainder of this paper is organized as follows: Section II
gives background on marked graphs, which is used as a modeling
formalism in this paper. Section III gives an informal overview of
the TSE problem, including examples which demonstrate some chal-
lenges of the problem. Section IV presents the theoretical framework
of our approach. Sections V, VI and VII shows the algorithms for
single-token fixed-delay systems, multi-token fixed-delay systems and
the general case of bounded-delay systems, respectively. Section VIII
describes some experimental results, and finally, Section IX concludes
the paper.

II. BACKGROUND

This section reviews technical background on modeling necessary
for the development of this paper.

Marked graphs, a subclass of Petri nets for modeling concurrent
systems without choice, are used for modeling concurrent systems
in this paper [5]. Other models have been used in related papers,
such as process graphs in [8], event-rule systems in [14] and timing
constraint graphs in [9]. Marked graphs are behaviorally equivalent
to these models for modeling max-causality systems, meaning that a
system modeled by these other models can be translated to a marked
graph without losing any information. Though less succinct than these
other models, marked graphs have the advantage that a large body
of proven results exists, upon which new theories can be built.

In the remainder of this section, the structural components and
semantics of basic marked graphs are first reviewed in Section II-A,
followed by an extension to timed marked graphs in II-B. Section II-
C shows an example of a marked graph, and Section II-D reviews
some of their useful properties.

A. Marked graph basics

A marked graph (G, M0) is a directed graph G = (N, E) where
N is a set of nodes and E a set of directed edges, and an initial
marking M0, which is an assignment of zero or one token on each
edge (u, v) ∈ E(G). In Petri net formalism, a node in a marked graph
can also be referred as a transition, and an edge a place. In this paper,
the convention of [5] is followed, and the structural components of
a marked graph are called nodes and edges.

A node in a marked graph is enabled to fire if there is a token in
each of its input edges. When a node fires, it removes one token from
each of its input edges and deposits one token into each of its output
edges. In a discrete-event system, the firing of a node corresponds
to the occurrence of an event. A graph G, together with an initial
assignment of tokens M0, (G, M0), defines the set of reachable
markings of the system. Note that the firing semantics of a marked
graph corresponds the the so-called max-causality system [12], where
the arrival of the last token to an input edge of an event determines
when it is fired. A marked graph is live if there always exists a firing
sequence to fire each node in the graph. A marked graph is bounded

if there exists an upper bound on the number of tokens that can reside
on an edge simultaneously. In this paper, only marked graphs which
are live and bounded are considered.

B. Timed marked graphs

A timed marked graph (G, M0, δ, λ) is a marked graph with a
vector δ, which is an assignment of a delay variable δ(u, v) to each
edge (u, v) ∈ E(G) and λ, which is a vector of real numbers
associated with each token in the initial marking M0, and describes
timing information which is relevant only in the startup operation of
the marked graph. δ and λ are also called holding time and lag time,
respectively. In more detail, when a token arrives at edge (u, v) with
holding time δ(u, v) from node u, it must reside there for δ(u, v)
time units before it contributes the enabling of the output node v.
Informally, the holding time can be interpreted as the time it takes
for a token to “travel” from the input node to the output node of
an edge. When all the holding time of all its input tokens expire, a
node must fire immediately. More formally, the firing rule of a timed
marked graph can be described as follows:

t(v) = max
u∈pred(v)

(t(u) + δ(u, v)) (1)

where each u is a distinct predecessor node to v, and t(u) and t(v)
the firing times of nodes u and v, respectively. A token with lag
time λj contributes to the enabling of the output node of the edge
it resides on λj time units after the system begins running at time
0. In our model, δ(u, v) for each edge (u, v) is defined by a range
[d(u, v), D(u, v)], where d(u, v) and D(u, v) are non-negative real
number and d ≤ D. The exact distribution of δ(u, v) is unspecified.
A system in which d(u, v) = D(u, v) for all edges is a called a
fixed-delay system.

C. A marked graph example

The concepts and definitions from Sections II-A and II-B are now
illustrated with an example. Figure 1 shows an example of a marked
graph. The interval labelled [d, D] on each edge indicates its bounded
holding time, i.e., the min and max times it takes for a token to travel
from the input node to the output node of the edge. Suppose the initial
lag time is zero on all tokens in the current marking of the graph;
then nodes b and d are immediately enabled to fire, since there is
a token in each of their input edges. Node c is only enabled to fire
after both nodes b and d have fired, and after a delay which is equal
to the maximum of 1 to 2 time units after b fires, and 1 to 3 time
units after d fires.

a b c d

[1,2] [1,2] [1,3]

[1,3][1,2][2,3]

Fig. 1. Example Marked Graph

D. Properties of marked graphs

Two well-known properties regarding marked graphs, which will
be used in the formulation of the TSE solution in this paper, are
shown in Theorems 1 and 2. Proofs of these theorems can be found
in [13].

Theorem 1: For a marked graph, the token count in any simple
cycle is invariant under any firing.

Theorem 2: For a connected marked graph, a firing sequence leads
back to the initial marking iff every node in the marked graph has
fired an equal number of times.

III. OVERVIEW

An overview of the TSE problem is presented in this section. A
formal description of the problem is first given in Section III-A,
followed by a basic example in Section III-B. Section III-C then
presents a set of examples which highlight some challenges of the
problem, and gives insights on how they are tackled, which will be
formalized in Section IV, and presented as an algorithm in Sections V
through VII later in the paper.



A. Problem formulation
The time-separation of events (TSE) problem can be formally

described as follows.
Definition 1: TSE problem: Given a timed marked graph

(G(N, E), M0, δ, λ), find the minimum and maximum difference
between the times of occurrence of any pair of events in the system,
under all possible legal firing sequences, and assuming each edge
can take on an arbitrary delay within its specified range every time
it receives a token.
B. Basic example

Figure 2 shows an simple example of a timed marked graph with
fixed delays. Its steady-state behavior shows a fixed pattern in which
every node fire at a fixed rate.

a b c d

[2,2] [1,1] [3,3]

[2,2][1,1][λ, λ]
time 0 1 2 3 4 5 6 7 8 9 10 ....
event c b a d * c b a d * c ....

Fig. 2. Example: fixed-delay system exhibiting simple behavior

Suppose the initial lag time is λ = 1 on edge (b, a). A simulation
result of the system is shown underneath the figure. A * symbol in a
given time slot indicates that no event takes place. To see how part
of the simulation result is derived, consider the following. Suppose
that in the initial marking shown in the figure, nodes c and b are
assigned lag times 0 and 1, respectively. After nodes c and b fires,
nodes a and d can fire after the delay specified on the corresponding
edges. However, after node a fires at time t = 2, and a token arrives
at node b via on edge (a, b) at time t = 4, b cannot immediately
fire, because it must also wait for the arrival of a token from node c,
which in turn must wait for the arrival of a token from node d.

A few observations can be made on the asymptotic behavior of
the simulation result. First, with the chosen initial configuration, the
firing sequence ...cbad... repeats every 5 time units. In fact, though
not shown in this simulation run, no matter what initial condition
this example system starts with, it always settles to the same firing
pattern. Second, the firing time of each transition of the system is
constrained by the cycle with the longest delay, i.e., the critical cycle,
which has a delay 5 (cycle C(cd)). Tokens arriving on edges bc and
ab must always wait for 3 and 2 time units, respectively, before their
output nodes fires. The amount of waiting time is called local slack.
Formal definitions of critical cycle and local slack will be given in
Section IV.
C. Challenges

This section presents three examples to highlight some challenges
of the TSE problem, namely, the slow convergence to a steady-state
behavior, the sensitivity of the steady-state behavior to the initial
condition, and the exhibition of an oscillating, periodic behavior at
the steady state. In each case, intuition is give on how these challenges
are dealt with in the proposed formal solutions to the problem.

1) Fixed-delay systems: slow convergence: The example in Fig-
ure 3 highlights a challenge for TSE methods based on unfolding.
The model of the system has the same structure as the one in
Figure 2, except that delay values are different. As shown by the
simulation result, it takes a much longer time for the firing sequence
to finally converge, i.e., to reach asymptotic steady state. With the
unfolding method, this entire simulation with slow convergence must
be completed with a large amount of overhead. The proposed method,
which uses knowledge of the asymptotic behavior the system to derive
the solution, does not suffer from this problem.

2) Fixed-delay systems: sensitivity to initial condition: The
example in this section shows how the asymptotic behavior of a
system can be sensitive to its initial timing configuration i.e., the
lag time of tokens in the initial marking (which in turn determines

a b c d

[9,9] [1,1] [10,10]

[10,10][1,1][10,10]
time 0 10 20 28 40 46 60 64 ... 82 100 101 120...
event c b c b c b c b ... b c b c...

Fig. 3. Example: fixed-delay system with slow convergence time

the initial firing order of nodes). It highlights the importance of any
solution to the TSE problem to take into account the initial timing
configuration of the system. Sensitivity to the initial condition arises
when there is more than one critical cycle in the system. Suppose
we assign a value of 3 for λ on edge (b, a) in the example in
Figure 2. Both cycles C(a, b) and C(c, d) now have a cycle time
of 5. Two possible runs for the system are shown below. As can be
seen from two simulations runs, the system settles into two different
timing behaviors, depending on whether node b or node c fires first.
Run 1:

time 0 1 2 3 4 5 6 7 8 9 10 ....
event c b * d a c b * d a c ....

Run 2:
time 0 1 2 3 4 5 6 7 8 9 10 ....
event b c * a d b c * a d b ....

In contrast, in the example shown in Figure 2, which has only one
critical cycle, the asymptotic behavior is independent of the initial
configuration.

3) Fixed-delay systems: periodic behavior: A final challenge of
the TSE problem is that a system may not converge to a single
steady state wherein every node fire at the same rate, but rather settles
into a periodic pattern. In unfolding-based methods, not only does
the amount of unfolding increases in such cases, it is difficult to
determine a terminating criteria for the unfolding process [8].

a b

cd

[1,1]

[1,1]

[1,1]

[1
,1

]

[3,3]
[3

,3
]

[3,3]

[3,3]

Run 1:
time 0 1 2 3 4 5 6 7 8 9 10 11 12 ....
event b,d * * a,c * * b,d * * a,c * * b,d ....

Run 2:
time 0 1 2 3 4 5 6 7 8 9 10 11 12 ....
event b * d a * c d * b c * a b ....

Fig. 4. Marked graph exhibiting periodic behavior
In the first run, the system settles into a steady-state behavior where

the same firing sequence repeats every 6 time units. However, in
second run, where the initial condition is different (d firing 2 time
units after b), the system settles into a periodic behavior, in which the
same node is visited alternately every 4 or 8 time units. The mean
cycle time of the system is still the same as the first firing sequence.
However, it takes a total of 12 time units before the the same firing
sequence to repeat itself.

IV. THEORETICAL FOUNDATIONS

This section presents the theoretical foundations for the proposed
solution of the TSE problem.

The focus is on properties for a restricted class of designs, namely
those that can be modeled by marked graphs in which there is exactly
one token in each simple cycle, i.e., single-token systems, with a
fixed-delay timing model, are discussed. Examples of these systems
can be found in Figures 2 and 3 in Section III. In later sections,
it will be shown how these properties can be readily extended
to fixed delay systems with multiple tokens in simple cycles, i.e.,



multi-token systems (Section VI), and finally to the general case of
bounded delay systems (Section VII). In particular, solutions to multi-
token fixed delay systems can be formulated as the superposition of
several instances of solutions to a single-token fixed delay problem.
Solutions for bounded delay systems can be formulated as two
distinct instances of the fixed delay problem. Section IV-A first
presents some definitions of terms. Section IV-B shows the behavior
of a single-token fixed-delay system always converges to a steady
state. Section IV-C shows that how the steady-state behavior of these
systems can then be derived directly from the timed marked graph.

A. Definitions

Four definitions useful for the discussion in the rest of this section
are now presented.

Definition 2: Timed firing sequence: A timed firing sequence of
a timed marked graph is a mapping of events (firing of nodes) to real
numbers (firing time).

Definition 3: Steady state: The behavior of a timed marked graph
is said to have reached steady-state if its timed firing sequence
exhibits a repeating pattern, i.e., each event of the same type repeats
at a fixed time interval, or at intervals that repeats every k time units,
where k is a fixed number.

Definition 4: Local slack: The local slack of an edge (u, v) in a
timed marked graph is the duration of time between the expiration
of the holding time of a token arriving at (u, v) from node u, to the
removal of the token from (u, v) by the firing of node v.
Figure 5 shows a graphical depiction of the definition of local slack.

Definition 5: Critical cycle: A critical cycle C of a timed marked
graph (G, M0, δ, λ) is the set of all edges and nodes in a simple
cycle with the maximum cycle mean, which is defined as:

T̃ = max
k

X

(u,v)∈Ck

d(u, v)

Nk

where
P

d(u, v) is the sum of delays along all edges in a simple
cycle Ck, and Nk is number of tokens on the cycle.

s(u, v)δ(u, v)

arrival
of token
from u

firing
of v

time

Fig. 5. Local slack
B. System behavior always converges

This section presents the first important property for single-token
fixed-delay systems: their behavior always converges to a steady state.

Theorem 3: Steady state: Regardless of the initial condition, a
system modeled by a single-token timed marked graph converges to a
steady-state behavior in which all nodes fire at a repeated timed firing
sequence, with cycle time equal to that of the critical cycle(s). In
addition, given a particular initial condition, the steady-state behavior
is unique.

The proof for Theorem 3 is broken into three parts: Lemma 1
shows that regardless of the initial condition, the system naturally
converges to a behavior in which there is no slack on the critical
cycle. Lemma 2 shows that the system also converges to a state in
which all nodes fire at the same rate, i.e. with the same cycle time.
Hence, effectively, the entire system converges to a fixed steady-state
behavior, where the critical cycle precisely defines the operating rate
of every node in the system. Finally, Lemma 3 shows that once a
system enters a steady-state, its behavior remains the same, i.e., all
future behavior of the system conforms to a repeated pattern.

Lemma 1: No slack on critical cycle: Regardless of initial config-
uration, slack on a critical cycle of a single-token fixed-delay system
converges to zero asymptotically.

Proof: Suppose that all nodes in the the timed marked graph has fired
at least twice already, i.e., all nodes obey the relationship

t(v) = max
u∈pred(v)

(t(u) + δ(u, v))

with respect to their predecessors, then starting from any arbitrary
node in the firing sequence, one can trace back a path consisting only
of edges with no slack. Since there are only finite number of nodes
in the sequence, eventually this path forms a loop. We claim that
this loop is a critical cycle in the graph. The similarity of the firing
rule to Bellman’s equation for solving the shortest path problem [10]
should remind the reader that the action of ”unfolding” of the graph
for a couple iterations is essentially carrying out the steps to find
the longest path of an acyclic graph, i.e., the critical cycle of the
corresponding cyclic graph. �

Lemma 2: All nodes fire with same cycle time: Regardless of
initial configuration, the system converges to a state where all nodes
fire at the same cycle time asymptotically.
Proof: Let nodes u and v be in the same simple cycle in G. Since
there is only one token circulating in the simple cycle, v can only
fire as many time as u asymptotically, i.e., they have the same firing
rates. Since G is strongly-connected, all nodes are in the same simple
cycle as some other node. Therefore they all have the same asymptotic
firing rate. �.

Lemma 3: Convergence: Once a single-token system enters the
steady-state (two consecutive identical timed firing sequences), it
remains in the steady state.
Proof: Recall from Theorems 1 and 2 in Section II that the token
count in any simple cycle in a marked graph is invariant, and that
a marking can only return to itself if and only if all nodes in the
graph has fired an equal number of times. In addition, it can easily
be shown that for a single-token marked graph, a marking returns to
itself if and only if all nodes in the graph has fired exactly once.

Suppose the system has gone through two iterations, i−2 and i−1
of identical timed firing sequences in which all nodes fire at exactly
the same cycle time T , we show that all future firing of the nodes
follow exactly the same time sequence with the same cycle time.

Consider node v at the beginning of the timed firing sequence of
iteration i−1. The next time it fires (in iteration i) is max

u∈pred(v)
(t(u)+

δ(u, v)) where t(u) is the firing time of all predecessors nodes u of
v in iteration i−1. Since the distances of all predecessors is the same
as in iteration i − 2, and δ(u, v) is constant, the next time v fire is
exactly T . It can easily be seen the same applies to every other node
in the timed firing sequence. �.

The proof for Theorem 3 follows directly from the results of
Lemmas 1 to 3. �.

C. Deriving steady-state behavior

Having shown that the behavior of a single-token fixed-delay
system always converges to a steady state, it is now shown that the
steady-state behavior is deterministic, and can be quantitatively de-
rived directly from the given timed marked graph. Before presenting
this result formally in Theorem 4, an intuitive overview is first given.

The steady-state behavior can be represented as the firing time of
every node in the graph relative to a single “reference node” on the
critical cycle. The time difference between the firing of the reference
node and the firing of any node in the graph can be directly derived.

In particular, first consider a naive solution to the problem: simply
to compute the longest simple path in the graph from the reference
node to the given node. This path is the critical time difference
between firing the reference and the given node. The idea is that,
when the reference node fires, tokens are “emitted” on all outgoing
edges. The longest simple path from the reference node to the given
node represents the longest walk, and is therefore the time separation
between the reference node and the given node. Once the firing time
of each node, compared to the reference node, is computed, any
steady-state TSE between two arbitrary nodes is easily obtained by



subtracting the relative firing times (with respect to the reference
node) of one node from another.

However, this naive approach does not always work. In particular,
at any snapshot of the system, the fundamental challenge is that there
may be multiple tokens lying on a simple path from the reference
node to the given node. These other tokens are generated by earlier
instances of firings of the reference node. Hence, it is inaccurate to
treat the longest “path distance” from reference to given node as their
critical time separation. In fact, the given node may be enabled by a
mix of tokens, on its different input edges, generated from different
instances of the firing of the reference node. A long path with several
tokens on it will fire much earlier: when the lead token enables the
given node. These earlier-fired tokens must be taken into account for
a correct solution.

To track the tokens from different iterations, a new representation
of the system in steady state, called the steady-state graph, is
introduced. Intuitively, the steady-state graph captures the enabling
conditions (tokens) from different iterations of firing by the weights
of edges on the graph. It tracks how a given node is enabled by a
mix of tokens from different adjacent iterations of the system.

A formal definition and a graphical example of a steady-state graph
is shown in Definition 6 and Figure 6, respectively. For each edge
with a token in the initial configuration of the original marked graph,
a quanitity T (the critical cycle time of the system) is subtracted from
the holding time of the edge (δ(u, v)), representing that the enabling
condition is caused be a previous iteration of firing. By capturing the
enabling conditions of the marked graph in the steady state in the
edge weights instead of in tokens, the marked graph is simplified to
a cyclic directed graph.

Definition 6: steady-state graph: Given a fixed-delay timed
marked graph (G, M0, δ, λ) and the cycle time T of its critical cycle,
its steady-state graph G′ has the same nodes and edges as G. The
weight of each edge e(G′) ∈ E(G′) is given by:

δ(e(G′)) = δ(e(G)) − T if there is a token on e(G) in M0

= δ(e(G)) otherwise
An example of a timed marked graph and its steady state graph G′ is
shown in Figure 6. Three edges in this figure have different weights
from those in the original marked graph: ab, bc, and dc. In each
case, the critical cycle of 20 has been subtracted off to account for
the initial token placement, which effectively “shortens” any path
length calculation involving these edges.

a b c d

9 1 10

10110
(a) Marked graph at initialization

a b c d

-11 -19 10

-10110
(b) Steady-state graph G’

Fig. 6. A marked graph and its steady-state graph

We now present the main technical result of this section.
Theorem 4: Given a single-token fixed-delay timed-marked graph

with a single critical cycle, the firing time of every node relative to
a source node on a critical cycle in the steady state is equivalent to
the longest path between them in the steady-state graph G′.

�
In the above presentation, the problem of deriving the steady-

state behavior of a single-token fixed-delay system has been reduced
to a single-source longest path problem for cyclic graphs. There
exists many efficient, polynomial-time algorithms for this problem.
In particular, the signs of all edges in G′ can be inverted to obtain a

graph G′′, such that a longest path problem in G′ can be treated as a
shortest-path problem in G′′. Details will be provided in Section V.

For cases where is more than one critical cycle, each critical cycle
can span a longest-path tree, i.e., a time firing sequence. In cases
where one critical cycle is triggered to fire at initialization before
others, the asymptotic behavior of the system is determined by the
timed firing sequence of that cycle. In cases when more than one
critical cycle is triggered to fire at the same time, the timed firing
sequence of the entire system is the result of a superposition of the
individual firing sequences for each critical cycle under the ”max”
operator. More formally, Let xi be a vector of the timed firing
sequence for each critical cycle Ci in G, then the

x = max(xi) (2)

Intuitively, the timed firing sequence can be understood as the
”clock tree” of the system, initiated by a reference node on the critical
cycle and spanning out to all nodes in the graph. A key property of
this clock tree is that there no local slack on any of its paths.

V. SINGLE-TOKEN FIXED-DELAY SYSTEMS

This section presents the algorithm for finding the TSE of any
two pair of events in a fixed-delay system described by single-token
marked graph. The TSE algorithm is divided into three major steps:
(i) finding the critical cycle(s); (ii) finding the longest path tree from
each critical cycle and combining the results; and (iii) finding the
TSE.
Step 1: Critical cycles: This step takes as an input a timed marked
graph with a fixed delay assignment, and outputs the cycle time T̃
of the graph, as well as the set of all critical cycles.

This is a similar problem to finding the cycle mean of a digraph,
for which many efficient algorithms exists. A method similar to that
for solving the minimum cost-to-time ratio cycle problem based on
binary search presented by Lawler [10] is summarized below.

A cycle time for the system, τ , halfway between an interval user-
supplied interval [a, b] is first used as a ”guess”, and a corresponding
steady-state graph G′ for the system constructed. The sign of the
weight of all edges on G′ is then flipped to transform it to a graph G′′,
so that the longest-path problem can be conveniently transformed to a
shortest-path problem, for which efficient solutions exists. The Floyd-
Warshall algorithm, with the distances between all pairs of nodes
initialized to ∞, is used for computing the shortest path between
all pairs of nodes in G′′. The result is presented in a square matrix.
In particular, the cycle time of the longest path between any node
to itself, i.e., the longest self-loop, can be read off as the diagonal
entries of the matrix.

There are three scenarios:
Case 1: τ is too small: in this case all diagonal entries of the matrix
are smaller than 0. Case 2: τ is too big: in this case all diagonal
entries of the matrix are larger than 0. Case 3: τ is equal to the
cycle time: in this case one or more diagonal entries of the matrix is
equal to 0.

In case 1 and 2, a new ”guess” value τ is refined by halving the
interval [a, b] and picking a new value from the appropriate half, and
the Floyd-Warshall algorithm is applied again using the new τ value.
In case 3, the critical cycle value is found and Step 2 of the procedure
can be proceeded.

The complexity of the Floyd-Warshall algorithm used in each
iteration of the ”guess” is O(n3), where n is the number of nodes in
the graph. As shown in [10], the complexity of the entire algorithm
is O(n3logn).
Step 2: Compute timed firing sequence: This step takes in result
from Step 1 of the algorithm, as well as the initial configuration
(λ), and returns a vector of the timed firing sequence of the nodes in
the marked graph. As a side-product of the Floyd-Warshall algorithm
used in Step 1, one can read off the shortest distance from any node to
any other node in the graph G′′. The initial configuration (lag time
and initial token placing) can be used to determine which critical
cycle fires first. If the system has only one critical cycle, an arbitrary



Step 1: F ind critical cycles(G, M0, δ), a, b
1 do
2 τ ← (a + b)/2
3 Construct graph G′′
4 Use Floyd-Warshall to find all pairs shortest paths for G′′
5 if all diagonal entries of shortest-path matrix < 0
6 τ ← (a + (a + b)/2)/2
7 if all diagonal entries of shortest-path matrix > 0
8 τ ← ((a + b)/2 + b)/2
9 while (all diagonal entries of shortest-path matrix �= 0)
10 C ← all loops with 0 diagonal entries

Step 2: Compute firing sequence(λ)
11 foreach critical cycle Ci ∈ C with earliest firing time
12 construct longest-path tree xi
13 x← max(xi)

Step 3: F ind|T SE(u, v)
14 return x(v)− x(u)

TABLE I
PSEUDOCODE FOR TSE FOR SINGLE-TOKEN FIXED-DELAY SYSTEM

reference node from this cycle is picked as a source node. Its shortest
distance to every other node in the graph is then read off the matrix
and represented in a vector. The signs of the values in the vector are
then reverted to form the longest path timed firing sequence. If there
is more than one critical cycle, and one fires earlier that all others,
then the reference node is picked from the earliest-firing critical cycle.
Finally, if more than one critical cycle fires at the same time, their
corresponding timed firing sequences are combined using the max
operator, as shown in Equation 2 in Section IV.
Step 3: Finding TSE’s: The result of Step 2 is a timed firing
sequence, i.e., a vector x of the firing time of all nodes in G relative
to a reference node. Given two input events u and v, their TSE can
simply be computed from the timed firing sequence by subtracting
the relative firing time of one from the other:

TSE(u, v) = x(v) − x(u)

The pseudocode of the algorithm is shown in Table I. The com-
plexity for the algorithm to solve the single-token fixed-delay TSE
problem is dominated by the step for finding the critical cycle, which
is O(n3logn).

VI. MULTI-TOKEN FIXED-DELAY SYSTEMS

In this section, we show how the solution framework can be
extended to handle the general case of a system which is modeled
by a marked graph with more than one token in a simple cycle.
A. Theoretical foundations

Section IV presented a theoretical framework for single-token
fixed-delay systems. A key theoretical result for multi-token fixed-
delay systems is now presented.

Theorem 5: The steady-state behavior of a multi-token system is
the overlapping of K timed firing sequences of single-token systems,
where K is the number of tokens on the critical cycle(s) of the graph.

Instead of a formal proof, intuition on how this works is given via
an example.

Example: Recall the example in Figure 4 in Section III-C. The
critical cycle time is 6 for cycle abcd. Assuming a source node at
b, the timed firing sequence given by the longest path tree is x1 =
[3 0 9 6]. Run 1 is two of these timed sequences superimposed on
each other, with a displacement of -3 units for the second sequence:
x = [3 0 9 6]‖(−6)+[3 0 9 6], where the parallel operator ‖ denotes
the superposition of two firing sequences. The single firing sequence
shown in Figure 4 can thus be considered a superposistion of the two
independent timed firing sequences shown below.
Run 1:

time 0 1 2 3 4 5 6 7 8 9 10 ....
sequence 1 b * * a * * d * * c * ....
sequence 2 d * * c * * b * * a * ....

Run 2 in Figure 4 is similarly composed of two timed firing
sequences, with a displacement of 2 for the second sequence: x =
[3 0 6 9]‖2 + [3 0 6 9].

Step 1: F ind critical cycles(G,M0, δ), a, b
1 use same algorithm as in single-token systems

Step 2: Compute firing sequence(λ)
2 T2 ← 2nd largest cycle time in G’ from shortest-path matrix
3 foreach critical cycle Ci ∈ C with earliest firing time
4 construct longest-path tree xi
5 c0 ← 0
6 foreach token tk in initial marking M0
7 ck ←

P
(λ + d) for all edges between tk and tk−1

8 if ck < T2
9 ck ← T2; ck − 1← −(T2 − ck)
10 x← x1‖c1 + x1‖...‖ck + x1

Step 3: F ind|T SE(u, v)
11 Min TSE ← min(x(v) − x(u)) for all adjacent pairs of u, v ∈ x
12 Max TSE ← max(x(v) − x(u)) for all adjacent pairs of u, v ∈ x

TABLE II
PSEUDOCODE FOR TSE FOR MULTI-TOKEN FIXED-DELAY SYSTEM

Two sequences run independently of each other as long as the
following rule is observed: The minimum displacement between any
two timed firing sequences must be greater than or equal to the second
largest critical cycle in the graph. This rule ensures that the firing
sequences are spaced far apart enough such that all tokens other than
the critical one arrives in time at a node before the critical token
arrives. A proof similar to that for Lemma 1 can be used to show
that if this rule is violated during the initial configuration, the system
asymptotically converges to a state such that the rule is observed.
If the rule is not violated in the initial configuration, the spacing of
tokens at initialization remains constant during the entire operation
of the system.

B. Algorithm

The algorithm for multi-token fixed-delay systems is now pre-
sented. Recall from Section VI-A that the behavior of a multi-token
system can be interpreted as more than one single-token system super-
imposed on each other by overlapping their timed firing sequences
by a displacement. The algorithm can be seen as an extension of
the algorithm for single-token system presented in Section V. The
pseudocode of the algorithm is shown in Table I.

VII. BOUNDED-DELAY SYSTEMS

Now that an algorithm the TSE for fixed-delay systems is pre-
sented, it is shown in this section how it is used as a foundation for the
TSE algorithm for bounded-delay systems. In particular, it is shown
how finding the TSE of bounded-delay systems can be considered
solving two instances of a fixed-delay problem. The algorithm is
made up of two passes: in each pass, the system is considered a fixed
delay system with delay values on each edge carefully assigned so
as to generate extreme TSE values.
A. Overview

Before getting into further details of the algorithm, an example is
shown to give some intuitions on the method. Consider the example
shown in Figure 7.

a b c d

[1,2] [1,3] [1,2]

[2,2][1,2][1,2]

Fig. 7. Bounded-delay systems

Suppose we want to find the maximum separation between two
consecutive firings of node d, i.e., maximizing ∆dd. Intuitively, we
want the first firing of d to happen as early as possible with respect
to some reference event, and the second firing of d to happen as
late as possible after. An example of this is shown in the simulation
below.



time 0 1 2 3 4 5 6 7 8 9 ....
event b c d,a * b * a c * d ....

To see how the simulation run is derived, consider the following.
Suppose b fires at time 0. To make the first firing of d as early as
possible, we use the minimum delay values of 1 on edges (b, c) and
(c, d) to enable d to fire at time t = 2. To make the second firing of d
as late as possible, we use maximum delay values on all other edges
to make d fire at time t = 9. This results in a maximum separation
of ∆dd = 7.

Figure 8 shows how the simulation can be thought of as two
separate runs of a fixed-delay system, each with a different delay
assignment.

a b c d

[2] [1] [1]

[2][1][2]

1. minimize delay
from b to d

2. maximize wait
from d to b

(a) Run 1

a b c d

[2] [2] [3]

[2][2][2]

3. maximize delay
from b to d

(b) Run 2

Fig. 8. Finding maximum separation of events

Suppose now we want to solve the opposite problem of finding
the minimum separation between two consecutive firings of d.
Using similar reasoning, we would want the first firing of d to
happen as late as possible with respect to b, and the second
firing to happen as early as possible after. The simulation run is
shown below. This results in a minimum separation of δdd = 3.

time 0 1 2 3 4 5 6 7 8 9 10 11 ....
event b a * c b d * c d * ....

The key observation here is that the problem of finding the
maximum and minimum TSE in a bounded-delay system can be
treated as two separate runs of finding the TSE for a fixed-delay
system. In the first run, delay values are chosen so as to make the
source event happen as early as possible with respect to a reference
event, and in the second, the target event to happen as late as possible.
A second observations is that the reference point should be picked
from a point on the critical cycle, which has the convenient property
that its delay does not change between the two runs.
B. Theoretical foundations

The above observations are now formalized. Lemmas 4 and 5 show
how delays on a path to a node on the critical cycle and a node from
the critical cycle can be maximized. Theorem 6 then shows how the
results of these two lemmas can be used to justify a procedure for
finding the maximum and minimum TSE of two events in a bounded-
delay system.

Lemma 4: For any pair of nodes u not on the critical cycle C i
and v ∈ C, the maximum TSE between u and v, ∆(u, v) is achieved
if the delay value δ(i, j) on every edge (i, j) ∈ C is equal to its
maximum value of D(i, j), and δ(i, j) on every edge (i, j) on every
cycle C �= C that intersects puv equal to its minimum value of d(i, j).
Proof: Suppose by contradiction, there exists an edge (i, j) ∈ puv

such that
d(i, j) + smax(i, j) < D(i, j) (3)

Let the cycle mean of the critical cycle C be T , and the summation
of minimum delays values on all edges in the simple cycle C which
(i, j) belongs to be

P
d. Then the maximum slack the edge (i, j)

can attain is given by smax(i, j) = T −
P

i d. Putting the expression
for smax(i, j) into Equation 3 gives

d(i, j) + T −
X

d < D(i, j)

D(i, j)− d(i, j) +
X

d > T

This is a contradiction, because this would imply that the simple
cycle (i, j) is on a cycle with cycle time larger than T . �

Lemma 5: For any pair of nodes u not on the critical cycle C and
v ∈ C, the maximum TSE between v and u, ∆(v, u) is achieved
if the delay value δ(i, j) on every edge (i, j) on every cycle C that
intersects puv is equal to its maximum value of D(i, j).
Proof: From Theorem 4, the firing time of node u relative to node v
is equal to the longest path between them in the steady-state graph
G′. Therefore the maximum value of ∆(v, u) is achieved if every
edge (i, j) ∈ pvu attains its maximum delay value D(i, j). �

Theorem 6: The maximum TSE between two events i, j,
∆(i, j), is equal to ∆(i, k)+∆(k, j), where k is a node on a critical
cycle C. ∆(i, k) is found by setting δ(u, v) to its maximum value
of D(u, v) for every edge (u, v) ∈ C, and δ(i, j) to its minimum
value of d(i, j) on every edge (i, j) /∈ C. ∆(k, v) is found by setting
δ(i, j) to D(i, j) for every edge (u, v) ∈ G.
Proof: It follows from Lemmas 1 and 2 that for any two events i, k,
where i /∈ C and v ∈ C, the maximum TSE between i, k ∆(i, k) =P

pi,i+1...,k
(d(i, i + 1) + s(i, i + 1)), and for any two events k, j,

where k ∈ C and j /∈ C, the maximum TSE between k, j ∆(k, j) =P
pk,k+1...,j

D(k, k + 1), �

C. Algorithm

An algorithm for finding the TSE between two events in a bounded-
delay system is now presented.

The algorithm consists of two passes: In the first pass, the time
separation between i and a reference event k is found, and in
the second, the time separation between k and j. In each pass, a
preprocessing step is used to pick a delay value from the range of
possible values on each edge, and a single value is assigned, thus
effectively turning the system in a fixed-delay one. The algorithm for
finding the TSE for fixed delay systems is then invoked to compute
the TSE. The results of the two passes are then added up.

During pass one, delay values are assigned so as to maximize the
delay between the source event i and a reference event k, which is a
node on the critical cycle of the graph. The goal is to use maximum
delay values D(u, v) for each edge (u, v) in the critical cycle, and
minimum delay values d(u, v) for each edge (u, v) not on the critical
cycle, thereby maximizing the local slack on each edge leading from
the source event i to the reference event k on the critical cycle.
Unfortunately, this is not a straight forward step: without pre-assigned
delay values, it is not possible to find the critical cycle; Moreover,
the assignment of delay values, and thus the location of the critical
cycle, is dependent on where the source event i is in the graph.

The algorithm takes care of this problem by using a search strategy.
Each edge (u, v) in the graph is initially assigned their maximum
delay value D(u, v). Starting from the source node i, the algorithm
flips the delay value of each incoming edge (u, i) to i to its minimum
value d(u, i), and computes the critical cycle of the system. If any
of the input edges (u, i) originates from the critical cycle, the search
terminates, the critical cycle is returned, and the delay value on each
edge on the graph which is not on the critical cycle is flipped to its
minimum delay value d(u, v), otherwise the search continues in a
breadth-first search fashion for all incoming edges to i.

In the second pass of the algorithm, delay values are assigned so
as the maximize the delay between the reference event k, which is
node on the critical cycle, and the target event j. This is achieved
simply by assigning the maximum delay value D(u, v) for each edge
on the graph. There is no need to run all three steps of the fixed-delay
algorithm. Only step 3 is needed. This is because the critical cycle
has already been found in Pass 1 of the algorithm. The only work
done in this pass is to sum up the maximum delay value D(u, v) on
each edge from k to j.

The pseudocode of the algorithm is shown in Table III.

VIII. EXPERIMENTAL RESULTS

A CAD tool has been implemented to demonstrate the feasibility
and efficacy of our method. The tool was implemented in C. In



Max TSE(G, M0, D, i, j)
1 for each edge (u, v) ∈ E(G)
2 δ(u, v)← D(u, v)
3 do
4 for each k ∈ in[i]
5 δ(k, i)← d(k, i) //Assign minimum delay
6 while k /∈ C(G)
7 for each edge (k, v) ∈ E(G) /∈ C(ki)
8 δ(k, v)← d(k, v)
9 ∆ik ← TSE algoithm from Table II
9 ∆kj ← TSE algoithm from Table II
12 return ∆ij ← (TSE(i, k) + TSE(k, j))

Min TSE(G, M0, D, i, j)
1 max←Max TSE(G, M0, D, i, j)
2 return T̃ × 2−max

TABLE III
PSEUDOCODE FOR TSE FOR BOUNDED-DELAY SYSTEMS

addition tools from [8] and [4] were used. All experiments were
run on a PowerPC G4 CPU at 1.33 GHz with 768 MB of memory.
The experimental results are shown in Table IV.

Four sets of test cases were used: (i) different variations of
asynchronous FIFO designs; (ii) an asynchronous Huffman decoder
design from [2]; (iii) designs from the published literature [1], [8]
(iv) variants of the examples shown in Section III of this paper.

In many cases, since the examples are small and simple, the
runtimes of the three tools do not show significant discrepancies,
and the results match. However, for several examples, there are
noticeable differences in runtime; also, an inaccuracy of results for
the heuristic method [4] is highlighted. Also, it is shown that several
examples cannot be handled directly by [4]. Finally, in a multiple
TSE query example, the benefit in runtime of our method over a
previous method [8] is shown.

A few interesting cases are highlighted below.
Test cases 10 and 11 illustrates slow convergence in previous

approaches. Test case 10 is the example in Figure 3 in Section III-C
of this paper, and test case 11 is a variation of the example, with
the delay on each edge amplified 10000 times. In this example, there
are two cycles with very close cycle times, which can lead to a large
number of iterations in unfolding-based method. As can be seen from
the table of results, test case 11 does not present a significant runtime
increase in our tool or in the heuristic method [4], over test case 10,
but does show an increase in runtime for [8].

Test case 15 illustrates a multiple TSE query problem. This uses
the same design as in test case 13; in test case 15, TSE’s between
all 10 pairs of events are queried, while in test case 13, only one
pair of events is queried. Method [8] needs to be run 10 times to
obtain all the results, resulting in nearly a 7X increase in runtime
over test case 13 (which has one TSE query). In our tool, there is
no noticeable runtime increase. This example shows how our method
can have significant runtime benefits for multiple TSE queries.

Test cases 3, 4, 13, 14 and 15 are cases that cannot be handled
by [4]. These examples are modeled by multi-token systems. To be
handled by [4], these specifications must be preprocessed to turn them
into single-token systems.

Test case 7 is also multi-token system. In this case, the original
specification cannot be handled by [4] (as indicated by the N/A
result in the table), and therefore results are presented by a manually-
preprocessed single-token version provided with the tool for [4].

Test case 12 shows the sensitivity of the accuracy of the TSE to
initial conditions. It uses the example in Section III-C.2 of this paper.
Since the method in [4] ignores initial conditions, the result of this
test case is inaccurate. In particular, this reported TSE is twice as
large as the actual result.

IX. CONCLUSIONS

We have addressed the problem of computing the maximum and
minimum time separation between any pair of events in a concurrent
system, which is modeled as decision-free cyclic marked graph,
and whose operation semantics obeys the max-causality rule. A

Test case Runtime (mS)
this paper [8] [4]

1 linear FIFO 12 12 15
2 FIFO ring (one token) 15 15 30
3 FIFO ring (concurrent) 20 20 N/A
4 FIFO ring w/ split merge 22 20 N/A
5 Huffman decoder [2] 15 14 30
6 [8] Fig. 1 12 14 20
7 [1] Fig. 4 12 12 20 (N/A)
8 [1] Fig. 5 15 20 20
9 [1] Fig. 6 14 13 30
10 Fig. 3 20 30 30
11 Fig. 3 (amplified edge weights) 25 60 30
12 Fig. 2 with λ = 3 20 20 30
13 Fig. 4 30 40 N/A
14 Fig. 4 (increased period to 5) 30 60 N/A
15 Fig. 4 (multiple queries) 30 200 N/A

TABLE IV
EXPERIMENTAL RESULTS

polynomial-time algorithm is proposed, which requires no graph
unfolding, and a CAD tool built to demonstrate the feasibility and
efficacy of the method.
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