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ABSTRACT
This paper presents a unifying framework for the modeling of asyn-
chronous pipeline circuits. A pipeline protocol is captured in a
graph-based model which defines the partial ordering of both its
control and data events. The relationship between an entire space
of different protocols is then captured in a semi-lattice, which has
well-defined top and bottom elements, corresponding to the most
concurrent and least concurrent protocol variants, respectively. This
framework also provides a set of correct-by-construction transfor-
mation rules which allows for the systematic exploration of the en-
tire design space by their successive application. To the best of
our knowledge, this is the first formal framework for asynchronous
pipelines which can capture protocols from a variety of logic style
families, including both dynamic and static. It is also the first to
provide a formal foundation for the design-space exploration of
asynchronous pipelines.

Categories and Subject Descriptors: B.6.1 [Hardware]:Logic De-
sign - Design Styles, B.6.3 [Hardware]:Logic Design - Design Aids,
C.5.4 [Computer Systems]:Implementation - VLSI
General Terms: Design, Theory
Keywords: pipeline, framework, asynchronous, digital design, pro-
tocols

1. INTRODUCTION
Pipelines are critical to the design of high-speed asynchronous

systems, and their design and synthesis have been an active re-
search area in the asynchronous community, as evident in the large
amount of recent research in the area ( [4, 6, 7, 8, 10, 12, 15]). This
paper aims to formally capture the underlying structure and rela-
tionship of asynchronous pipeline protocols into a unifying frame-
work. The motivations for this work are threefold. First, it is useful
to have a common language for comparing and evaluating different
pipeline designs. Such a unifying framework provides designers
with a meaningful way to assess design trade offs, such as con-
currency, latency, area, throughput, etc. during design-space explo-
ration. Second, by capturing the fundamental properties of pipeline
designs in a formal structure, a platform is provided for the devel-
opment of new designs that could have been overlooked using a
more intuitive design approach. Third, it can also serve as an aid in
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verifying existing designs. Hidden assumptions made on designs
can often be exposed when put into a formal framework.

The key contributions of this paper are the following. First, it
introduces a formal, graph-based model for describing the behav-
ior of a wide variety of asynchronous pipeline protocols, including
both dynamic and static logic styles. Second, it presents a taxon-
omy of pipeline protocols and captures their relationship formally
in a semi-lattice (and in a lattice for a subset of logic families),
which has clearly-defined top and bottom elements. Third, it in-
troduces a set of correct-by-construction transformation rules (i.e.,
legal moves) for design-space exploration. As a demonstration for
this method, we show how a number of existing protocols and some
new protocols that have not appeared in published literature can be
arrived at by successive applications of the rules.

The main focus of this paper is on latchless dynamic pipelines,
since a complete taxonomy for these pipelines has not been previ-
ously proposed. However, in a later section, we briefly show how
our model can be extended to static pipelines as well. Three dy-
namic logic styles are captured: non-footed, footed with unified
control (eval/precharge, as in Williams’ PC0 style [15]), and footed
with separate control (i.e., distinct eval and precharge controls, as
in high-capacity pipelines [12]). For each such logic style, an entire
lattice or semi-lattice of the design space of legal pipeline protocols
can be generated.

For simplicity, we limit ourselves to consider only linear pipelines
in this paper. We believe extensions to non-linear pipelines and
more complex asynchronous control circuits are possible within
this framework, but is beyond the scope of the paper. Also, we
confine ourselves only to robust protocols without timing assump-
tions. Timing assumptions are considered an implementation-level
detail not dealt with at the protocol level.

There has been a small number of related papers on capturing
taxonomies of asynchronous pipelines. Lines [6] presented a range
of dynamic pipeline protocols by considering various handshake
reshufflings (i.e., interleavings of request and acknowledge events
on different communication channels). In Furber and Day [4], a
similar notion of handshake reshuffling, but extended to also in-
clude data events, was used to model and compare several static
pipeline protocols.1 Blunno et al. [2] and Kondratyev et al. [5] pre-
sented innovative approaches for modeling and comparing a variety
of protocols in a hierarchy. Both of these approaches model only
control events, e.g. latch enable and disable. A detailed comparison
with related work is presented in Section 6 of this paper.

Of these approaches, only [2] attempts to capture systematically
a subspace of asynchronous pipeline protocols. In particular, Petri
Net models are used to capture the behavior of a family of static

1A similar modeling approach for individual protocols was used in Yakovlev et
al. [16], but their focus was not on developing protocol taxonomies.
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Figure 1: Dynamic function blocks: (a) Footed with separate
controls (b) Footed with unified control (c) Non-footed

pipeline protocols, and the models are then placed in a partial or-
der. However, there are several key differences between our work
and theirs. First, our model uses both control and data events. It
will be shown that the modeling of data events is necessary to dis-
tinguish certain dynamic pipeline protocols. In particular, we will
show that some legal protocols cannot be properly captured by a
control-event only model. Second, our framework places the hi-
erarchy of pipeline protocols into a semi-lattice, with well-defined
top and bottom elements. In addition, the entire space of legal pro-
tocols is captured between these bounds. Each individual protocol
is mapped to a corresponding vertex in the lattice. Such an ap-
proach has not been previously proposed. Third, our graph-based
model for pipeline protocols has a clear notion of “legal (i.e., safe)
moves”, within well-defined bounds, where a precedence arc can
be moved to define a new legal pipeline protocol. Finally, we focus
on dynamic pipelines, and show extensions to capture static latched
pipelines; in contrast, [2] focuses on static latched pipelines only.
Also, unlike previous approaches, we demonstrate that a variety of
logic families can be captured, including several dynamic variants
(footed versus non-footed, with separate versus unified control), as
well as static styles. In addition, we show that two alternative com-
mon styles of pipeline acknowledgments can be distinguished in
our model using additional constraints: “early-done” (e.g. [12]) and
“conservative-done” signaling. Taken together, using a few simpli-
fying assumptions, this work presents a unified formal framework
for capturing a taxonomy of asynchronous pipeline protocols.

The rest of the paper is organized as follows. Section 2 pro-
vides basic background on the operation of asynchronous pipelines.
Section 3 describes a method for formally modeling an individual
pipeline protocol and deriving new protocols. Section 4 presents a
taxonomy of existing and some new pipeline protocols, as points
in a semi-lattice. Section 5 briefly shows how the model can be
extended to capture latched static pipelines. Section 6 compares
our model to some other related efforts. Finally, Section 7 presents
conclusions and future work.

2. BACKGROUND
This section reviews several variants of dynamic logic and the

basic operation of asynchronous pipelines.
Figure 1 shows three variants of dynamic logic function blocks.

In all three variants, the function block enters its evaluate phase
when the evaluate control is asserted, reads new input data and per-
forms computation. When the precharge control is asserted, the
function block enters its precharge phase and resets its output. In
function blocks with separate evaluate and precharge controls (Fig-
ure 1a), called dynamic logic with separate controls, there is an
additional “isolate” phase [12] when both the precharge and eval-
uate inputs are de-asserted and the output holds its previous value.
The two control inputs are not allowed to be asserted at the same
time to prevent fighting between the pull-up and pull-down stacks.
Figure 1b shows a function block using footed dynamic logic with
unified control, where precharge and evaluate are controlled by a
single input and no isolate phase exists. Figure 1c shows a function
block using non-footed dynamic logic, which has only a precharge
control; there is also no isolate phase in this style.

Figure 2 shows the block diagram of an example three-stage
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Figure 2: Block diagram of a PC0 pipeline
pipeline circuit, PC0 [15], which uses dynamic logic and four-
phase signaling [11]. The datapath uses robust dual-rail logic where
each bit is mapped to two wires, encoding ‘0’ (01), ‘1’ (10) and no
valid data (00) [15]. The function blocks labeled F1, F2 and F3 are
responsible for data computation and reset, and each is locally con-
trolled by an evaluate/precharge input. Each pipeline stage must go
through a data computation phase and a reset phase in each compu-
tation cycle. The completion detection units labeled D1, D2 and D3
detect the completion of data computation or reset of their preced-
ing function blocks and generate appropriate request and acknowl-
edgment control signals to neighboring blocks. The C-elements
labeled C1, C2 and C3 [14] are asynchronous state holding ele-
ments which serve as “joins”. When both inputs of a C-element
are ‘0’(‘1’), the output is ‘0’(‘1’), otherwise it holds its previous
value. The operation of the pipeline is as follows. Stage 2 evalu-
ates as a result of two events from neighboring stages: when stage
1 has valid data (path through D1 and C2) and when stage 3 has
completed reset of the previous data item (path through (D3 and
C2). Similarly, stage 2 resets when stage 1 has completed reset and
when stage 3 has valid data.

3. FORMALISM
This section introduces a formal graph-based model to capture

the behavior of asynchronous pipelines and a set of transformations
that can be performed on the model to derive new protocols.
3.1 Formal basics

Some basic algebraic definitions [3] that will be used in later
sections is now reviewed.

DEFINITION 1. Let P be a set, An order (or partial order)
on P is a binary relation � on P such that, for all x, y, z ∈ P ,
(i) x � x (reflexivity), (ii) x � y and y � x implies x = y

(antisymmetry), (iii) x � y and y � z implies x � z (transitivity).
DEFINITION 2. Let P be an ordered set. Then P is a chain if,

for all x, y ∈ P , either x � y or y � x.
DEFINITION 3. Let P be an ordered set and let S ⊆ P . An

element x ∈ P is an upper bound of S if s � x for all s ∈ S. A
lower bound is defined dually.

DEFINITION 4. Let P be a non-empty ordered set. If x∨ y (the
greatest lower bound of x and y) or x ∧ y (the least upper bound
of x and y) exists for all x, y ∈ P , then P is a semi-lattice. If both
x ∨ y and x ∧ y exist for all x, y ∈ P , then P is a lattice.

3.2 Modeling pipeline behavior
A formal model is now introduced to describe the behavior of a

single pipeline protocol.
The protocol of an asynchronous pipeline can be modeled by a

directed graph representing the partial order of events in its oper-
ation. There are two types of events: control and data. Control
events are those that change the phase of operation of circuit ele-
ments. In designs using dynamic function blocks, they correspond
to the start and end of the precharge phase and the evaluate (i.e.,
precharge-release) phase. In static designs using latches, they cor-
respond to the latch enable and disable events. Data events do not
refer to circuit phases, but rather to the progress of data and spacers
(i.e., null or reset tokens) through the pipeline.

In the remainder of this section, pipelines using dynamic func-
tion blocks (without explicit latches) and four-phase signaling with
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Figure 3: Constraints on ordering of events in a single pipeline
stage: (a) data events (b) control events (c) interaction between
data and control events
dual-rail data encoding are used as examples to illustrate the ideas.
This subsection focuses only on the modeling of function blocks
using dynamic logic with separate controls (Figure 1a). Discussion
of the other two types of function blocks is left to Section 3.3.

Three sets of ordering constraints, two intra-stage and one inter-
stage, need to be enforced among the control and data events in a
pipeline using dynamic function blocks. The first two are common
across all three variants of function blocks.
Intra-stage constraints. The first set of constraints, shown in Fig-
ures 3a and 3b, is imposed among the control events and among
the data events within one stage to ensure correct circuit operation
and the flow of data and reset tokens. The solid black circles and
empty circles in the figures represent control and data events, re-
spectively. An arrow between two events x and y indicates the
ordering relationship x � y. Events and arrows that belong to the
same computation cycle are colored in black. Those belonging to
the previous and next cycles are colored in gray.

The “eval” and “pc” events are control events, defining the phys-
ical state of the circuit. Events evals and evald correspond to the
start and the end of the evaluate phase. Events pcs and pcd cor-
respond to the start and the end of the precharge phase. The gap
between evald (end of evaluate phase) and pcs (start of precharge
phase) can be used to model a distinct isolate phase. Similarly, the
gap between pcd and evals can model a second isolate phase.

The “data” and “reset” events are data events, defining the move-
ment of actual data through the pipeline. Events datas and datad

define the start and end of the actual evaluation of data in the pipeline
stage (but not the start and end of the evaluation control phase).
Events resets and resetd define the start and end of the actual
return-to-zero in the pipeline stage (but not the start and end of the
precharge control phase).

The second set of constraints ensures proper interaction between
control and data events in the same stage. A function block can-
not start data computation (datas) before it enters the evaluate
phase (evals), and cannot leave the evaluate phase (evald) until
data computation is complete (datad). The dual set of these con-
straints is required for the precharge phase and the reset of data.
Figure 3c shows the second set of constraints superimposed upon
the first. Note that the arcs in Figure 3c can be classified into three
categories: arcs leading from a control event to a data event, arcs
leading from a data event to a data event, and arcs leading from
a data event to a control event. The first two can be considered
physical realities that is guaranteed by the circuit. The third is a
requirement that has to be enforced by design.
Inter-stage constraints. A third set of constraints is required to
ensure proper communication between stages. This set of con-
straints is different for each of the three dynamic logic function
block styles. Figure 4 shows the weakest constraints for function
blocks using dynamic logic with separate controls between three
pipeline stages N − 1, N and N + 1. Each stage follows the pro-
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Figure 4: Constraints for footed dynamic logic with separate
controls (most concurrent protocol)
tocol outlined in Figure 3c. Several inter-stage arcs are added to
synchronize behavior of adjacent stages.

The most basic inter-stage synchronization is a data-dependency
arc, shown as the dotted arc from the datas event of stage N − 1

to the datas event of stage N in Figure 4. It ensures that the start
of computation of stage N − 1 precedes that of stage N .2

The remaining four inter-stage arcs control sequencing between
data to control events or control to control events. Arc A1 ensures
that stage N − 1 has started computation before stage N ends its
evaluate phase. This ensures that stage N has time to read the new
data token before closing itself to inputs. Arc A2 ensures that stage
N − 1 does not start its precharge phase before stage N has com-
pleted data computation. This prevents stage N −1 from removing
the data token too early while stage N still needs it. Arc A3 ensures
that stage N − 1 has reset its previous data token before stage N

starts the evaluate phase for the next data cycle. This prevents stage
N from reading stale data. Arc A4 ensures that stage N − 1 does
not start its evaluate phase for the next data cycle before stage N

has finished with the evaluate phase of the current data cycle. This
prevents new data from stage N − 1 from overwriting the data in
stage N if stage N is slow.

These four control arcs, two in the forward direction and two in
the backward direction, together form a minimal set of constraints
for inter-stage communication between two pipeline stages.

The same sequence of events is repeated for every iteration dur-
ing the execution of the pipeline for each stage, and each stage in
the pipeline has the same sequence of events.

3.3 Modeling extensions
In this section, the basic model developed in Section 3.2 is ex-

tended to handle designs using other variants of dynamic logic fam-
ilies, as well as designs using more aggressive signaling.
Other variants of dynamic logic. The basic model can be ex-
tended to handle two alternative logic families: (i) footed dynamic
logic with unified control (Figure 1b), and (ii) non-footed dynamic
logic (Figure 1c). Both styles share the same design invariant con-
straints shown in Figure 3; additional constraints are simply super-
imposed to capture the different circuit behaviors.

In footed dynamic logic with unified control, the function block
can only be in either precharge or evaluate phase, meaning there is
no isolate phase for extra latching capability. This translates to an
extra constraint in the specification: stage N + 1 must have started
its precharge phase before stage N starts changing its outputs from
its reset values, otherwise the new data from stage N would over-
write the data in stage in stage N + 1.

In non-footed dynamic logic, further restrictions must be ob-

2In some designs, stage N cannot start computation until stage N − 1 has completed
all its computation. In this case, the dotted arc would go from the datad event of
stage N − 1 to the datas event of stage N . This paper considers the more general
case where there is no such restriction (i.e., allowing “eager evaluation”).
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Figure 5: Constraints for alternative dynamic logic families
(most concurrent protocol): (a) Footed with unified control (b)
Non-footed
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Figure 6: Constraints for dynamic logic using “early done” sig-
naling: (a) Single stage constraints (b) Inter-stage constraints
served. When it is in its precharge phase, its input data must be
at reset, or there will be a direct path from power to ground.

These extra constraints can be layered on to the basic model for
footed dynamic logic with separate control shown in Figure 4. The
resulting protocol graphs are shown in Figures 5a and 5b.
”Early-done” signaling. The basic model can also be augmented
to capture more aggressive signaling in a design. For example, in
some dynamic pipelines [12], an “early tap-off” of data completion
is allowed: as soon as data passes through the first stage of logic
(before the end of computation), the function block can signal the
previous stage to precharge. In dynamic logic, early done is typi-
cally a safe communication: once data passes through the first level
of dynamic logic in a stage, it is safe to reset the input to the stage.
The use of early done signals can be captured simply by inserting
two extra events into the basic model: early d and early reset,
as shown in Figure 6a. Figure 6b shows the inter-stage constraints
for designs using footed dynamic logic with separate controls with
early done signaling.

3.4 Transformations
The constraints derived in Sections 3.2 and 3.3 represent the

weakest constraints that need to be imposed between the control
and data events in a protocol to ensure safe operation. These con-
straints are represented as a partial order of events, which can be
satisfied by a variety of distinct protocols. In this section, a set of
transformations that allows for the automatic generation of all such
protocols is introduced.

By definition, a partial order is closed under transitivity (see Sec-
tion 3.1). Hence, starting from an initial object respecting certain
constraints, successive applications of the transitive rule generates
designs respecting the same constraints. Correct-by-construction
transformation of the model thus simply amounts to the application
of such rule, which can be translated to moves of arcs in the graph.

Figure 7 illustrates three allowable moves in a partial order graph
that guarantees safe transformation. Moves M1 and M2 are con-
currency reduction moves, which impose more ordering in a graph
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Figure 7: Concurrency reduction transforms

while still enforcing the original constraints. Move M3 removes
redundant arcs in a partial order graph without affecting the under-
lying concurrency. Note these transformations apply only to the
solid control arcs in the graph models. The dotted data arcs repre-
sent physical realities that cannot be changed.

In more detail, move M1 states that the target of an arc between
two chains can be moved up, as long as it does not go above the up-
per bound of the two chains. Algebraically, the move in Figure 7a
transforms the original ordering

A � B � D � F � H and A � C � E � G � H (1)

to
A ≺ C � E � G � B � D � F � H and A � B � D � F � H. (2)

Note that the ordering imposed by Relation (2) still respects that
by Relation (1), though it is more restricted. If the target of the arc
moves to or above the upper bound of the two chains at point A,
it would result in the ordering A � C � E � G � A, which
violates the original constraints, and introduces a “circular wait”
condition which can result in deadlocks in a protocol. Move M2
states that the origin of an arc between two chains can be moved
down, as long as it does not go below the greatest upper bound of
the two chains. The same mathematical reasoning as in M1 applies.

Successive applications of moves M1 through M3 can thus gen-
erate a set of orderings that are guaranteed to respect the safety
and liveness properties of the original constraints. However, start-
ing from an initial ordering, there exists a limit to the number of
transformation moves that can be made, after which no more le-
gal moves are possible, and a most constrained protocol is arrived.
When this bound is reached, one cannot move the origin of an ar-
row further down or its head further up without violating moves M1
or M2, i.e., introducing deadlocks.

For simplicity, not all legal configurations will be considered in
this paper. An arc in the protocol graph can originate from a data
or control event, and end in a data or control event. All arcs origi-
nating from and ending in a combination of these events can form
legal protocols as long as they respect the minimal set of constraints
for the chosen logic style. However, some of these arcs have more
natural translations to circuit implementations than others. In the
remainder of this paper, only control arcs with targets at control
start events, and origins at the start or end of data or control events
will be considered. Investigations into designs with other types of
arcs will be included in future work.

As an example, Figure 8a shows a protocol after a series of con-
currency reduction transforms from the initial weakest constraints
of footed dynamic logic with separate control, as shown in Fig-
ure 4. No further legal moves can be made in the graph. In this
protocol, stage N is allowed to enter the evaluate phase when stage
N-1 has completed data computation, and is not allowed to enter
the precharge phase until stage N+1 has completed reset of its data.
In a linear pipeline, the leftmost stage would have to wait for the
data token to propagate all the way to the rightmost stage, wait for
a response from the environment, and propagate the reset token all
the way from the rightmost stage backward before it could start
evaluating the next data token.

The constraints shown in Figure 8a present an absolute bound on
how far the arcs in the specification can move during the transfor-
mation. This protocol represents an extreme linearization of dy-
namic pipeline behavior: at most one data token can propagate
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Figure 8: Least concurrent protocols using footed dynamic
logic with separate control
through the pipeline at any time, followed by a reverse propaga-
tion of a “spacer” wave (i.e., precharge). Such a pipeline is legal,
but cannot be formed into a ring without deadlock.

If this “ring-based deadlock” situation is not desired, an extra re-
striction must be imposed upon the movement of the arcs during
the transformation step: the enabling condition for the precharge of
stage N cannot be any event in the downward chain from the start
of precharge of stage N +1.3 Likewise, any other event from stage
N cannot be the enabling event for the corresponding event in stage
N-1. With this extra restriction imposed, two distinct least concur-
rent designs can be derived from the specification in Figure 4, and
are shown in Figures 8b and 8c. Note that there are only two inter-
stage arcs in Figures 8a and 8c, as the rest become redundant and
are removed by move M3 during the graph transformation. The
protocol in Figure 8c is novel: to the authors’ knowledge it has not
appeared in the literature.
4. A TAXONOMY OF PROTOCOLS

This section presents a taxonomy of pipeline protocols. Each
distinct protocol is mapped to a corresponding vertex in a semi-
lattice, and a concurrency relation defines their ordering.

It is shown in Sections 3 how the least constrained (i.e., most
concurrent) and the most constrained (i.e., least concurrent) pro-
tocols for a particular logic family are derived. In between these
two extrema, a continuum of protocols exists. These protocols to-
gether can be represented in a semi-lattice or a lattice, with the least
constrained and most constrained protocols as its top and bottom
elements, respectively. In particular, the unique top element corre-
sponds to the most concurrent protocol for which safe data compu-
tation is guaranteed (i.e., no data overrun or sampling of stale data),
as derived in Sections 3.2 and 3.3. The bottom elements correspond
to the least concurrent protocols which still allow for useful data
computation (i.e., no deadlock), as derived in Section 3.4 based on
the structural constraints in graph transformation. The semi-lattice
for protocols using dynamic logic is shown in Figure 9.

The semi-lattice bounded by the solid line represents the design
space of footed dynamic logic with separate controls. The sub-
lattices bounded by the dotted line and the dashed line represent the
design space of footed dynamic logic with unified control and that
of non-footed dynamic logic, respectively. Note that for the latter
two logic families, the design space form lattices (i.e not simply
semi-lattices) with unique top and bottom elements.

The top element in the lattice or semi-lattice for each logic fam-
ily corresponds to the most concurrent protocol of the logic family
as shown in Figures 4 and 5. The bottoms of the semi-lattice corre-
spond to the protocols shown in Figure 8. Note that for simplicity,
the semi-lattice is restricted to consider only designs with more nat-
ural translations to circuits (as defined in Section 3.4).

Each vertex in the semi-lattice indicates a valid pipeline proto-
col. Vertices marked with black dots indicate protocols used by
3This condition, together with the earlier bounds imposed on moves M1 and M2, form
the necessary and sufficient conditions for ring-based deadlock avoidance in deriving
new protocols. The proof is omitted from this paper due to space limitations.
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Figure 9: A lattice of pipeline protocols using dynamic logic
existing designs. These include, from top to bottom, HC [12] and
PCFB [6], LP3/1 [12], PS0 [15] and PCHB [6], and PC0 [15] and
HB [6]. Three of these protocols, PCFB, PCHB and HB, have been
used in the asynchronous MIPS R3000 Microprocessor from Cal-
tech [8] and at Fulcrum Microsystems Inc. [1]. Vertices marked
by hollow dots indicate protocols that have not yet been mapped to
any existing design.

Any two protocols in the semi-lattice joined by an edge has the
following relationship: The protocol at the target of the edge is ob-
tained from that at the origin by one application of one of the con-
currency reduction moves introduced in Section 3.4. Upward ar-
rows marked with ‘o’s, downward arrows marked with‘t’s, and the
‘X’ symbols represent moves M1 (moving origin of a arc down),
M2 (moving target of an arc up) and M3 (redundancy removal),
respectively. The arc names next to the transformation symbols
correspond to the labels in Figures 4 and 5.

Several otherwise not obvious observations can be made by in-
spection of the semi-lattice. First, the top and the bottoms are well
defined. This observation implies that, starting from any point in
the semi-lattice, one can arrive at any other point via a finite number
of concurrency-reduction (i.e., downward), or its dual, concurrency-
augmentation (i.e., upward) moves. In terms of design space explo-
ration, this means one can traverse the entire space by successive
and systematic application of these moves.

Second, the diagram exposes interesting relationships between
some designs. For example, PCHB [6] and HC [12] share the
same underlying pipeline protocol. The former uses dual-rail sig-
naling convention and is timing-robust (except for quasi-delay in-
sensitive assumptions). The latter uses bundled-data signaling with
one-sided timing assumptions, which uses less area and has better
performance. A designer wishing to use the protocol can assess the
trade offs and decide between the two.

Third, protocols that have not yet been mapped to any existing
design, indicated by hollow dots in the semi-lattice, represent new
design possibilities. Some can be seen as variants of existing pro-
tocols in the semi-lattice, while others might suggest entirely new
synchronization schemes.
5. DESIGNS USING STATIC LOGIC

In this section, it is briefly shown how the graph-based model
introduced in Section 3.2 can be extended to handle pipelines using
static logic with latches. Figure 10 shows the protocol for a linear
pipeline using static logic. The constraints require that the latch at
stage N to be open before the stage receives a new data token, and
that it cannot be closed until the data token is safely received. The
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Figure 10: Constraints for static logic with 2-phase signaling
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Figure 11: Comparison of models: using only control events vs.
using data and control events

latch cannot be open again until the data token has been safely re-
ceived at stage N+1. The protocol shown in the figure corresponds
to that used by the MOUSETRAP pipeline proposed in [13].

6. COMPARISON WITH RELATED WORK
In this section, we compare our modeling approach to other re-

lated work, and highlight some advantages.
In [4], [6], and [16], handshake protocol events such as request

and acknowledgment signal transitions are used to model the be-
havior of asynchronous pipelines. In contrast, we model data and
control events at the circuit level, such as the start and the end of
the evaluate or precharge phase. We believe that by directly dealing
with control events at the circuit level, as well as data events, our
modeling is at the appropriate level of granularity which allows us
to address the safety and liveness issues of the resulting circuit, and
to precisely define the upper and lower bounds of legal protocols,
which previous approaches have not been able to provide.

In [2], circuit control events only (but not data events, which we
include) are used for modeling. We believe that some legal pro-
tocols cannot be properly captured by a control event-only model.
Figure 11 shows a legal protocol within our framework, using both
control and data events. When projected onto a marked graph rep-
resentation of a control-event only model, the protocol appears un-
safe as it violates the safety property of a marked graph, which
requires that all simple cycles contain one token only (according to
[2]). As shown, by adding a data event and a data arc to the graph,
the protocol satisfies the safety requirement. In sum, a control-
only modeling style does not allow expressing some legal behav-
iors which can be captured in our more expressive control-and-data
modeling approach.

7. CONCLUSIONS
In this paper, we have presented a new framework to capture a

taxonomy of pipeline protocols. First, each protocol is modeled
by a graph, containing both control and data events, which are
partially-ordered. It is shown that the expressiveness of including
both event types allows the modeling of behaviors which are not
easily captured in previous models (i.e., using only control events),
as demonstrated by an example in Section 6. In addition, we have
demonstrated that a variety of targeted logic families can be cap-

tured, including several dynamic styles (footed versus non-footed,
with separate versus unified control), as well as static styles.

Second, we introduce a formal means of systematic design-space
exploration, through the use of correct-by-construction transforma-
tions on the graph-based model of pipeline protocols.

Finally, the pipeline protocols are arranged in a semi-lattice, form-
ing a complete taxonomy. Each pipeline protocol is mapped to a
single point in the semi-lattice, and several existing pipeline styles
are identified. The semi-lattice has well-defined top and bottom
elements, which correspond to the least constrained and most con-
strained protocol variants of a particular logic family, respectively.
In particular, our approach provides, for the first time, precise, well-
defined upper and lower bounds on the design space of concurrent
protocols for asynchronous pipelines using dynamic logic, as well
as the complete set of legal, intermediate protocols, which together
form the complete design space. Protocols above the upper bound
are not safe, and those below the lower bound are not live. Exten-
sions to capture the static pipeline design space are also proposed.

Taken together, the paper provides a new approach to defining
the design space of asynchronous pipeline protocols.

In future work, we plan to introduce objective functions as guides
for design-space exploration in the lattice. We plan to explore an
“instantiation” step, where the actual abstract protocols are synthe-
sized into hardware. We plan to generalize the models, where tim-
ing arcs can be added, and more aggressive relative timing-oriented
protocols can be captured. We also plan to consider a unified way
of presenting the design space of pipelines using dynamic logic and
static logic into a single lattice.
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