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ABSTRACT
This paper presents an efficient method for the performance anal-
ysis and optimization of asynchronous systems. An asynchronous
system is modeled as a marked graph with probabilistic delay dis-
tributions. We show that these systems exhibit inherent periodic
behaviors. Based on this property, we derive an algorithm to con-
struct the state space of the system through composition and cap-
ture the time evolution of the states into a periodic Markov chain.
The system is solved for important performance metrics such as
the distribution of input arrival time at a component, which is use-
ful for subsequent system optimization, as well as relative compo-
nent utilization, system latency and throughput. We also present
a tool to demonstrate the feasibility of this method. Initial experi-
mental results are promising, showing over three orders of magni-
tude improvement in runtime and nearly two orders of magnitude
decrease in the size of the state space over previously published
results. While the focus of this paper is on asynchronous digital
systems, our technique can be applied to other concurrent systems
that exhibit global asynchronous behavior, such as GALS and em-
bedded systems.
Categories and Subject Descriptors:
C.4 [Computer Systems]:Performance of Systems
General Terms: Algorithms, Performance
Keywords: asynchronous, performance, periodic, marked graphs,
Petri nets
1. INTRODUCTION

One potential advantage of asynchronous systems over their
clocked counterparts, in certain applications, is better average-case
performance [1, 19, 25]. However, the performance analysis of
asynchronous systems remains a challenge. Without an effective
performance analysis method, one cannot easily take advantage of
the properties of asynchronous systems to achieve optimal perfor-
mance.

There are several major technical difficulties involved in the per-
formance analysis of asynchronous systems. First, unlike clocked
systems where clock boundaries form natural partitions for logic
between stages to be analyzed individually, an asynchronous sys-
tem is inherently nonlinear, meaning there is no easy way to par-
tition the system into independent subsystems. The system has to
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be analyzed as a whole. This has often led to unmanageable state
space problems. Second, as the system is event-driven, arbitrary
arrival time of inputs and variations in data-dependent delays in
individual components can have significant impact on the overall
performance of the system, and must therefore be taken into ac-
count during performance analysis. As pointed out in [17], taking
the statistical average of the processing time of individual compo-
nents is often inadequate in determining the average performance
of the overall system; the so-called “variance” of processing times
must also be considered. Finally, there is no clear consensus in
the asynchronous design community on what performance metrics
are useful for characterizing the performance of a system and for
identifying bottlenecks for optimization.

This paper addresses these issues by providing an efficient and
general method for analyzing the asymptotic performance of asyn-
chronous systems. In our approach, an asynchronous system is
modeled as a marked graph, a subclass of Petri nets that captures
concurrency and data-dependent relationships between interacting
components in decision-free systems [7].1 The variations in input
arrival time and component delays are captured in a probabilistic
delay model. The probability distribution of input arrival at a com-
ponent can provide indication of system bottlenecks. Component
utilization, as well as system latency and throughput, can be derived
as measures of system performance.

This paper focuses on the subclass of asynchronous systems that
can be modeled by strongly-connected marked graphs, namely, deci-
sion-free systems. A sketch of how to extend our approach to
systems with choice is presented in Section 7. The subclass of
decision-free systems, while limited, has been shown to be capable
of modeling many interesting concurrent systems [11]. More im-
portantly, it forms a foundation to develop theories and algorithms
for analyzing more complex systems, which we will consider in fu-
ture work. We also focus on modeling at the system architecture
level; we do not currently consider circuit-level modeling issues
such as delay variations due to process variations.

There are other formalisms that are used in practice to model
deterministic concurrent systems besides marked graphs, such as
synchronous dataflow languages [15] to model DSP’s, and Kahn-
type models [13]. If one assumes bounded buffering, these models
can be used as input languages for specifying a system, which can
then be translated to marked graphs, and our method can be applied.

Previous work that considers probabilistic delay models in the
performance analysis of asynchronous systems falls into three classes.
The first uses a queuing network model and gives bounds on uti-
lization. Greenstreet and Steiglitz [10] analyzed the performance
of self-timed pipelines with exponential processing times. Pang

1These systems are also referred to as “deterministic” concurrent systems, or concur-
rent systems without conditional behavior (or without “choice”), in the literature.



and Greenstreet [17] extended the analysis to the performance of
self-timed meshes. This method, however, can only be applied to
systems that exhibit regular architectures. In contrast, the current
paper handles arbitrary architectures.

A second class of methods is based on simulation. Xie and
Beerel [24] gave bounds on average time separations of events in
an asynchronous system using a simulation-based method. While
simulation-based methods are indispensable in other parts of the
design flow, they may be too expensive to run in the system-level
optimization loop, as often many simulation cycles are required for
results to converge, and much bookkeeping is required to obtain
enough information for identifying performance bottlenecks.

Finally, a third class models a concurrent system as a marked
graph and analyzes it as a Markov process. Kudva [14] et al. first
proposed the use of this model for analyzing the performance of
asynchronous circuits. Xie and Beerel [23] used symbolic tech-
niques with this model and gave bounds on average time separation
of events.

The method proposed in this paper falls into the third class. How-
ever, there are some key differences between our method and pre-
vious work. First, this paper shows that the state transitions of a
system modeled by a strongly-connected marked graph exhibit an
inherent periodic structure, and the system is analyzed as a periodic
Markov chain. Previous approaches do not take into account the in-
herent periodic property of the system, and the system is analyzed
as aperiodic. Theoretically, one cannot properly adopt an aperiodic
Markov model to describe a periodic system, or the system would
not converge. Second, by exploiting the periodicity of the system,
we derive an algorithm to generate an exact, tight state space of the
system, and exploit the regularity of its structure for efficient mem-
ory management and to reduce the complexity of computation. In
contrast, previous approaches can generate a large number of un-
reachable (and unnecessary) states, resulting in excessive memory
usage and runtime. Third, our approach is targeted to generating
the probability distribution of input arrival time to components, as
well as component utilization, as metrics for performance. The ap-
proach in [23] targets the time separation of events. Though it is
also possible for our tool to generate metrics based on time sepa-
ration of events, we believe input arrival time gives more directly
useful information for subsequent system optimization.

There also exists a large body of work which analyses the timing
behavior of asynchronous systems using fixed delays. Burns [3]
uses weighted averages to compute expected time separation be-
tween two events where there are several possible paths of execu-
tion. Hulgaard et al. [11], Chakraborty et al. [4], and Walkup [22]
give bounds on the minimum and maximum delays between time
separation of events. The main application of these approaches is
in timing verification, and their goal is to make sure that the worst-
case paths over all possible execution meets system requirement.
These models are unsuitable for asymptotic average-case analysis,
which is important for system-level performance evaluation.

The key contributions of this paper are as follows. First, we pro-
vide a proof that the state transitions in decision-free asynchronous
systems exhibit an inherent periodic structure.2 To the best of our
knowledge, this is the first time this property has been exploited in
analyzing the performance of such systems. Second, we present a
new algorithm to construct the precise reachable state space of the
system. Third, we propose the use of the probability distribution
of input arrival time as a metric for performance optimization. Fi-
nally, we present a practical tool to demonstrate the feasibility our
approach. Initial experimental results are promising, showing sev-

2 [11] and [24] also exploited the existence of repeating structures in marked graphs
in their approaches. However, the repeating structure they used is related to the events
in the graph structure, rather than to the states in the dynamic behavior of the model.

eral orders of magnitude improvement in both runtime and the size
of the state space over previously published results.

While the focus of this paper is on asynchronous digital sys-
tems, we believe the generality of the underlying model allows the
method to be applied to a large class of concurrent systems that can
also be viewed as a set of independent processes that interact with
each other through local synchronization. These include GALS
(Globally-Asynchronous, Locally-Synchronous systems) [2, 5, 12,
16], which are systems with lower-level clocked components that
communicate with each other using asynchronous handshake pro-
tocols at the higher level, as well as concurrent embedded systems.

The rest of this paper is organized as follows. Section 2 in-
troduces two system-modeling formalisms that are used for sub-
sequent analysis. Section 3 presents a key result of this paper:
given any decision-free asynchronous system modeled as a marked
graph, we prove the existence of a periodic structure in its state tran-
sition relation. Section 4 then presents the second key contribution:
an algorithm to construct the entire state space of the system. Sec-
tion 5 describes an efficient method to obtain useful performance
analysis metrics for the given model. Section 6 then presents some
experimental results and discussions. Section 7 briefly discusses
some of the modeling assumptions made during the analysis and
how to handle more complicated systems. Finally, Section 8 gives
a brief conclusion and pointers to future work.

2. BACKGROUND: SYSTEM MODELING
This section presents two modeling formalisms: marked graphs

and Markov chains. Marked graphs are used to model concurrency
and data-dependent relationships between interacting components
in a concurrent system. They specify the reachable states of the
system and their causality. The sequence of states entered by the
system as it evolves in time and their transition probabilities is cap-
tured as a Markov chain.

2.1 Marked graphs
A marked graph is a triple N = (E, T, F ) where E is the set

of places, T the set of transitions, and F ⊆ (E × T ) ∪ (T ×
E) the flow relation. In a marked graph, every place has at most
one input and one output transition. A transition is enabled to fire
whenever there is a token in each of its input places. An enabled
transition fires by removing one token from each of its input places,
and depositing a token in each of its output places. A marking is an
assignment of tokens to the places in the graph. A marked graph is
safe if in any marking reachable from an initial marking Mo, every
place contains no more than one token. A marked graph is live if
every transition is fireable, or can be made fireable through some
sequence of firings from the initial marking Mo.

In the context of discrete-event systems, the marking of a marked
graph corresponds to the state of the concurrent system, and the
firing of a transition corresponds to the occurrence of an event.

Example: Figure 1 shows the the control circuit for a three-stage
asynchronous micropipeline [20] proposed by Sutherland. Fig-
ures 2a and 2b show its corresponding marked graph models, rep-
resenting two views: the former at a more detailed level with some
low-level circuit components,3 and the latter at a more abstract
level. In the circuit of Figure 1, an ”R” signal represents a request
for a pipeline stage to process new data, and an ”A” signal rep-
resents an acknowledgment to the previous pipeline stage that the
data has been received. The C-elements are hardware synchroniza-
tion “join” elements, which merge two threads of communication:
they ensure that a pipeline stage has received a request from the
previous stage as well as an acknowledgment from the next stage
3This design is provided simply as an example; the reader does not need to understand
details of the hardware implementation.
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Figure 1: Control circuit for a micropipeline [20]
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Figure 2: Marked graph model for a micropipeline [20] (a) low
level (b) abstract level
before processing new data. The elements labeled ”delay” repre-
sent logic processing units, whose functional details are abstracted
out. Each control (C-element) and data (logic processing) unit in
the circuit diagram is modeled as a transition in the marked graph.
In the marked graph, a transition is represented by a rectangle, a
place by a numbered circle, and a token by a dot inside a place.
2.2 Markov chains

The causal relation between state transitions in a marked graph
can be captured in an intermediate specification called a state tran-
sition graph (STG), which consists of a set of states S, and a state
transition function δ : S → S. A Markov chain captures all the in-
formation in a state transition graph, and in addition, the transition
probability between states. The information can be presented in the
form of a Markov transition matrix, which specifies the probabil-
ity P (i, j) of the system making a transition from state i to state
j. The transition probability between states is related to the de-
lays of individual components of the system, which correspond to
transitions in the marked graph model, and are assumed to take on
random values. Random delays at each transition are modeled by
independent random variables with exponential distributions. For a
transition with exponentially distributed delays, the probability that
it fires no later than time t after it is enabled to fire is:

P{Xn ≤ t} = 1 − e
−µt

, t ≥ 0. (1)
where µ is the service rate at the transition.

More than one transition can be enabled to fire in any particular
state, but only one is allowed to fire (because the time between
successive firings is continuous). The probability that transition Tj

fires among all enabled transitions T1, T2, ...Tn in a any particular
state is given by:

P (Tj) =
µj

Pn

i=0
µi

(2)

where µi is the mean service rate at each transition.
It is also possible to assign a discrete delay distribution to a com-

ponent on top of the exponential distribution, for example a com-
ponent can be assigned an exponential delay of mean µ1 50% of
the time, and an exponential delay of mean µ2 50% of the time.

The sequence of markings of the marked graph thus is described
by a Markov chain subordinated to a Poisson process. The evolu-
tion of the system is described by the following transition function:

P (i, j, t) =
∞

X

n=0

e−µit(µit)
n

n!
K

n(i, j), t ≥ 0 (3)

where K is the transition matrix of the underlying Markov chain,
and Kn is the n-step transition probability.
3. PERIODICITY OF STRONGLY-

CONNECTED MARKED GRAPHS

This section presents the first new research result: given a sys-
tem which is modeled by a strongly-connected marked graph, the
corresponding STG always exhibits a periodic behavior.

The following three theorems were proved by Commoner et al. [7]
for marked graphs:

THEOREM 1. A given marking of a graph is live and safe iff
every simple cycle has exactly one token, and through every place
in the graph there is a simple cycle of token count one. A marking
which is live remains live after firing.

THEOREM 2. For every finite, directed, strongly-connected graph
there exists a live, safe marking.

THEOREM 3. Let M be a live marking of a strongly-connected
marked graph, then for any firing sequence that leads back to the
initial marking M, all i transitions have been fired an equal number
of times. Furthermore, there exists a firing sequence leading from
M to itself, in which every transition fires exactly once.
Intuitively, Theorem 1 indicates that the marked graph can be viewed
as a set of interacting simple cycles; a marking can only be live if
there is at least one token circulating on each cycle, and can only be
safe if each cycle has at most one token. The next two theorems ad-
dress the existence of such a live safe marking, and the steady-state
regular behavior of marked graphs with live markings.

The key result that is proved in this section is that any strongly-
connected marked graph corresponds to an STG with periodic struc-
ture. This result is formalized in the following proposition:

PROPOSITION 1. Periodic STG for strongly-connected MG
Given any strongly-connected marked graph, its reachable set S
of all live, safe markings (states) can be divided into δ disjoint sets
B1, B2, .., Bδ such that for any state i, j in S, and if state i belongs
to set Bk , i can make a transition to j iff j belongs to the immediate
next set Bk+1. More formally, P (i, j) = 0 unless i ∈ Bk and
j ∈ Bk+1 for k ∈ 1, 2, ..., δ − 1, or i ∈ Bδ and j ∈ B1, where
P (i, j) is the probability of the system making a transition from
state i to state j in one transition. In other words, after a state in
set Bi is visited, it always takes δ firings for a state in the same set
to be visited again. Such an STG is called a periodic STG, and its
period is δ.
Proof. Let si be a state in a system modeled by a strongly-connected
marked graph, which corresponds to a live, safe marking of the
marked graph, and let Bi+1 be the set of states reachable from si

in one transition, and further let Bi+2 be the set of states reach-
able from the states in Bi+1 within one transition. From Theorem
3, state si will be visited again only after mδ transitions, and any
state in Bi+1 and Bi+2 will be visited again only after nδ + 1 and
lδ + 2 transitions, respectively, where m, n, l are any integers > 0.
All reachable states in the systems can thus be partitioned in such
a way into δ sets, where each a state in Bi can be reached from a
state in Bi−1 within one transition. 2

Figure 3 illustrates the intuitive idea behind Proposition 1. We
define a synchronization point as a transition in a marked graph
with more than one input place. Figure 3a shows an example of a
marked graph with a single synchronization point, which is defined
as a simple unit. Figure 3b shows the corresponding STG of the
marked graph. States in the same row of the STG form a set which
can be reached through one firing only from states from the row
above, and can reach through one firing only states from the row
below. Intuitively, the synchronization point acts as a ”gate” to
constrain the movement of tokens in the marked graph, as it must
wait for all its input tokens to arrive before it can fire. This gives a
structural pattern to the transition of states.

Two corollaries follow immediately from Proposition 1. Corol-
lary 1 shows that the periodicity of the state transitions in a strongly-
connected marked graph is preserved through the composition of
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Figure 4: (a) Two coupled simple units (b) STG for the coupled
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two such graphs. This property will be used in Section 4 to derive
an algorithm to construct the state space of the system.

Two marked graphs are said to be “composed together” if they
are joined at one or more transitions. An example is shown in Fig-
ure 4a, where two simple units are composed at transitions C1 and
C2. The corresponding STG is shown in Figure 4b.

COROLLARY 1. Given two marked graphs with periodic STG’s,
the STG of their composition is also periodic.
Proof. It follows from Theorem 2 and Proposition 1 that if the
STG of a marked graph is periodic, than the underlying graph is
strongly connected. Since a marked graph formed by two individ-
ual strongly-connected marked graphs composed together at one or
more transitions is also strong-connected, it follows from Proposi-
tion 1 that its STG is periodic. 2

The next corollary shows that the state transitions in a system
modeled by a strongly-connected marked graph can be represented
in a canonical form. This result will be used in Section 5 to effi-
ciently solve for the stationary distribution of the resulting Markov
transition matrix.

COROLLARY 2. The transition matrix of the underlying Markov
chain of a strongly-connected marked graph can always be ex-
pressed in the following canonical form, where δ is the period, and
B1, B2, ..., Bδ are disjoint sets of states.

P =

0

B

B

B

@

0 B1 . . 0
. . .
. . .
0 Bδ−1

Bδ 0 . . 0

1

C

C

C

A

4. CONSTRUCTING THE STG:
AN ALGORITHM

Now that it has been shown that an STG derived from any strongly-
connected marked graph exhibits a periodic structure, this section
presents an algorithm for constructing the periodic STG itself. The
algorithm has two operators: decomposition and composition. The
decomposition operator decomposes a marked graph into simple
units with single synchronization points. The algorithm then con-
structs an STG for each of the simple units. Note that, from Propo-
sition 1, the STG’s of these simple units are periodic. The compo-
sition operator combines the periodic STG’s from two intersecting
simple units into a single STG. The new STG is again periodic ac-
cording to Corollary 1.

The entire state space of a live, safe marked graph can thus be
built by first applying the decomposition operator, and then the

decompose(marked_graph)
foreach sync_pt in marked graph

// find all simple cycles that goes through sync_pt
foreach output_place at sync_pt
find simple path that leads back to sync_pt

// build state transition graph
i = 0; // counts period
s[0][0] = concat(output places at sync_pt)
do until (next_transition == sync_pt)
i++;
j=0;
foreach enabled_transition in current_state

fire;
s[i][j] = new_state
j++;

Figure 5: decompose
compose(stg1, stg2)

foreach state s1 in stg1
foreach state s2 in stg2
if s1 and s2 shares common places

combine into new state and put in new_stg
else if s1 and s2 do not share common places

put state into single_state_vec
while (single_state_vec != empty) do

foreach state ss in single_state_vec
foreach state ns in new_stg

if ss and nw share common places
combine into new state and put in new_stg

return new_stg

Figure 6: compose
binary composition operator on all decomposed units recursively.
Figures 5 and 6 show the pseudo-code for the decomposition and
composition operators, respectively. The state space constructed
using this algorithm is tight: it includes only states that are reach-
able from an initial live, safe marking, and no others. No extra
reachability analysis steps such as that used in [23] is required. Fur-
thermore, the constructed state space can immediately be put into
the canonical form shown in Corollary 2.

The intuition behind the algorithm is as follows. Since the marked
graph is strongly connected, it can be broken down into a finite
number of simple cycles, each of which with a token circling around
it, according to Theorem 1 in Section 3. Each of these simple cy-
cles can then be viewed as a oscillator, with a “period” equal to the
number of transitions in the cycle. The composition of two sim-
ple cycles is then analogous to the coupling of two oscillators. The
two coupled oscillators form a new oscillatory system, with a new
period determined by the number of transitions in the new system,
according to Corollary 1. The number of transitions in the new sys-
tem is in turn determined by how “strong” the coupling between the
two oscillators are: the stronger the coupling (meaning the more
transitions they share in common), the shorter is the period of the
resulting coupled system.

Another interesting observation that can be made on the algo-
rithm is that once the STG’s of the decomposed simple units are
constructed, the STG of the entire design space is composed by
simply “stitching” the lower level STG’s together recursively. In
other words, the state space of the entire system is constructed
based solely on the structure of marked graph. There is no no-
tion of the dynamic behavior of the system during the construction,
i.e., the actual marking plays no role in the analysis. In contrast,
most existing algorithms for state space exploration requires keep-
ing track of a set of current states and computing a set of legal next
states through some search strategy [8]. The complexity of our al-
gorithm is considerably lower.
5. OBTAINING PERFORMANCE

ANALYSIS RESULTS
The result of the previous algorithm is a periodic STG, which can

be transformed into a periodic Markov transition matrix according
to the relationship outlined in Section 2.2. From the transition ma-



trix of a Markov chain, one can obtain the asymptotic behavior of a
system by solving the matrix for its stationary distribution. Tech-
niques for finding the stationary distribution of Markov chains can
be found in standard text books on stochastic processes such as [6]
and [9]. We summarize some important results for solving periodic
Markov chains below.

Let P be the transition matrix of an irreducible Markov chain
with recurrent periodic states of period δ. Then the transition ma-
trix P̄ = P δ can expressed as:

P̄ =

0

B

B

B

@

P1 0
P2

.
.

0 Pδ

1

C

C

C

A

The sub-matrices P1, P2, ...Pδ form δ closed sets, each of which is
irreducible, recurrent and aperiodic. A Markov chain is irreducible
if and only if all states can be reached from each other. A Markov
chain is recurrent if all states can be visited infinitely often.

The stationary distribution π1, π2, ..., πδ for each of the sub-
matrices can be solved for and is given by the following set of
equations: πkPk = πk (4)

πk1 = 1 for k = 1, 2, ..., δ (5)

P (i, j) itself does not have a stationary distribution. However,
the limit of P nδ+m(i, j) exists as n → ∞ but are dependent on
the initial state i.

lim
n→∞

P
nδ+m(i, j) =

8

<

:

π(j) if i ∈ Bα, j ∈ Bβ ,
β = α + m(mod δ);

0 otherwise
Once the stationary distribution for each sub-matrix is found,

useful performance metrics can be obtained as guides for optimiza-
tion. For example, the stationary state distribution gives direct in-
formation on input arrival time, i.e., the probability of each input
to a component arriving last (or first). System bottlenecks can be
identified as paths in the system that lead to a late input arrivals with
a high probability. Consider the micropipeline example in Figure 1
and its marked graph model in Figure 2a. Suppose that the sta-
tionary probabilities of the system being in a state where there is a
token in input place 4 but not in input place 5, and that of a token in
input place 5 but not in input place 4, are 0.1 and 0.5, respectively.
From this one can deduce that the component C2 is five times more
likely to wait for a data input from input place 4 than from input
place 5. With this information, one can optimize the performance
of the micropipeline by speeding up the critical path, for example,
by using a faster function unit in stage 1 (i.e., at D1), or through
transistor sizing to speed up the input, R(1), to C2.

Component utilization can be obtained by computing the proba-
bility of the component being in a state waiting for one or more of
its inputs to arrive, divided by the probability of it being in a state
where all input tokens are present. System latency, i.e., the average
time separation between a given input event and output event of
the system, can be found by computing the weighted average of all
paths of executions of the corresponding states in the STG. Sim-
ilarly, system throughput can be found by computing the average
time separation between two events of the same output in succes-
sive iterations of the system.

Figure 7 shows a summary of the performance analysis flow.

6. TEST CASES AND DISCUSSION
A tool has been implemented to demonstrate the performance

analysis method proposed in this paper. Table 1 shows a summary
of results for a number test cases ran on an Intel Xeon CPU at
3.06GHz with 1GB of memory.

The first set of test cases are different variants of Sutherland’s
micropipeline design [20] shown in Figure 1. The second test case
is an asynchronous Huffman decoder design proposed in [1]. The

1. Model system as a live, safe
marked graph (MG)

2. Decompose MG into simple
units and construct an STG for
each

3. Compose resulting STG’s

4. Build Markov state transition
matrix for STG of the system

5. Multiply state transition matrix
by itself δ times

6. Partition matrix and solve
submatrices for stationary
distributions

7. Compute input arrival
probability distribution and
component utilization

8. Identify performance
bottlenecks and optimize design

Figure 7: Tool flow summary
test case design # reach- CPU Time

instance able states (seconds)
micropipeline [20] 3-stage 29 0.003

4-stage 70 0.007
5-stage 169 0.031
6-stage 408 0.164
7-stage 985 0.986
8-stage 2377 7.820
9-stage 5740 29.835
10-stage 13859 361.621
11-stage 33460 4686.126

Huffman decoder [1] 160 0.036
DiffEq [25] 175 0.039
DCT [21] 169 0.031

Table 1: Experimental Results
third test case is a low-control-overhead asynchronous differential
equation solver proposed in [25], and the fourth is an asynchronous
DCT matrix-vector multiplier proposed in [21]. In each testcase,
the architectural flow diagram is converted to a marked graph to
capture data dependency between functional unit and concurrency.

In [23], results were reported for a 6-stage pipeline design similar
to our test case 1, and reported reachable states of up to 28,000 and
runtime of just less than one hour on a SPARC 20. As a followup,
in [24], it was indicated that the approach in [23] cannot handle
pipeline designs of more than 8 stages. Our result shows significant
improvements over their reported results. The performance results
for an 8-stage pipeline can be obtained in 7.8 seconds. While differ-
ent computing environment precludes any meaningful comparison
in runtime, we would like to point out that, first, our state space
is much smaller, as our algorithm prunes all unreachable and tran-
sient states from analysis. Second, the matrices we solve are also
smaller, as their average size is the total number of states divided
by the period of the system. Third, a stationary distribution for each
of the sub-matrices in our analysis is guaranteed to exist. In fact,
without our pruning of unreachable and transient states, and with-
out taking into account the periodicity of the system, a stationary
distribution for the system theoretically does not exist.

A few other notes can be made on the results. First, the size of
the state space is exponential in the number of parallel operations
that can run in the system at the same time. When applied to real
designs, this result is not as pessimistic as it seems, as the number
of process running in parallel is often limited. A full-buffer pipeline
where each stage performs a different operation represent the worst
case scenario, while many highly-concurrent systems have more
moderate amounts of concurrency.

Secondly, while prior work [23] reported the solving for the sta-
tionary distribution of the transition matrix of the Markov chain as
the bottleneck of the analysis, the same operation does not present
a problem in our analysis. In fact, profiling shows the runtime is
dominated by the matrix multiplication in Step 5 of the tool flow.
Matrix multiplication is an O(n3) operation in general. Due to the
regular structure of the matrix in our application, the multiplication
can be simplified, and the complexity is O(m3), where m is the
size of the largest sub-matrix of the system. The memory require-



ment for storing the matrix is greatly reduced as well, as only the
submatrices need to be stored.

7. MODELING ISSUES
This section addresses two limitations of the model used in this

paper: the use of an exponential delay distribution, and the restric-
tion to decision-free systems.

In order to make a system amenable to analytical methods, the
delay distributions for components are currently restricted to be ex-
ponential. In reality, delays in computation seldom resemble an
exponential distribution. This restriction, however, should not have
a significant impact on results in practice. As shown in [17], sim-
ulation results with delay distributions from real life data are often
very close to those of an exponential distribution. Only the mean
and the variance of delay have a significant impact on the result.
This, indeed, is consistent with experiences from the performance
analysis community. For component delays with relatively small
variance compared to its mean (precisely, if the value of the vari-
ance is smaller the value of the mean), an exponential distribution
serves as a sufficient worst-case bound for performance. Compo-
nent delays with large variances can be approximated as discrete
distributions, as shown in Section 2.2. It should be noted that while
the use of exact delays is important in some applications such as
timing verification, it is not as important in performance analysis.

Another apparent drawback of our approach is the restriction to
decision-free systems, as systems with complicated choice deci-
sions and conflicts cannot be properly modeled as marked graphs.
With proper modeling, however, systems with simple choices can
be analyzed under our framework. For example, a choice between a
“slow mode” and a “fast mode” of operation of a certain component
can be modeled using a discrete delay distribution. In some cases,
more complicated choices can be handled hierarchically. Exten-
sions to handle arbitrary systems with choice in a more integrated
way will be included in future work.

8. CONCLUSIONS AND FUTURE WORK
We have presented an efficient solution for in analyzing the asymp-

totic performance of asynchronous systems.
We model an asynchronous system as a marked graph, and cap-

ture its underlying state transition as a Markov chain. We showed
that the state transition graph of a system modeled by a marked
graph exhibits a periodic structure, and proposed an algorithm for
constructing a tight state space of the system based on this property,
which is then transformed to a Markov chain. Local asymptotic
performance metrics, such as distribution of input arrival time and
component utilization, are obtained by solving the transition matrix
of the Markov chain for its stationary state distribution. Using this
information, global metrics for system bottleneck and cycle slack
can then be derived, which can in turn be used to in the future as a
guide for system-level optimization, such as through cycle balanc-
ing. We demonstrated our method via a tool. Experimental results
show significant improvement over previously published results in
terms of both the size of state space and run time.

Our proposed approach effectively views an asynchronous sys-
tem as cyclical, compositional and recursive in structure, and peri-
odic in its dynamics. This view has facilitated us to derive an effi-
cient method to analyze system performance, and to define mean-
ingful performance metrics for optimization. In contrast, existing
work on the performance analysis of asynchronous systems often
views the cyclic structure of these systems as an undesirable prop-
erty and seek to analyze them as acyclic by unfolding their corre-
sponding marked graph model. We have offered a new, and in our
view, potentially more suitable, way of looking at asynchronous
systems, which we believe would lead to our ultimate goal of build-
ing optimal systems. In more detail, our compositional method

for constructing the state space of the system under investigation
based on their periodic property is analogous to the coupling of a
system of oscillators. Oscillator models have been used for mod-
eling various systems in the natural sciences and in engineering,
for example, in robotics and in distributing clock signals in clocked
systems [18]. We believe that investigating this connection further
can lead to interesting methods for engineering the design and syn-
thesis of efficient asynchronous systems.

We see many avenues for further investigation. Research goals
in the immediate future include extensions to analyze asynchronous
systems with choice, the development of performance optimization
algorithms for asynchronous systems driven by our analysis tech-
nique, and the application of our method to a broader class of con-
current systems, such as GALS and embedded systems.
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