
eshes Are Faster Than Synchronous

Peggy B.K. Pang Mark R. Greenstreet
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1 2 4
Canada

{ppang,mrg}@cs.ubc.ca

Abstract

This paper shows that self-timed meshes can achieve lin-
ear speed-up. The per-processor performance of a mesh is
the average number of operations per processor per unit
time. For synchronous processors, it has been shown that
the per-processor performance of a mesh goes to zero as
the size of the mesh goes to injnity. This paper shows that
for self-timed meshes, the per-processor performance can
be bounded below by a positive constant. Thus, self-timed
meshes are asymptotically faster than synchronous ones.
Furthermore, simulation and analytic results are used to
show that analysis based solely on average case times can
be optimistic and lead to poor design decisions.

1. Introduction

Two oft-mentioned advantages of self-timed designs are
freedom from clock skew and achieving average-case per-
formance in data dependent computations. Because self-
timed designs do not have clocks, it is clear that they do
not have clock skew. On the other hand, the performance of
one part of a self-timed system can affect the performance of
another part when one waits for a handshake from another.
Through a sequence of such handshakes, two components
that are widely separated in a design can influence each
other’s performance. To the best of our knowledge, only
linear pipelines have been studied to determine how sys-
tem size affects the performance of a self-timed system [6].
Likewise, most performance analysis for self-timed systems
has been based on fixed processor times leaving claims for
average case performance unsubstantiated. This paper anal-
yses the performance of self-timed meshes with random pro-
cessing times.

We measure performance as the average number of oper-
ations per processor per unit of time. A “processor” in this

context represents a handshaking component, not necessar-
ily a CPU. Thus, our analysis applies to large arrays of hand-
shaking components, a model that is general enough to apply
to a wide variety of self-timed designs. We do not consider
performance issues that are specific to an application such as
whether or not there is enough parallelism in the application
to effectively utilise a large array.

Our analysis provides a basis for comparing the scalabil-
ity of synchronous and self-timed designs. For this compar-
ison, we consider “pure” synchronous designs. In such a de-
sign, all communication is controlled by a global clock. This
clock is distributed to all components using a tree network
with the clock generator at the root and components con-
trolled by the clock at the leaves. The tree topology reflects
the choice to determine all timing from a single clock - if
there were multiple paths from the clock generator to a com-
ponent, an additional timing component would be required
to combine the clock signals from various paths to produce
a single clock signal for the component. If two components
communicate, there must be an interval within each clock
cycle during which the sender can change its output and an-
other interval during which the receiver can sample its input.
For reliable communication these intervals must be disjoint.
The clock-skew is the maximum uncertainty in the relative
arrival times of the clock signal at two communicating com-
ponents. To guarantee that the sending and sampling inter-
vals are disjoint, the clock period must be greater than the
worst-case skew.

The performance of large synchronous designs has been
well studied. Fisher and Kung [5] analysed the asymptotic
performance of synchronous processor arrays with this as-
sumption. For meshes, they showed that worst-case skew
grows with the square-root of the number of processors.
Dikaiakos and Steiglitz [3] performed a similar analysis for
expected skew and showed a bound of n1I4 log n. Assum-
ing that the clock period must be greater than the skew,
per processor performance becomes arbitrarily small as the
number of processors in the mesh increases. These theo-

30
0-8186-7922-0/97 $10.00 0 1997 IEEE

retical results are matched by practical experience. There
are few examples of globally synchronous designs with a
large number of processors: most large scale parallel proces-
sors are a collection of synchronous processors with asyn-
chronous interfaces to a communication fabric.

Given the limitations of pure synchronous designs, there
have been several proposals of hybrid approaches. In gen-
eral, these designs propose some kind of handshaking net-
work that provides tightly correlated clock signals in the
processor network. A simple example of this approach is
Chapiro’s proposal for clock-stretching [2]. When a re-
ceiver using this scheme is ready for input, it stops its own
clock and waits for a “data-ready’’ signal from the transmit-
ter. If a data-transfer is performed on each clock cycle, clock
stretching reduces to four-phase, self-timed signaling with
bundled completion [121.

Nowatzyk [101 and Pratt [111 have both proposed using
arrays of phase locked loops to generate a global clock sig-
nal for large, multi-processor arrays. In such a design, care
must be taken to avoid what Pratt refers to as “mode-lock‘’
where a processor has N neighbours whose phases form an
equilateral N-gon. Nowatzyck uses the limiting behaviour
of a phase-frequency detector to introduce a non-linearity
that breaks the symmetry of a mode-lock. Pratt solves the
mode-lock problem by using a phase detector with negative
(i.e. unstable) slope for phase differences greater than 7r/2
radians. We note that handshake circuits can be viewed as
an array of coupled oscillators, and the choice of whether
to view an array of phase locked loops as a synchronous or
self-timed design is largely a matter of taste. The analyses
of Nowatzyk and Pratt are specific to particular designs. Our
analysis is for general handshaking circuits and is indepen-
dent of the particular implementation.

Su [131 noted that a self-timed mesh can be used to dis-
tribute a clock signal. He reports on the performance of
his simulator when simulating such a network, but he does
not describe the performance of the network itself nor does
he describe the timing model used for his simulations. Our
work shows that such a clock networkcan operate as desired
-the clock frequency can remain roughly constant as the ar-
ray grows to arbitrary size.

Thiele [1.51 analysed the performance of self-timed pro-
cessor arrays. Thiele’s analysis assumes fixed processor
times and uses Lawler’s algorithm [9] to find the worst-
case cycle of handshakes in the system. Bums [13 also used
Lawler’s algorithm to analyse the performance of self-timed
systems. Burns’s method uses weighted averages to com-
pute expected performance when there are several possible
paths of execution. This works well for processor designs
where different timings can be associated with different in-
structions and the analysis can consider a typical instruction
mix. For our current work, the number of possible cycles
grows exponentially with the size of the mesh which pre-

cludes using Burns’s approach to derive asymptotic results.
Greenstreet and Steiglitz [6] analysed self-timed pipelines
with exponential processing times. They showed a transfor-
mation of the pipeline performance problem into a queue-
ing network problem. In the one-dimensional case that they
considered, this produces a product-form queueing network,
and they were able to give exact results. We use a similar ap-
proach to analyse two-dimensional meshes.

This paper presents handshake protocols for self-timed
meshes in section 2. Both three- and four-connected meshes
are described. In the four-connected mesh, each node re-
ceives data from its south and west neighbours and acknowl-
edgements from its north and east neighbours. In the three-
connected mesh, the north and east acknowledgements are
combined into a single acknowledgement from the north-
east neighbour. This modification allows the mesh to be
viewed as a queueing network, and we show that the perfor-
mance bounds for the three-connected mesh provide lower
bounds for the more familiar four-connected mesh. The
queueing network model is analysed in section 3 where
we show that the average processor utilisation of the three-
connected mesh is at least 1/12. This establishes that self-
timed meshes indeed scale better than synchronous designs.
The resultsin section 2 and 3 are based on exponential distri-
bution of processing times. Section 4 presents Monte-Carlo
simulations where other distributions are considered along
with examining the impact of using buffers between proces-
sors.

2. Self-Timed Meshes

One-dimensional, self-timed pipelines have been well-
described in the literature (e.g. [6, 14, 161. For the sake of
comparison with two-dimensional meshes, we state the rules
that govern the operation of a Muller style pipeline. It is suf-
ficient to consider only the state of the processor in the hand-
shake protocol. Each processor has a predecessor and a suc-
cessor. When the processor and its predecessor are in oppo-
site states (i.e. the predecessor is offering new data), and the
processor and its successor a e in the same state (i.e. the suc-
cessor has received the latest value), then the processor may
move to the state of the predecessor. We equate this move
with performing a computation and assume that the time be-
tween enabling and firing a processor is a random variable.
If the pipeline is a ring, then at any instant, the ring can be
partitioned into maximal segments of processors in the same
state. It was shown in [6] that the number of such segments
is an invariant maintained by the ring.

2.1. A four-connected mesh

Figure 1 shows a self-timed mesh where each processor
communicates with its north, south, east, and west neigh-

31

.\i 0 1 2 n, - 1 ;\i 0 1 2 12,- 1

2

1

0

Figure 1. A four-connected mesh

Direction
of band
propagation

w + e
S

Figure

:::$...

3. A three-connected

M ...
Y Y Y Y

3. A three-connected

Y O 1 2 3 4 5 6 7

mesh

Direction
of band
propagation

w + e
S

Figure 2. Bands on the four-connected mesh Figure 4. Bands on the three-connected mesh

bours. To avoid boundary conditions, we embed the mesh
on a torus: the east neighbour of the right-most processor
in a row is the left-most processor of the same row, and the
north neighbour of the top processor in a column is the bot-
tom processor in the same column. The basic principles of
the Muller pipeline can be used to define a handshake pro-
tocol for the mesh: when a processor is in the same state as
its north and east neighbours and in the opposite state as its
south and west neighbours, it is enabled to change state. As
with the original Muller pipeline, this handshake protocol is
speed-independent: once a processor is enabled to fire, it re-
mains enabled with unchanging inputs until it fires.

If we consider north-south, east-west, and northwest-
southeast pairs in the same state as contiguous, then we can
identify maximal contiguous regions of processors in the
same state. As figure 2 shows, these contiguous regions
form bands around the torus that correspond to the segments
of one-dimensional pipelines. The number of bands is an in-
variant maintained by the mesh, and bands propagate to the
northeast. For simplicity, we only consider configurations
where each band wraps once around the torus in the north-
south direction and once around the mesh in the east-west
direction. This property is also an invariant of the mesh.

This protocol allows bands to be composed of pieces
that only meet at the corners of diagonally adjacent pro-
cessors, for example, processors p(2,4) and p (3 , 3) in fig-
ure 1 (where p (i , j) denotes the processor at location (i, j)) .

To determine a lower bound on the performance of such
a mesh, we found it helpful to consider a modified proto-
col that avoided these pinched bands. This protocol corre-
sponds to a three-connected mesh as described in the next
section.

2.2. A three-connected mesh

Figure 3 shows a three-connected mesh. A processor is
enabled if it is in the opposite state as its south and west
neighbours and in the same state as its northeast neighbour.
We assume that the times between when a processor be-
comes enabled and when it fires are independent, exponen-
tially distributed random variables. Without loss of general-
ity, we assume that the mean firing time is one. It is straight-
forward to show that an invariant of this protocol is that if
p (i , j) is the left-most processor in band ,B and row j , and
p(i ’ , j + 1) is the right-most processor in row j + 1 of the
same band, then i 5 i’. This means that, unlike the four-
connected mesh, no band of the three-connected mesh has
pieces that meet only at a corner (see figure 4). A related in-
variant is that whenever a processor is in the same state as its
northeast neighbour, then it is in the same state as its north
and east neighbours as well. A direct consequence of the
second invariant is that the three-connected mesh is speed-
independent.

32

Proposition 1 The performance of a four-connected mesh
is greater than or equal to the performance of a three-
connected mesh of the same dimension, number of bands,
and distribution of pmcessorjring times.

Proof: Executions of a three-connected mesh to can be
mapped to executions of a four-connected mesh such that
each operation in the four-connected mesh occurs no later
than it did in the three-connected mesh. This mapping is
possible because in any mesh configuration, the set of pro-
cessors enabled according to the three-connected protocol is
a subset of those enabled according to the four-connected
protocol. Thus, operations in the four-connected mesh be-
come enabled no later than their counterparts in the three-
connected mesh. 0

An immediate consequence of proposition 1 is that any
lower bound for the performance of the three-connected
mesh is also a lower bound for the four-connected mesh.

The three-connected mesh has a tractable queueing net-
work model. Let n, and n y be the circumference of the torus
in the east-west and north-south directions respectively. Let
n g be the number of bands. Because the handshake proto-
col has two states, nB must be even. Let ,l? be a band, and
let j be the index of a row in the mesh, and let p (i , j) be the
left-most processor in band p and row j. We identify two
queue-like structures rooted at p (i , j):

The southeast queue: Let p (i s e , j - 1) be the left-most
processor in row j - 1 and band p. We note that if
is, - i = 0, then p (i , j) is not enabled because it
is in the same state as its south neighbour. We say
that is, - i is the number of processors waiting in the
southeast queue for row j of band 0. If p (i , j) is en-
abled, then firing it corresponds to a departure from
this queue. Likewise, firing p (i s , , j - 1) constitutes
an arrival.

The northeast queue: Let p (i n e , j + 1) be the right-most
processor in row j + 1 and band p. As noted above,
in, 2 i. If in, - i = 0, then p (i , j) is not enabled.
Accordingly, in, - i is the number of processors wait-
ing in the northeast queue for row j of band p. Firing
p (i , j) causes a departure from this queue, and firing
p(ine + 1, j) causes an arrival.

In figure 3, p (2 , 3) is the left-most processor of a band in row
3. The southeast queue for p (2 , 3) extends to p (5 , 2) ; there
are three processors waiting in this queue. The northeast
queue for p (2 , 3) extends to p (3 , 4) ; there is one processor
waiting in this queue. Thus, p (2 , 3) is enabled to fire. Af-
ter p (2 , 3) fires, p (3 , 3) will become the left-most processor
for this band in row 3. Its northeast queue will be empty un-
til p(4,4) fires. The average length of the southeast queues
is n, /nY , and the average length of the northeast queues is
(n x / n B) - (n x / n y) - 1.

... ...

... ...

... ...

n n e n n e n n e n n e

... ...

Figure 5. A queueing network model for the
three-connected mesh

Figure 5 shows the queueing network corresponding to a
three-connected mesh. Queues are labeled ne or se accord-
ing to whether they are northeast or southeast queues of the
mesh. At each junction between queues, there is a forkljoin
node, indicated by a filled circle. When the queues to the
left and below a forkljoin node are non-empty, the node may
remove one element from each of these queues and insert
one element into the queue above it and one element into the
queue to its right. Service times of the fork/join nodes are in-
dependent, exponentially distributed random variables with
mean one. Operations of the forkljoin nodes correspond to
processor actions in the original mesh.

A few comparisons of the queueing network and the
three-connected mesh are in order. The interconnection of
the queueing network forms a twisted torus. The twist does
not affect our analysis which depends only on local prop-
erties of the network. ForWjoin operations move elements
between queues, and the total number of elements in either
type of queue is fixed. Insert and remove operations displace
the ends of the queues on the original three-connected mesh.
Each southeast queue crawls around the mesh a the south-
east direction, and likewise for northeast queues.

The analysis in the next section is simplified if the av-
erage queue lengths for southeast and northeast queues are
equal and if initially each queue holds exactly this many el-
ements. This is achieved, for example, if n , is a multiple
of six, n y = n,, and nB = n , / 3 in which case the average
length for all queues is one. If the mesh is started in the state
where

(1) p (i , j) . w = ((i - j) m o d 6) < 3

then the corresponding queuing network will start with one
element in each queue (we writep(i, j).v to denote the value
held by processor p (i , j)) .

33

Proposition 2 Let M be a three-connected mesh with n, a
multiple of six, ng = n2, and ng = n,/3 with proces-
sors initialisedas in equation 1. Let Q be a mesh connected
queueing network with n%/3 queues of each type as shown
in figure 5 where each queue initially holds one element. If
the average rate of departures from southeast queues is p,
then, the per processor pe~ormance is p/3 .

Proof Each operation of a forkljoin node corresponds to
an action of some processor in the three-connected mesh.
There are n:/3 fork/join nodes in the queueing network and
n: processors in the three-connected mesh. Thus, the per

0 processor performance is p / 3 as claimed.

3. Arrays of Queues

This section presents a lower bound for p that is indepen-
dent of the size of the network. Our analysis is by induction
on the structure of the network. The base case is a square
of four queues where three of the four forkljoin nodes are
replaced by simple exponential servers. This replacement
makes the analysis tractable, and we show that the simpli-
fied model provides a lower bound for performance. The in-
duction step adds a square of nodes to the network. Again
we show that the construction is conservative. Finally, we
join the edges of the network to form the twisted-torus of
the actual queueing network. This too is a conservative con-
struction giving us a lower bound for the performance of the
queueing network.

3.1. Probability primer

We first review some concepts from probability that will
be used in the analysis. If g is a Boolean expression, P{g}
denotes the probability that g holds. Let a be a random vari-
able. The expected value (i.e. mean) of a is denoted by
E[a]. The distribution function of a is written F[a] where

F[a](u) = P{a I U } (2)

If a1 and 0 2 are random variables such that for all U ,

F[al](u) 5 F [Q . ~] (u) , then a1 stochastically dominates a2,

and we write a1 >st a2. If a1 >st 0 2 , then E[al] >
E[a2]. Stochastic dominance extends readily to sequences.
Ifa(O),a(l) , . . . andb(O),b(l), . . . aresequencesofrandom
variables such that for all i 2 0, u (i) zst b (i) , then a
stochastically dominates b, and we write a Lst b.

The joint distribution function for a1, a2, . . ., a, is
F (a 1 , . . . , a,] with

(3)
F[al, . .
P { ((Y ~ < ~ 1) A . . . A (a , < U,)}

arnI(~11. . . t U,)
=

Variables a1 . . . a , are independent iff

34

Figure 6. A simple, square queuing network

If a is an exponentially distributed random variable with
mean m, then F[a](u) = 1 - e -u /m for U 2 0 and zero oth-
erwise. We write x, to denote a exponentially distributed
random variable that is independent of any other variables
in the analysis. A Poisson process with rate X is a sequence,
a1 , a2, . . ., such that for i greater than zero, the random vari-
able ai+l - a , is exponentially distributed with mean l / X ,
and these variables are independent. We write p , to denote
a Poisson process with mean m whose interarrival times are
independent of any other variables in the analysis.

3.2 Analysing the queuing network

We first consider the simple network shown in figure 6.
The filled circle is a forkljoin node whose processing times
are independent, exponentially distributed random variables
with mean one. The empty circles are server nodes whose
processing times are independent, exponentially distributed
random variables with mean two. The rectangular compo-
nents are queues that initially hold one element, and the
square component is a Poisson source with rate 114. We use
the label of a component to refer to the sequence of random
variables corresponding to the times of output events of the
component.

Lemma 3 Given a queuing network as depicted infigure 6,
the sequence of output events for each node (source, sewel;
or forWjoin) is stochastically dominated by a Poisson pro-
cess with rate 114. Furthermore, the time between the ar-
rival of an element at the input of the forWjoin node from
queue seo,l and the subsequent operation of the forWjoin
is stochastically dominated by a exponential variable with
mean two. Likewise for arrivals from queue ne1,o.

Roof By the symmetry of the network, the probability that
an element from queue seo,l arrives at the forWjoin node,
a1,1, before the corresponding element has arrived from
m 1 , o is at most one half. If the element from queue seo,l ar-
rives before the element from n e l , ~ , then the element from
ne1,o must be waiting at the input of server q1,o because both
elements were output by source q0,0 at the same time. Thus,
if the element from queue seo,l arrives first, it will wait for
the exponential service time with mean 2 of server q1,o and
then wait for the exponential service time with mean 1 of

Figure 7. Constructing a larger network

server q1,1. As noted above, this happens with probability at
most one half. The other possibility is that the element from
queue seo,l arrives at the same time or later than the element
fromqueue ne1,o. In this case, theelement from queue seo,l
waits only for the exponential service time with mean 1 of
server q1,1. From these observations, we can show that the
waiting time for the element from queue seo,l is stochasti-
cally dominated by an exponential process with mean two.
This establishes the claim about service times. Details are
provided in appendix A.2. Noting that the source is Pois-
son with rate 1/4 and that the servers are stochastically dom-
inated by exponential servers with mean 2, standard queue-
ing theory shows that the output processes for the servers are
stochastically dominated by a Poisson process with rate 1/4.

0

To extend the results for the square to larger networks,
we construct larger networks from a simple square merging
a single square at a time as shown in figure 7. In the merg-
ing process, fork nodes are promoted to fork/join nodes and
sources are eliminated in the obvious manner. Details of the
construction are given in appendix A.3. The key result is
stated below:

Again, details are provided in appendix A.2.

Lemma 4 Let n , and ny be natural numbers. For 0 5 i <
n, and 0 5 j < ny , let ai,j be a node where a0,o is a Pois-
son source with rate 114; f o r i and j greater than zero, a 0 , j

and ai ,O are exponential servers with mean service time two,
and ai,j is a forWjoin node with mean service time one; and
the nodes are connected in a rectangular array by queues
which each initially hold one element.

The sequence of output events for each node (source,
server; or forwjoin) is stochastically dominated by a Pois-
son process with rate 114. The time between the arrival of
an element at a forWjoin node and the subsequent operation
by the forwjoin is stochastically dominated by a exponential
random variable with mean two.

Proof: If n, or n y i s zero, then the network is empty, and the
claims are trivially satisfied. If n, or ny is one, then the net-
work is a chain of queues for which the analysis is straight-
forward. We focus on the case where n, and n y are both at

least two. Any such mesh can be constructed starting with
a square and merging successive squares on the right or top
boundaries of the existing network. Accordingly, we induct
over the size of the network. For each merge operation in
the construction, the performance of nodes in the original
network is unchanged, and the performance of nodes in the
square added to the network is unchanged or improved. De-

Finally, we need to identify opposite edges of the array
to form the twisted torus. This produces a closed network,
promoting the remaining Poisson source and the remaining
exponential servers to forMjoin nodes. The challenge with
this operation is that we identify two edges of a large net-
work, rather than adding a simple square. The times of op-
erations on opposite edges of the rectangular network are not
independent random variables. However, an induction argu-
ment over the time of the operations shows that the results
for the array also apply to the twisted-torus.

Proposition 5 Given integers n , and ny , let Q be a queuing
network composed of an n , by n y array of forlujoin nodes
connected by queues in a twisted-torus topology. The se-
quence of output events for each node is stochastically dom-
inated by a Poisson process with rate 114.

Proof See appendix A.4.
We can now prove the main claim of this paper.

Proposition 6 Let n be a positive multiple of three. Let M
be a three-connected or four-connected mesh with n , =
n y = n and n g = n / 3 . If the mesh is started in the
state that satisfies equation 1, then the per-processor perfor-
mance of the mesh is at least 1 1 12.

Proof: The claim for a three-connected mesh follows di-
rectly from propositions 2 and 5. The result extends to a
four-connected mesh by proposition 1.

These bounds are conservative; they underestimate the
performance of the mesh. In the next section, we present
performance measurements from simulations of particular
meshes.

tails are given in appendix A.3

4. Simulation Results

Figure 8 shows results from Monte-Carlo simulations of
three- and four-connected meshes. In both plots, U denotes
processor utilisation, the average number of operations per
processor per unit time. The left plot shows the relation be-
tween n, /nB (number of processors in a row or column per
band) and performance for a 72 by 72 mesh. The highest
performance for the three-connected mesh is 0.127 which is
about 50% higher than the lower bound derived in the pre-
vious section. The lower bound is conservative, largely be-
cause the analysis for the bound overestimates the probabil-
ity that an element at a fork/join node waits for an arrival

35

0.20

0.15

0.10

0.05

0.00

U

-m- 4-conn
-A- 3-conn

0 12 24 36

nx / n B

U
0.22 1.

0.14 3-conn
0.12
0.10

A -k- A-& .A- -

0 20 40 60 80
n X

Figure 8. Processor utilisation vs. average
band width and mesh size

from the other queue. The highest performance occurs when
nz/nB = 3, which is when the average length for the north-
east and southeast queues are equal at one. The highest per-
formance for the four-connected mesh is 0.172 which occurs
when n,/nB = 2. This is the point where the four inputs to
the processor node are equally likely to be last.

The right plot of figure 8 shows the dependence of
processor performance on the mesh size. Optimal values
of n,/ng were used for the simulations: for the three-
connected mesh, n,/nB = 3, and for the four-connected
mesh, n,/nB = 2. For both meshes, performance rapidly
approaches the limit. Small meshes perform somewhat bet-
ter than large meshes because the timing correlations across
a small mesh are stronger than those across a large one.
These correlations contribute to higher performance.

The left plot of figure 9 shows the performance of a four-
connected mesh with buffers between processors. Each con-
nection between processors is buffered by a FIFO queue
using the usual Muller protocol. The times for an active
stage to perform an operation are exponential random vari-
ables with mean 0.1. If throughput were determined only on
average-case time, then Thiele’s analysis [151 shows that op-
timal performance of one operation every 1/1.1 time units
would be achieved with two-stage FIFO buffers. As shown
in figure 9, the variance in processing time is significant in
overall performance, and higher performance is achieved
with larger buffers. Of course, using larger buffers increases
the latency of the pipeline, and the designer must address
the trade-offs of throughput and latency. If a designer only
considered average case processing times, there would be no
reason to use buffers with more than two stages. Such a de-
sign is likely to have less than optimal performance for real
processing time distributions.

The right plot of figure 9 shows the performance of a 72
by 72 mesh for various distributions of processing times.
Each distribution has a mean of one, and different distribu-

0.5

0.4

0.3

0.2

U

0.0 O. l i
0.0 0.2 0.4 0.6 0.8 1.0

buffer length 0-

Figure 9. Effects of buffering and processing
time distribution on processor utilisation

tions in the same family are characterised by their standard
deviations, U . A random variable with the two-spike dis-
tribution with standard deviation U takes on value 1 - U

with probability 0.5 and value 1 + U with probability 0.5.
As negative processing times are non-sensical, we require
0 5 U 5 1. A uniformally distributed random variable with
standard distribution B is uniformally distributed in the in-
terval [l - f l u , 1 + fl~]. To avoid negative processing
times, B must be between 0 and l/fl. The Erlang-k distri-
bution is obtained as the sum of k exponentially distributed
random variables, and U = l/& (see [4]). For large val-
ues of k , the central-limit theorem shows that this distribu-
tion is close to a normal distribution with the same standard
deviation; however, a random variable with an Erlang-k dis-
tribution always takes on non-negative values. Finally, the
ARM-adder distribution was obtained from trace data for
the ARM microprocessor (see [17]). We obtained traces for
three programs, with each trace providing carry chain length
distributions for branches, addresses calculations, general
arithmetic, and totals. We assumed delay proportional to
carry chain length, and obtained twelve distributions for our
simulations (four from each program trace).

From figure 9, it is apparent that performance is deter-
mined largely by the variance of the processing time distri-
bution. This is consistent with the experience of the perfor-
mance analysis community that many properties of queue-
ing networks can be estimated from the first and second mo-
ments of service time distributions (see [SI). The perfor-
mance for the trace data is similar to that for the artificial dis-
tributions, suggesting that reasonable estimates can be made
for real designs once the mean and variance of the process-
ing time distribution is known. We also noted that the mean
carry-chain length from the trace data varied from 5.0 to
21.0, with the total values for each trace between 9 and 11.
This is much larger than the values for an adder with uni-
formally distributed inputs. Thus, although logarithmic ex-

36

pected time for addition is often mentioned as an advantage
of self-timed design, we don’t expect that this “advantage”
will be realised in real processor designs.

The data for the uniform and twin-spike distributions fit
simple formulas. In particular, processor utilisation with
uniform processor times fits

uumform(a) = & (5)

utwin-splke(g) = & (6)

Processor utilisation with the twin-spike distribution fits

We note that 1 + (T corresponds to the maximum delay of
the twin-spike distribution. This means that the expected
performance corresponds exactly to worst-case processing
time! We note that each operation in the process depen-
dency graph has four successors. Each of these successors
has probability of 0.5 of taking place after the maximum de-
lay. Thus, the probability that at least one of these operations
takes place after the maximum delay is 15/16, and the ex-
pected number of these operations that take place after the
maximum delay is 2. We suspect that this ensures that with
high probability, there will be chains of operations in the
process dependency graph where almost all operations take
the maximum delay. At the time of writing, we don’t have a
formal proof of this conjecture.

The observations about the twin-spike design have impli-
cations for self-timed design. For example, consider a de-
sign where the time for a component to perform an opera-
tion can take on one of two values depending on the value
of its operands; in other words, it has a fast-mode for some
operands and a slow mode for others. If long and short op-
erations occur with equal probability, then a mesh of such
components will operate at the rate corresponding to all op-
erations being slow. Thus, adding hardware to distinguish
between slow and fast operands only increases the complex-
ity of the design and cannot improve performance. Our sim-
ulations indicate that with a bimodal processing time distri-
bution, at least 75% of the operations must be fast before
the performance is not determined solely by the time for the
slow operation.

5. Conclusions

Two oft-mentioned advantages of self-timed designs are
freedom from clock skew and achieving average-case per-
formance in data dependent computations. We have demon-
strated that self-timed meshes can achieve a per-processor
throughput that is independent of the size of the array. In
contrast, the clock period for a synchronous design must
grow asymptotically with the diameter of the network. In
this asymptotic sense, self-timed arrays are faster than their
synchronous counterparts.

Our analysis was based on a queueing network model for
a simple array assuming exponentially distributed process-
ing times with mean one. Using this model, we showed that
the average number of operations per processor per unit time
is at least 1/12. This is a lower bound, and simulations sug-
gest that more accurate estimates are 1/7.85 and 1/5.82 for
three-connected and four-connected meshes respectively.

Although the asymptotic performance of a self-timed
mesh is within a constant factor of the average case perfor-
mance for its components, the variance in processing time
contributes significantly to the overall performance. This
suggests that performance analysis techniques should be de-
veloped that take into account the variance of processing
times. Based on our simulations, the sum of the mean delay
and the standard deviation provides a much better estimate
of performance than the mean delay alone. We showed that
the effects of processing time variance can strongly affect
design decisions regarding the size of buffers to use between
processing elements. For bimodal processing time distri-
butions, performance can be completely determined by the
time required for the slow operation. Unless the variance of
processing time is considered, claims of “average-case” per-
formance can be seriously misleading.

Acknowledgements

We have enjoyed interactions with many excellent col-
leagues. Ivan Sutherland revived our interest in the perfor-
mance of self-timed meshes with his own enthusiasm for
self-timed pipelines and their variations. We benefited from
Nick Pippenger’s insightful comments about stochastic in-
equalities. Peter Beerel provided us with trace data for the
ARM that allowed us to simulate meshes with “real-world”
processing time distributions.

References

S. M. Bums. Pedormance Analysis and Optimization of
Asynchronous Circuits. PhD thesis, Computer Science De-
partment, Califomia Institute of Technology, Pasadena, CA,
Jan. 1991. Tech. Report Caltech-CS-TR-91-01.
D. M. Chapiro. Globally-Asynchronous, Locally-Synchro-
nous Systems. PhD thesis, Department of Computer Science,
Stanford University, Oct. 1984. Tech. Report STAN-CS-84-
1026.
M. D. Dikaiakos and K. Steiglitz. Comparison of tree and
straight-line clocking for long systolic arrays. Journal of
VLSI Signal Processing, 3(4), 1991.
W. Feller. An Introduction to Probability Theory and Its Ap-
plications, volume 1. John-Wiley and Sons, 1950.
A. L. Fisher and H. Kung. Synchronizinglarge VLSI proces-
sor arrays. IEEE Transactions on Computers, C-34(8):734-
740, Aug. 1985.

37

A

A . l

M. R. Greenstreet and K. Steiglitz. Bubbles can make self-
timed pipelines fast. Journal of VLSI and Signal Processing,

L. Kleinrock. Queueing Systems, volume I : theory. John
Wiley and Sons, 197.5.
L. Kleinrock. Queueing Systems, volume 2: applications.
John Wiley and Sons, 1976.
E. L. Lawler. Combinatorial Optimization: Networks and
Matroids. Holt, Rinehart, and Winston, New York, 1976.
A. Nowatzyk. A Communication Architecture for Multipro-
cessor Networks. PhD thesis, School of Computer Science,
Camegie Mellon University, Dec. 1989. See chapter 3.3.
Tech. report CMU-CS-89-181.
G. A. Pratt and J. Nguyen. Distributed synchronous clock-
ing. IEEE Transactions on Parallel and Distributed Systems,
6(3):314-328, Mar. 1995.
C. L. Seitz. System timing. In Introduction to VLSI Systems
(Carver Mead and Lynn Conway), chapter 7, pages 21 8-262.
Addison Wesley, 1979.
W.-K. Su. Reactive-Process Programming and Distributed
Discrete Event-Simulation. PhD thesis, Computer Science
Dept., California Institute of Technology, Oct. 1989. See
chapter 8.1. Tech. report Caltech-CS-TR-89-11,
I. E. Sutherland. Micropipelines. Communications of the
ACM, 32(6):720-738, June 1989. Turing Award lecture.
L. Thiele. On the analysis and optimization of self-timed pro-
cessor arrays. INTEGRATION, 12(2):167-187, Dec. 1991.
T. E. Williams. Self-Timed Rings and their Application to
Division. PhD thesis, Stanford University, May 1991.
K. Y. Yun, A. E. Dooply, et al. The design and verification
of a high-performance, low-control-overhead asynchronous
differential equation solver. In Proceedingsofthe 1997Inter-
national Symposium on AdvancedResearch in Asynchronous
Circuits and Systems, Apr. 1997.

2(3):139-148, NOV. 1990.

Proofs

Computa t ion graphs for queueing networks

The queueing networks that we analyse have simple com-
putation graphs. These graphs have a vertex corresponding
to each operation for each node. If the operation for vertex
uj consumes an element output by the operation for vertex
U,, then there is an edge from U, to uJ . We add a node, vo,
with edges to all vertices for operations that are enabled in
the initial state. This computation graph is rooted (at V O) , di-
rected, and acyclic. Because we consider meshes with no fi-
nal state, our computation graphs are infinite. We associate a
non-negative random variable with each vertex which is the
time that the corresponding node takes to perform this op-
eration after all of its inputs are available. We assume that
these random variables are independent. The vertex vo rep-
resents the “initial operation,” and we define this to occur at
time zero. The time at which a node performs on operation
is the maximum of the time for any of its inputs plus the time
for the operation.

The max and sum operators are strictly increasing in their
arguments. This gives rise to the following property that
we use throughout our analysis. The proof is omitted for
brevity.

Property 1 I f two graphs have the same structure, and the
distributions of the random variables for delay times of the
first graph stochastically dominate those of the second, then
the distributions of the times at which operations occur in
thejirst graphs stochastically dominate those of the second.

A.2 Proof of lemma 3

Recall that the lemma pertains to the queueing network
shown in figure 6. The output of source component, a0,o

is Poisson with rate 1/4, so the claims are trivially satisfied
for this component. The sequence of components a o , ~ -+
seo,o -+ a1,o forms a M / M / 1 queue with arrival rate
1/4 and mean service time 2. This is a well-studied sys-
tem (see [7]). In steady state, the average queue length is
one, and the departure process, a1,0, is Poisson with rate
1/4. The condition that the queue initially holds one ele-
ment guarantees that the transient behaviour of the output
process is stochastically dominated by the Poisson process.
Thus, the outputs of node a1,o satisfy the claims. A sym-
metric argument applies for the outputs of node a0,1.

Now, consider node a1,1 at the moment when an element
arrives from queue seo, l . Call this element e,,. Let r,, be
the time of this arrival; note that this time can be determined
either by the time at which ese was inserted into queue seo,l
by node a0,1, or by the time at the previous element was
removed from queue seo,l by node ~ 1 , ~ . Let TI,^ be the
time at which element ese is processed by node a1,1, and
let S,, = r1,1 - rsr. Let e,, be the corresponding ele-
ment from queue ne1,0, and let r,, denote its time of ar-
rival at the input of a1,1. By the symmetry of the network,

Accordingly,
p { r s e < m e } = p { T s e > ne}. Thus, p { r s e < rne} 5 3.

We first consider the case when r,, < rne. Note that ese
and ene were output by the same operation of source node
a o , ~ . Furthermore, their predecessors have already been
consumed by forkfjoinnode a1,1. Accordingly, element en,
must beat the input of no deal,^. Inthiscase, ese willwaitat
the input of a1,o for exponential mean two time waiting for
ene to arrive, and an additional exponential mean one time
waiting for a1,1 to perform its operation. This yields:

If r,, 2 T,,, then S,, is exponentially distributed with mean
one:

F [S s e (r s e L ne](^) = 1 - e-u

38

Combining these observations, we obtain

which means that S,, is stochastically dominated by an ex-
ponential variable with mean two, as claimed. A symmetric
argument applies for S,, .

Finally, consider the queueing system composed of com-
ponents a0,1 -+ seo, l -+ a l , ~ . Analysis similar to that for
a0,o + seo,o -+ a1,o and property 1 show that the outputs
of a1,1 are dominated by a Poisson process with mean two.
0 .

A.3 Proof of lemma 4

We consider networks that have n, columns and ny rows
of nodes connected by queues. We assume that n, and ny
are both at least two. The first two columns have exactly
ny nodes, and the number of nodes in a column is a non-
increasing function of the column index. Likewise, the first
two rows have exactly n, nodes, and the number of nodes in
a row is is a non-increasing function of the row index. Any
rectangular mesh can be constructed by starting with a sim-
ple square and merging additional squares one at a time as
shown in figure 7 such that each intermediate network satis-
fies these constraints. In the merging process, fork nodes are
promoted to fork/join nodes and Poisson sources are elimi-
nated in the obvious manner.

Let Q be a network as described above, and consider the
addition of a square to a column. The argument when adding
a square to a row is analogous. There are two cases to con-
sider: either the square is added at the bottom of a new col-
umn, or the square is added at the top of an existing column
of Q. In either case, no inputs of nodes of Q are modified,
so the performance of nodes of Q is unchanged.

Consider the case when the node is added at the bottom of
a new column. The nodes on the left edge of the square are
replaced by nodes of Q. Therefore, the claims are satisfied
for these nodes. The node in the lower-right corner of the
square had received its inputs through a queue from a Pois-
son source. After the merge, this node receives its inputs
from the server node of Q. The service times of the server
node are stochastically dominated by the service times of a
Poisson source. By property 1, output times of the the lower-
right node after the merge are dominated by those of the
node from before the merge. By lemma 3, the lower-right
node of the square satisfies the requirements of this lemma.
Therefore, the node after the merge does as well. A simi-
lar argument applies for the upper-right node (the forkljoin
node).

The case when the node is added on top of an existing
column is similar. In this case, the lower-right node of the
square is replaced by a node from Q; therefore it satisfies
the claims of this lemma. 0

A.4 Proof of property 5

We “sew” opposite edges of the array together using
queues that initially hold one element.

Let a d s t be the Poisson source of the array, and let Cy,,.,

be the row-predecessor of this node in the torus. The first
stitch of our construction is a queue with input a,,., and out-
put a d s t . This promotes Q d s t from a Poisson source to an
exponential server with mean two. The time of the kth out-
put of a d s t depends on the time of the first k - 1 outputs of
aSrc. The time of the k - lSt output of asrc depends on the
time of the first k - n, outputs of a d s t . Therefore, if a s r c

is stochastically dominated by a Poisson process with rate
1/4 for its first k - n, outputs, then, by lemma 4, Q d s t will
be as well for its first k - 1 outputs. This implies that as,.,
is stochastically dominated by a Poisson process with rate
1/4 for its first k outputs. Because n, >_ 2, this provides
an induction argument that all outputs of asrc and a d s t are
dominated by Poisson sources with rates 1/4. Property 1 en-
sures that the network with this first queue added satisfies the
claims of the proposition.

The next ny - 1 queues are added to connect the left and
right edges of the array. Each new queue promotes an expo-
nential server node of the left edge to a forkljoin node. Argu-
ments like those for lemmas 3 and 4 show that the outputs of
the new networks are stochastically dominated by those of
the array. Now, we have a cylinder with server nodes along
its bottom edge and forkljoin nodes everywhere else.

We now add the n, queues to join the top and bottom
edges to form a torus. These create n, new squares. The
output times for the torus are stochastically dominated by
those for the cylinder which can be shown by an induction

0 argument over time similar to the one above.

39

