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Abstract 

This paper shows that self-timed meshes can achieve lin- 
ear speed-up. The per-processor performance of a mesh is 
the average number of operations per processor per unit 
time. For synchronous processors, it has been shown that 
the per-processor performance of a mesh goes to zero as 
the size of the mesh goes to injnity. This paper shows that 
for  self-timed meshes, the per-processor performance can 
be bounded below by a positive constant. Thus, self-timed 
meshes are asymptotically faster than synchronous ones. 
Furthermore, simulation and analytic results are used to 
show that analysis based solely on average case times can 
be optimistic and lead to poor design decisions. 

1. Introduction 

Two oft-mentioned advantages of self-timed designs are 
freedom from clock skew and achieving average-case per- 
formance in data dependent computations. Because self- 
timed designs do not have clocks, it is clear that they do 
not have clock skew. On the other hand, the performance of 
one part of a self-timed system can affect the performance of 
another part when one waits for a handshake from another. 
Through a sequence of such handshakes, two components 
that are widely separated in a design can influence each 
other’s performance. To the best of our knowledge, only 
linear pipelines have been studied to determine how sys- 
tem size affects the performance of a self-timed system [6]. 
Likewise, most performance analysis for self-timed systems 
has been based on fixed processor times leaving claims for 
average case performance unsubstantiated. This paper anal- 
yses the performance of self-timed meshes with random pro- 
cessing times. 

We measure performance as the average number of oper- 
ations per processor per unit of time. A “processor” in this 

context represents a handshaking component, not necessar- 
ily a CPU. Thus, our analysis applies to large arrays of hand- 
shaking components, a model that is general enough to apply 
to a wide variety of self-timed designs. We do not consider 
performance issues that are specific to an application such as 
whether or not there is enough parallelism in the application 
to effectively utilise a large array. 

Our analysis provides a basis for comparing the scalabil- 
ity of synchronous and self-timed designs. For this compar- 
ison, we consider “pure” synchronous designs. In such a de- 
sign, all communication is controlled by a global clock. This 
clock is distributed to all components using a tree network 
with the clock generator at the root and components con- 
trolled by the clock at the leaves. The tree topology reflects 
the choice to determine all timing from a single clock - if 
there were multiple paths from the clock generator to a com- 
ponent, an additional timing component would be required 
to combine the clock signals from various paths to produce 
a single clock signal for the component. If two components 
communicate, there must be an interval within each clock 
cycle during which the sender can change its output and an- 
other interval during which the receiver can sample its input. 
For reliable communication these intervals must be disjoint. 
The clock-skew is the maximum uncertainty in the relative 
arrival times of the clock signal at two communicating com- 
ponents. To guarantee that the sending and sampling inter- 
vals are disjoint, the clock period must be greater than the 
worst-case skew. 

The performance of large synchronous designs has been 
well studied. Fisher and Kung [5] analysed the asymptotic 
performance of synchronous processor arrays with this as- 
sumption. For meshes, they showed that worst-case skew 
grows with the square-root of the number of processors. 
Dikaiakos and Steiglitz [3] performed a similar analysis for 
expected skew and showed a bound of n1I4 log n. Assum- 
ing that the clock period must be greater than the skew, 
per processor performance becomes arbitrarily small as the 
number of processors in the mesh increases. These theo- 
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retical results are matched by practical experience. There 
are few examples of globally synchronous designs with a 
large number of processors: most large scale parallel proces- 
sors are a collection of synchronous processors with asyn- 
chronous interfaces to a communication fabric. 

Given the limitations of pure synchronous designs, there 
have been several proposals of hybrid approaches. In gen- 
eral, these designs propose some kind of handshaking net- 
work that provides tightly correlated clock signals in the 
processor network. A simple example of this approach is 
Chapiro’s proposal for clock-stretching [2]. When a re- 
ceiver using this scheme is ready for input, it stops its own 
clock and waits for a “data-ready’’ signal from the transmit- 
ter. If a data-transfer is performed on each clock cycle, clock 
stretching reduces to four-phase, self-timed signaling with 
bundled completion [ 121. 

Nowatzyk [ 101 and Pratt [ 111 have both proposed using 
arrays of phase locked loops to generate a global clock sig- 
nal for large, multi-processor arrays. In such a design, care 
must be taken to avoid what Pratt refers to as “mode-lock‘’ 
where a processor has N neighbours whose phases form an 
equilateral N-gon. Nowatzyck uses the limiting behaviour 
of a phase-frequency detector to introduce a non-linearity 
that breaks the symmetry of a mode-lock. Pratt solves the 
mode-lock problem by using a phase detector with negative 
(i.e. unstable) slope for phase differences greater than 7r/2 
radians. We note that handshake circuits can be viewed as 
an array of coupled oscillators, and the choice of whether 
to view an array of phase locked loops as a synchronous or 
self-timed design is largely a matter of taste. The analyses 
of Nowatzyk and Pratt are specific to particular designs. Our 
analysis is for general handshaking circuits and is indepen- 
dent of the particular implementation. 

Su [ 131 noted that a self-timed mesh can be used to dis- 
tribute a clock signal. He reports on the performance of 
his simulator when simulating such a network, but he does 
not describe the performance of the network itself nor does 
he describe the timing model used for his simulations. Our 
work shows that such a clock networkcan operate as desired 
-the clock frequency can remain roughly constant as the ar- 
ray grows to arbitrary size. 

Thiele [ 1.51 analysed the performance of self-timed pro- 
cessor arrays. Thiele’s analysis assumes fixed processor 
times and uses Lawler’s algorithm [9] to find the worst- 
case cycle of handshakes in the system. Bums [ 13 also used 
Lawler’s algorithm to analyse the performance of self-timed 
systems. Burns’s method uses weighted averages to com- 
pute expected performance when there are several possible 
paths of execution. This works well for processor designs 
where different timings can be associated with different in- 
structions and the analysis can consider a typical instruction 
mix. For our current work, the number of possible cycles 
grows exponentially with the size of the mesh which pre- 

cludes using Burns’s approach to derive asymptotic results. 
Greenstreet and Steiglitz [6] analysed self-timed pipelines 
with exponential processing times. They showed a transfor- 
mation of the pipeline performance problem into a queue- 
ing network problem. In the one-dimensional case that they 
considered, this produces a product-form queueing network, 
and they were able to give exact results. We use a similar ap- 
proach to analyse two-dimensional meshes. 

This paper presents handshake protocols for self-timed 
meshes in section 2. Both three- and four-connected meshes 
are described. In the four-connected mesh, each node re- 
ceives data from its south and west neighbours and acknowl- 
edgements from its north and east neighbours. In the three- 
connected mesh, the north and east acknowledgements are 
combined into a single acknowledgement from the north- 
east neighbour. This modification allows the mesh to be 
viewed as a queueing network, and we show that the perfor- 
mance bounds for the three-connected mesh provide lower 
bounds for the more familiar four-connected mesh. The 
queueing network model is analysed in section 3 where 
we show that the average processor utilisation of the three- 
connected mesh is at least 1/12. This establishes that self- 
timed meshes indeed scale better than synchronous designs. 
The resultsin section 2 and 3 are based on exponential distri- 
bution of processing times. Section 4 presents Monte-Carlo 
simulations where other distributions are considered along 
with examining the impact of using buffers between proces- 
sors. 

2. Self-Timed Meshes 

One-dimensional, self-timed pipelines have been well- 
described in the literature (e.g. [6, 14, 161. For the sake of 
comparison with two-dimensional meshes, we state the rules 
that govern the operation of a Muller style pipeline. It is suf- 
ficient to consider only the state of the processor in the hand- 
shake protocol. Each processor has a predecessor and a suc- 
cessor. When the processor and its predecessor are in oppo- 
site states (i.e. the predecessor is offering new data), and the 
processor and its successor a e  in the same state (i.e. the suc- 
cessor has received the latest value), then the processor may 
move to the state of the predecessor. We equate this move 
with performing a computation and assume that the time be- 
tween enabling and firing a processor is a random variable. 
If the pipeline is a ring, then at any instant, the ring can be 
partitioned into maximal segments of processors in the same 
state. It was shown in [6] that the number of such segments 
is an invariant maintained by the ring. 

2.1. A four-connected mesh 

Figure 1 shows a self-timed mesh where each processor 
communicates with its north, south, east, and west neigh- 
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Figure 2. Bands on the four-connected mesh Figure 4. Bands on the three-connected mesh 

bours. To avoid boundary conditions, we embed the mesh 
on a torus: the east neighbour of the right-most processor 
in a row is the left-most processor of the same row, and the 
north neighbour of the top processor in a column is the bot- 
tom processor in the same column. The basic principles of 
the Muller pipeline can be used to define a handshake pro- 
tocol for the mesh: when a processor is in the same state as 
its north and east neighbours and in the opposite state as its 
south and west neighbours, it is enabled to change state. As 
with the original Muller pipeline, this handshake protocol is 
speed-independent: once a processor is enabled to fire, it re- 
mains enabled with unchanging inputs until it fires. 

If we consider north-south, east-west, and northwest- 
southeast pairs in the same state as contiguous, then we can 
identify maximal contiguous regions of processors in the 
same state. As figure 2 shows, these contiguous regions 
form bands around the torus that correspond to the segments 
of one-dimensional pipelines. The number of bands is an in- 
variant maintained by the mesh, and bands propagate to the 
northeast. For simplicity, we only consider configurations 
where each band wraps once around the torus in the north- 
south direction and once around the mesh in the east-west 
direction. This property is also an invariant of the mesh. 

This protocol allows bands to be composed of pieces 
that only meet at the corners of diagonally adjacent pro- 
cessors, for example, processors p(2,4) and p ( 3 , 3 )  in fig- 
ure 1 (where p ( i ,  j )  denotes the processor at location (i, j ) ) .  

To determine a lower bound on the performance of such 
a mesh, we found it helpful to consider a modified proto- 
col that avoided these pinched bands. This protocol corre- 
sponds to a three-connected mesh as described in the next 
section. 

2.2. A three-connected mesh 

Figure 3 shows a three-connected mesh. A processor is 
enabled if it is in the opposite state as its south and west 
neighbours and in the same state as its northeast neighbour. 
We assume that the times between when a processor be- 
comes enabled and when it fires are independent, exponen- 
tially distributed random variables. Without loss of general- 
ity, we assume that the mean firing time is one. It is straight- 
forward to show that an invariant of this protocol is that if 
p ( i ,  j) is the left-most processor in band ,B and row j ,  and 
p( i ’ ,  j + 1) is the right-most processor in row j + 1 of the 
same band, then i 5 i’. This means that, unlike the four- 
connected mesh, no band of the three-connected mesh has 
pieces that meet only at a corner (see figure 4). A related in- 
variant is that whenever a processor is in the same state as its 
northeast neighbour, then it is in the same state as its north 
and east neighbours as well. A direct consequence of the 
second invariant is that the three-connected mesh is speed- 
independent. 
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Proposition 1 The performance of a four-connected mesh 
is greater than or  equal to the performance of a three- 
connected mesh of the same dimension, number of bands, 
and distribution of pmcessorjring times. 

Proof: Executions of a three-connected mesh to can be 
mapped to executions of a four-connected mesh such that 
each operation in the four-connected mesh occurs no later 
than it did in the three-connected mesh. This mapping is 
possible because in any mesh configuration, the set of pro- 
cessors enabled according to the three-connected protocol is 
a subset of those enabled according to the four-connected 
protocol. Thus, operations in the four-connected mesh be- 
come enabled no later than their counterparts in the three- 
connected mesh. 0 

An immediate consequence of proposition 1 is that any 
lower bound for the performance of the three-connected 
mesh is also a lower bound for the four-connected mesh. 

The three-connected mesh has a tractable queueing net- 
work model. Let n,  and n y  be the circumference of the torus 
in the east-west and north-south directions respectively. Let 
n g  be the number of bands. Because the handshake proto- 
col has two states, nB must be even. Let ,l? be a band, and 
let j be the index of a row in the mesh, and let p ( i ,  j )  be the 
left-most processor in band p and row j. We identify two 
queue-like structures rooted at p ( i ,  j): 

The southeast queue: Let p ( i s e  , j - 1) be the left-most 
processor in row j - 1 and band p. We note that if 
is, - i = 0, then p ( i , j )  is not enabled because it 
is in the same state as its south neighbour. We say 
that is, - i is the number of processors waiting in the 
southeast queue for row j of band 0. If p ( i ,  j )  is en- 
abled, then firing it corresponds to a departure from 
this queue. Likewise, firing p ( i s , ,  j - 1) constitutes 
an arrival. 

The northeast queue: Let p ( i n e ,  j + 1) be the right-most 
processor in row j + 1 and band p. As noted above, 
in, 2 i. If in, - i = 0, then p ( i ,  j )  is not enabled. 
Accordingly, in, - i is the number of processors wait- 
ing in the northeast queue for row j of band p. Firing 
p ( i ,  j )  causes a departure from this queue, and firing 
p(ine + 1, j )  causes an arrival. 

In figure 3, p (  2 , 3 )  is the left-most processor of a band in row 
3. The southeast queue for p ( 2 , 3 )  extends to p ( 5 , 2 ) ;  there 
are three processors waiting in this queue. The northeast 
queue for p ( 2 , 3 )  extends to p ( 3 , 4 ) ;  there is one processor 
waiting in this queue. Thus, p ( 2 , 3 )  is enabled to fire. Af- 
ter p ( 2 , 3 )  fires, p ( 3 , 3 )  will become the left-most processor 
for this band in row 3. Its northeast queue will be empty un- 
til p(4,4) fires. The average length of the southeast queues 
is n, /nY ,  and the average length of the northeast queues is 
( n x / n B )  - ( n x / n y )  - 1. 

... ... 

... ... 

... ... 

n n e  n n e  n n e  n n e  

... ... 

Figure 5. A queueing network model for the 
three-connected mesh 

Figure 5 shows the queueing network corresponding to a 
three-connected mesh. Queues are labeled ne or se accord- 
ing to whether they are northeast or southeast queues of the 
mesh. At each junction between queues, there is a forkljoin 
node, indicated by a filled circle. When the queues to the 
left and below a forkljoin node are non-empty, the node may 
remove one element from each of these queues and insert 
one element into the queue above it and one element into the 
queue to its right. Service times of the fork/join nodes are in- 
dependent, exponentially distributed random variables with 
mean one. Operations of the forkljoin nodes correspond to 
processor actions in the original mesh. 

A few comparisons of the queueing network and the 
three-connected mesh are in order. The interconnection of 
the queueing network forms a twisted torus. The twist does 
not affect our analysis which depends only on local prop- 
erties of the network. ForWjoin operations move elements 
between queues, and the total number of elements in either 
type of queue is fixed. Insert and remove operations displace 
the ends of the queues on the original three-connected mesh. 
Each southeast queue crawls around the mesh a the south- 
east direction, and likewise for northeast queues. 

The analysis in the next section is simplified if the av- 
erage queue lengths for southeast and northeast queues are 
equal and if initially each queue holds exactly this many el- 
ements. This is achieved, for example, if n ,  is a multiple 
of six, n y  = n,, and nB = n , / 3  in which case the average 
length for all queues is one. If the mesh is started in the state 
where 

(1) p ( i , j ) . w  = ( ( i - j ) m o d 6 )  < 3 

then the corresponding queuing network will start with one 
element in each queue (we writep(i, j).v to denote the value 
held by processor p ( i ,  j ) ) .  
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Proposition 2 Let M be a three-connected mesh with n, a 
multiple of six, ng = n2, and ng = n,/3 with proces- 
sors initialisedas in equation 1. Let Q be a mesh connected 
queueing network with n%/3 queues of each type as shown 
in figure 5 where each queue initially holds one element. If  
the average rate of departures from southeast queues is p, 
then, the per processor pe~ormance is p/3 .  

Proof Each operation of a forkljoin node corresponds to 
an action of some processor in the three-connected mesh. 
There are n:/3 fork/join nodes in the queueing network and 
n: processors in the three-connected mesh. Thus, the per 

0 processor performance is p / 3  as claimed. 

3. Arrays of Queues 

This section presents a lower bound for p that is indepen- 
dent of the size of the network. Our analysis is by induction 
on the structure of the network. The base case is a square 
of four queues where three of the four forkljoin nodes are 
replaced by simple exponential servers. This replacement 
makes the analysis tractable, and we show that the simpli- 
fied model provides a lower bound for performance. The in- 
duction step adds a square of nodes to the network. Again 
we show that the construction is conservative. Finally, we 
join the edges of the network to form the twisted-torus of 
the actual queueing network. This too is a conservative con- 
struction giving us a lower bound for the performance of the 
queueing network. 

3.1. Probability primer 

We first review some concepts from probability that will 
be used in the analysis. If g is a Boolean expression, P{g}  
denotes the probability that g holds. Let a be a random vari- 
able. The expected value (i.e. mean) of a is denoted by 
E[a].  The distribution function of a is written F[a] where 

F[a](u) = P{a  I U }  (2) 

If a1 and 0 2  are random variables such that for all U ,  

F[al](u) 5 F [ Q . ~ ] ( u ) ,  then a1 stochastically dominates a2, 

and we write a1 >st a2. If a1 >st 0 2 ,  then E[al]  > 
E[a2]. Stochastic dominance extends readily to sequences. 
Ifa(O),a(l) ,  . . .  andb(O),b(l), . . .  aresequencesofrandom 
variables such that for all i 2 0, u ( i )  zst b ( i ) ,  then a 
stochastically dominates b, and we write a Lst b. 

The joint distribution function for a1, a2, . . ., a,  is 
F ( a 1  , . . . , a,] with 

(3) 
F[al, . . 
P { ( ( Y ~  < ~ 1 )  A . .  . A (a ,  < U,)} 

arnI(~11. . . t  U,) 
= 

Variables a1 . . . a ,  are independent iff 
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Figure 6. A simple, square queuing network 

If a is an exponentially distributed random variable with 
mean m, then F[a](u) = 1 - e -u /m  for U 2 0 and zero oth- 
erwise. We write x, to denote a exponentially distributed 
random variable that is independent of any other variables 
in the analysis. A Poisson process with rate X is a sequence, 
a1 , a2,  . . ., such that for i greater than zero, the random vari- 
able ai+l - a ,  is exponentially distributed with mean l / X ,  
and these variables are independent. We write p ,  to denote 
a Poisson process with mean m whose interarrival times are 
independent of any other variables in the analysis. 

3.2 Analysing the queuing network 

We first consider the simple network shown in figure 6. 
The filled circle is a forkljoin node whose processing times 
are independent, exponentially distributed random variables 
with mean one. The empty circles are server nodes whose 
processing times are independent, exponentially distributed 
random variables with mean two. The rectangular compo- 
nents are queues that initially hold one element, and the 
square component is a Poisson source with rate 114. We use 
the label of a component to refer to the sequence of random 
variables corresponding to the times of output events of the 
component. 

Lemma 3 Given a queuing network as depicted infigure 6, 
the sequence of output events for each node (source, sewel; 
or forWjoin) is stochastically dominated by a Poisson pro- 
cess with rate 114. Furthermore, the time between the ar- 
rival of an element at the input of the forWjoin node from 
queue seo,l and the subsequent operation of the forWjoin 
is stochastically dominated by a exponential variable with 
mean two. Likewise for  arrivals from queue ne1,o. 

Roof By the symmetry of the network, the probability that 
an element from queue seo,l arrives at the forWjoin node, 
a1,1, before the corresponding element has arrived from 
m 1 , o  is at most one half. If the element from queue seo,l ar- 
rives before the element from n e l , ~ ,  then the element from 
ne1,o must be waiting at the input of server q1,o because both 
elements were output by source q0,0 at the same time. Thus, 
if the element from queue seo,l arrives first, it will wait for 
the exponential service time with mean 2 of server q1,o and 
then wait for the exponential service time with mean 1 of 



Figure 7. Constructing a larger network 

server q1,1. As noted above, this happens with probability at 
most one half. The other possibility is that the element from 
queue seo,l arrives at the same time or later than the element 
fromqueue ne1,o. In this case, theelement from queue seo,l 
waits only for the exponential service time with mean 1 of 
server q1,1. From these observations, we can show that the 
waiting time for the element from queue seo,l is stochasti- 
cally dominated by an exponential process with mean two. 
This establishes the claim about service times. Details are 
provided in appendix A.2. Noting that the source is Pois- 
son with rate 1/4 and that the servers are stochastically dom- 
inated by exponential servers with mean 2, standard queue- 
ing theory shows that the output processes for the servers are 
stochastically dominated by a Poisson process with rate 1/4. 

0 

To extend the results for the square to larger networks, 
we construct larger networks from a simple square merging 
a single square at a time as shown in figure 7. In the merg- 
ing process, fork nodes are promoted to fork/join nodes and 
sources are eliminated in the obvious manner. Details of the 
construction are given in appendix A.3. The key result is 
stated below: 

Again, details are provided in appendix A.2. 

Lemma 4 Let n ,  and ny  be natural numbers. For 0 5 i < 
n,  and 0 5 j < ny ,  let ai,j be a node where a0,o is a Pois- 
son source with rate 114; f o r i  and j greater than zero, a 0 , j  

and ai ,O are exponential servers with mean service time two, 
and ai,j is a forWjoin node with mean service time one; and 
the nodes are connected in a rectangular array by queues 
which each initially hold one element. 

The sequence of output events for  each node (source, 
server; or forwjoin) is stochastically dominated by a Pois- 
son process with rate 114. The time between the arrival of 
an element at a forWjoin node and the subsequent operation 
by the forwjoin is stochastically dominated by a exponential 
random variable with mean two. 

Proof: If n,  or n y  i s  zero, then the network is empty, and the 
claims are trivially satisfied. If n, or ny is one, then the net- 
work is a chain of queues for which the analysis is straight- 
forward. We focus on the case where n,  and n y  are both at 

least two. Any such mesh can be constructed starting with 
a square and merging successive squares on the right or top 
boundaries of the existing network. Accordingly, we induct 
over the size of the network. For each merge operation in 
the construction, the performance of nodes in the original 
network is unchanged, and the performance of nodes in the 
square added to the network is unchanged or improved. De- 

Finally, we need to identify opposite edges of the array 
to form the twisted torus. This produces a closed network, 
promoting the remaining Poisson source and the remaining 
exponential servers to forMjoin nodes. The challenge with 
this operation is that we identify two edges of a large net- 
work, rather than adding a simple square. The times of op- 
erations on opposite edges of the rectangular network are not 
independent random variables. However, an induction argu- 
ment over the time of the operations shows that the results 
for the array also apply to the twisted-torus. 

Proposition 5 Given integers n ,  and ny ,  let Q be a queuing 
network composed of an n ,  by n y  array of forlujoin nodes 
connected by queues in a twisted-torus topology. The se- 
quence of output events for  each node is stochastically dom- 
inated by a Poisson process with rate 114. 

Proof See appendix A.4. 
We can now prove the main claim of this paper. 

Proposition 6 Let n be a positive multiple of three. Let M 
be a three-connected or  four-connected mesh with n ,  = 
n y  = n and n g  = n / 3 .  If the mesh is started in the 
state that satisfies equation 1, then the per-processor perfor- 
mance of the mesh is at least 1 1 12. 

Proof: The claim for a three-connected mesh follows di- 
rectly from propositions 2 and 5. The result extends to a 
four-connected mesh by proposition 1. 

These bounds are conservative; they underestimate the 
performance of the mesh. In the next section, we present 
performance measurements from simulations of particular 
meshes. 

tails are given in appendix A.3 

4. Simulation Results 

Figure 8 shows results from Monte-Carlo simulations of 
three- and four-connected meshes. In both plots, U denotes 
processor utilisation, the average number of operations per 
processor per unit time. The left plot shows the relation be- 
tween n, /nB (number of processors in a row or column per 
band) and performance for a 72 by 72 mesh. The highest 
performance for the three-connected mesh is 0.127 which is 
about 50% higher than the lower bound derived in the pre- 
vious section. The lower bound is conservative, largely be- 
cause the analysis for the bound overestimates the probabil- 
ity that an element at a fork/join node waits for an arrival 
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band width and mesh size 

from the other queue. The highest performance occurs when 
nz/nB = 3, which is when the average length for the north- 
east and southeast queues are equal at one. The highest per- 
formance for the four-connected mesh is 0.172 which occurs 
when n,/nB = 2. This is the point where the four inputs to 
the processor node are equally likely to be last. 

The right plot of figure 8 shows the dependence of 
processor performance on the mesh size. Optimal values 
of n,/ng were used for the simulations: for the three- 
connected mesh, n,/nB = 3, and for the four-connected 
mesh, n,/nB = 2. For both meshes, performance rapidly 
approaches the limit. Small meshes perform somewhat bet- 
ter than large meshes because the timing correlations across 
a small mesh are stronger than those across a large one. 
These correlations contribute to higher performance. 

The left plot of figure 9 shows the performance of a four- 
connected mesh with buffers between processors. Each con- 
nection between processors is buffered by a FIFO queue 
using the usual Muller protocol. The times for an active 
stage to perform an operation are exponential random vari- 
ables with mean 0.1. If throughput were determined only on 
average-case time, then Thiele’s analysis [ 151 shows that op- 
timal performance of one operation every 1/1.1 time units 
would be achieved with two-stage FIFO buffers. As shown 
in figure 9, the variance in processing time is significant in 
overall performance, and higher performance is achieved 
with larger buffers. Of course, using larger buffers increases 
the latency of the pipeline, and the designer must address 
the trade-offs of throughput and latency. If a designer only 
considered average case processing times, there would be no 
reason to use buffers with more than two stages. Such a de- 
sign is likely to have less than optimal performance for real 
processing time distributions. 

The right plot of figure 9 shows the performance of a 72 
by 72 mesh for various distributions of processing times. 
Each distribution has a mean of one, and different distribu- 
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Figure 9. Effects of buffering and processing 
time distribution on processor utilisation 

tions in the same family are characterised by their standard 
deviations, U .  A random variable with the two-spike dis- 
tribution with standard deviation U takes on value 1 - U 

with probability 0.5 and value 1 + U with probability 0.5. 
As negative processing times are non-sensical, we require 
0 5 U 5 1. A uniformally distributed random variable with 
standard distribution B is uniformally distributed in the in- 
terval [l - f l u ,  1 + fl~]. To avoid negative processing 
times, B must be between 0 and l/fl. The Erlang-k distri- 
bution is obtained as the sum of k exponentially distributed 
random variables, and U = l/& (see [4]). For large val- 
ues of k ,  the central-limit theorem shows that this distribu- 
tion is close to a normal distribution with the same standard 
deviation; however, a random variable with an Erlang-k dis- 
tribution always takes on non-negative values. Finally, the 
ARM-adder distribution was obtained from trace data for 
the ARM microprocessor (see [17]). We obtained traces for 
three programs, with each trace providing carry chain length 
distributions for branches, addresses calculations, general 
arithmetic, and totals. We assumed delay proportional to 
carry chain length, and obtained twelve distributions for our 
simulations (four from each program trace). 

From figure 9, it is apparent that performance is deter- 
mined largely by the variance of the processing time distri- 
bution. This is consistent with the experience of the perfor- 
mance analysis community that many properties of queue- 
ing networks can be estimated from the first and second mo- 
ments of service time distributions (see [SI). The perfor- 
mance for the trace data is similar to that for the artificial dis- 
tributions, suggesting that reasonable estimates can be made 
for real designs once the mean and variance of the process- 
ing time distribution is known. We also noted that the mean 
carry-chain length from the trace data varied from 5.0 to 
21.0, with the total values for each trace between 9 and 11. 
This is much larger than the values for an adder with uni- 
formally distributed inputs. Thus, although logarithmic ex- 
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pected time for addition is often mentioned as an advantage 
of self-timed design, we don’t expect that this “advantage” 
will be realised in real processor designs. 

The data for the uniform and twin-spike distributions fit 
simple formulas. In particular, processor utilisation with 
uniform processor times fits 

uumform(a) = & (5 )  

utwin-splke(g) = & (6)  

Processor utilisation with the twin-spike distribution fits 

We note that 1 + (T corresponds to the maximum delay of 
the twin-spike distribution. This means that the expected 
performance corresponds exactly to worst-case processing 
time! We note that each operation in the process depen- 
dency graph has four successors. Each of these successors 
has probability of 0.5 of taking place after the maximum de- 
lay. Thus, the probability that at least one of these operations 
takes place after the maximum delay is 15/16, and the ex- 
pected number of these operations that take place after the 
maximum delay is 2. We suspect that this ensures that with 
high probability, there will be chains of operations in the 
process dependency graph where almost all operations take 
the maximum delay. At the time of writing, we don’t have a 
formal proof of this conjecture. 

The observations about the twin-spike design have impli- 
cations for self-timed design. For example, consider a de- 
sign where the time for a component to perform an opera- 
tion can take on one of two values depending on the value 
of its operands; in other words, it has a fast-mode for some 
operands and a slow mode for others. If long and short op- 
erations occur with equal probability, then a mesh of such 
components will operate at the rate corresponding to all op- 
erations being slow. Thus, adding hardware to distinguish 
between slow and fast operands only increases the complex- 
ity of the design and cannot improve performance. Our sim- 
ulations indicate that with a bimodal processing time distri- 
bution, at least 75% of the operations must be fast before 
the performance is not determined solely by the time for the 
slow operation. 

5. Conclusions 

Two oft-mentioned advantages of self-timed designs are 
freedom from clock skew and achieving average-case per- 
formance in data dependent computations. We have demon- 
strated that self-timed meshes can achieve a per-processor 
throughput that is independent of the size of the array. In 
contrast, the clock period for a synchronous design must 
grow asymptotically with the diameter of the network. In 
this asymptotic sense, self-timed arrays are faster than their 
synchronous counterparts. 

Our analysis was based on a queueing network model for 
a simple array assuming exponentially distributed process- 
ing times with mean one. Using this model, we showed that 
the average number of operations per processor per unit time 
is at least 1/12. This is a lower bound, and simulations sug- 
gest that more accurate estimates are 1/7.85 and 1/5.82 for 
three-connected and four-connected meshes respectively. 

Although the asymptotic performance of a self-timed 
mesh is within a constant factor of the average case perfor- 
mance for its components, the variance in processing time 
contributes significantly to the overall performance. This 
suggests that performance analysis techniques should be de- 
veloped that take into account the variance of processing 
times. Based on our simulations, the sum of the mean delay 
and the standard deviation provides a much better estimate 
of performance than the mean delay alone. We showed that 
the effects of processing time variance can strongly affect 
design decisions regarding the size of buffers to use between 
processing elements. For bimodal processing time distri- 
butions, performance can be completely determined by the 
time required for the slow operation. Unless the variance of 
processing time is considered, claims of “average-case” per- 
formance can be seriously misleading. 
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Proofs 

Computa t ion  graphs for queueing networks 

The queueing networks that we analyse have simple com- 
putation graphs. These graphs have a vertex corresponding 
to each operation for each node. If the operation for vertex 
uj  consumes an element output by the operation for vertex 
U,, then there is an edge from U, to uJ . We add a node, vo, 
with edges to all vertices for operations that are enabled in 
the initial state. This computation graph is rooted (at V O ) ,  di- 
rected, and acyclic. Because we consider meshes with no fi- 
nal state, our computation graphs are infinite. We associate a 
non-negative random variable with each vertex which is the 
time that the corresponding node takes to perform this op- 
eration after all of its inputs are available. We assume that 
these random variables are independent. The vertex vo  rep- 
resents the “initial operation,” and we define this to occur at 
time zero. The time at which a node performs on operation 
is the maximum of the time for any of its inputs plus the time 
for the operation. 

The max and sum operators are strictly increasing in their 
arguments. This gives rise to the following property that 
we use throughout our analysis. The proof is omitted for 
brevity. 

Property 1 I f  two graphs have the same structure, and the 
distributions of the random variables for delay times of the 
first graph stochastically dominate those of the second, then 
the distributions of the times at which operations occur in 
thejirst graphs stochastically dominate those of the second. 

A.2 Proof of lemma 3 

Recall that the lemma pertains to the queueing network 
shown in figure 6. The output of source component, a0,o 

is Poisson with rate 1/4, so the claims are trivially satisfied 
for this component. The sequence of components a o , ~  -+ 
seo,o -+ a1,o forms a M / M / 1  queue with arrival rate 
1/4 and mean service time 2. This is a well-studied sys- 
tem (see [7]). In steady state, the average queue length is 
one, and the departure process, a1,0, is Poisson with rate 
1/4. The condition that the queue initially holds one ele- 
ment guarantees that the transient behaviour of the output 
process is stochastically dominated by the Poisson process. 
Thus, the outputs of node a1,o satisfy the claims. A sym- 
metric argument applies for the outputs of node a0,1. 

Now, consider node a1,1 at the moment when an element 
arrives from queue seo, l .  Call this element e,,. Let r,, be 
the time of this arrival; note that this time can be determined 
either by the time at which ese was inserted into queue seo,l  
by node a0,1, or by the time at the previous element was 
removed from queue seo,l by node ~ 1 , ~ .  Let  TI,^ be the 
time at which element ese is processed by node a1,1, and 
let S,, = r1,1 - rsr. Let e,, be the corresponding ele- 
ment from queue ne1,0, and let r,, denote its time of ar- 
rival at the input of a1,1. By the symmetry of the network, 

Accordingly, 
p { r s e  < m e }  = p { T s e  >  ne}. Thus, p { r s e  < rne}  5 3. 

We first consider the case when r,, < rne. Note that ese  
and ene were output by the same operation of source node 
a o , ~ .  Furthermore, their predecessors have already been 
consumed by forkfjoinnode a1,1. Accordingly, element en, 
must beat the input of no deal,^. Inthiscase, ese willwaitat 
the input of a1,o for exponential mean two time waiting for 
ene to arrive, and an additional exponential mean one time 
waiting for a1,1 to perform its operation. This yields: 

If r,, 2 T,,, then S,, is exponentially distributed with mean 
one: 

F [ S s e ( r s e  L  ne](^) = 1 - e-u 
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Combining these observations, we obtain 

which means that S,, is stochastically dominated by an ex- 
ponential variable with mean two, as claimed. A symmetric 
argument applies for S,, . 

Finally, consider the queueing system composed of com- 
ponents a0,1 -+ seo, l  -+ a l , ~ .  Analysis similar to that for 
a0,o + seo,o -+ a1,o and property 1 show that the outputs 
of a1,1 are dominated by a Poisson process with mean two. 
0 .  

A.3 Proof of lemma 4 

We consider networks that have n, columns and ny rows 
of nodes connected by queues. We assume that n, and ny 
are both at least two. The first two columns have exactly 
ny nodes, and the number of nodes in a column is a non- 
increasing function of the column index. Likewise, the first 
two rows have exactly n, nodes, and the number of nodes in 
a row is is a non-increasing function of the row index. Any 
rectangular mesh can be constructed by starting with a sim- 
ple square and merging additional squares one at a time as 
shown in figure 7 such that each intermediate network satis- 
fies these constraints. In the merging process, fork nodes are 
promoted to fork/join nodes and Poisson sources are elimi- 
nated in the obvious manner. 

Let Q be a network as described above, and consider the 
addition of a square to a column. The argument when adding 
a square to a row is analogous. There are two cases to con- 
sider: either the square is added at the bottom of a new col- 
umn, or the square is added at the top of an existing column 
of Q. In either case, no inputs of nodes of Q are modified, 
so the performance of nodes of Q is unchanged. 

Consider the case when the node is added at the bottom of 
a new column. The nodes on the left edge of the square are 
replaced by nodes of Q. Therefore, the claims are satisfied 
for these nodes. The node in the lower-right corner of the 
square had received its inputs through a queue from a Pois- 
son source. After the merge, this node receives its inputs 
from the server node of Q. The service times of the server 
node are stochastically dominated by the service times of a 
Poisson source. By property 1, output times of the the lower- 
right node after the merge are dominated by those of the 
node from before the merge. By lemma 3, the lower-right 
node of the square satisfies the requirements of this lemma. 
Therefore, the node after the merge does as well. A simi- 
lar argument applies for the upper-right node (the forkljoin 
node). 

The case when the node is added on top of an existing 
column is similar. In this case, the lower-right node of the 
square is replaced by a node from Q; therefore it satisfies 
the claims of this lemma. 0 

A.4 Proof of property 5 

We “sew” opposite edges of the array together using 
queues that initially hold one element. 

Let a d s t  be the Poisson source of the array, and let Cy,,., 

be the row-predecessor of this node in the torus. The first 
stitch of our construction is a queue with input a,,., and out- 
put a d s t .  This promotes Q d s t  from a Poisson source to an 
exponential server with mean two. The time of the kth out- 
put of a d s t  depends on the time of the first k - 1 outputs of 
aSrc. The time of the k - lSt output of asrc depends on the 
time of the first k - n, outputs of a d s t .  Therefore, if a s r c  

is stochastically dominated by a Poisson process with rate 
1/4 for its first k - n, outputs, then, by lemma 4, Q d s t  will 
be as well for its first k - 1 outputs. This implies that as,., 
is stochastically dominated by a Poisson process with rate 
1/4 for its first k outputs. Because n, >_ 2, this provides 
an induction argument that all outputs of asrc and a d s t  are 
dominated by Poisson sources with rates 1/4. Property 1 en- 
sures that the network with this first queue added satisfies the 
claims of the proposition. 

The next ny - 1 queues are added to connect the left and 
right edges of the array. Each new queue promotes an expo- 
nential server node of the left edge to a forkljoin node. Argu- 
ments like those for lemmas 3 and 4 show that the outputs of 
the new networks are stochastically dominated by those of 
the array. Now, we have a cylinder with server nodes along 
its bottom edge and forkljoin nodes everywhere else. 

We now add the n, queues to join the top and bottom 
edges to form a torus. These create n, new squares. The 
output times for the torus are stochastically dominated by 
those for the cylinder which can be shown by an induction 

0 argument over time similar to the one above. 
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