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Abstract
A new delay-insensitive data encoding scheme for global

communication, level-encoded transition signaling (LETS), is
introduced. LETS is a generalization of level-encoded dual rail
(LEDR), an earlier non-return-to-zero encoding scheme where
one of two wires changes value per data bit per transaction.
In LETS, only one of N = 2n (1-of-N ) wire changes value
per n data bits per transaction. Compared to most common
return-to-zero encoding schemes, LETS has potential power
and throughput advantages, since fewer rails switch and no
return-to-zero phase is required. Compared to existing non-
return-to-zero schemes (i.e., LEDR), higher-dimension LETS
codes have a potential power advantage, with significantly re-
duced switching activity per data bit.

Two alternative 1-of-4 LETS codes are proposed, and ef-
ficient hardware for completion detection and conversion to
return-to-zero protocols is introduced. Finally, a general theo-
retical framework is presented which characterizes the proper-
ties of arbitrary 1-of-N LETS codes, as well as a simple pro-
cedure to generate such codes.

1. Introduction
Level-encoded dual-rail (LEDR) signaling [3] is a delay-

insensitive data encoding scheme that encodes two wires, or
”rails”, to encode one bit of data. One rail is a data wire (rail 1),
which holds the value of the bit in a standard single rail encod-
ing, and the other rail is a parity wire (rail 0), which indicates
phase by its parity relative to the data rail. LEDR uses a so-
called two-phase or non-return-to-zero (NRZ) protocol, since
no return-to-zero phase is required.

A distinguishing feature of LEDR is that the encoding
strictly alternates between two phases: even and odd. The data
value in each phase is always carried on rail 1. The parity value
is always carried on rail 0; in an odd phase, the two rails have
odd parity, while in an even phase they have even parity. The
encoding of bit 1 is 10 in the odd phase and 11 in the even
phase. The encoding of bit 0 is 01 in the odd phase and 00 in
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the even phase. For each new data that arrives, exactly one rail
makes a transition, with no return-to-zero.

The LEDR protocol is delay-insensitive [14]: in the transi-
tion from one valid code (in one phase) to any valid code (in
the opposite phase), it is impossible to pass transiently through
another code. Hence, one can detect the completion of a data
transmission unambiguously.1

The LEDR protocol has two potential benefits over return-
to-zero (RZ) schemes for asynchronous global communi-
cation [7]: throughput and power. Unlike return-to-zero
schemes, no ‘spacer’ or reset phase is required, hence LEDR
provides a significant system-level throughput advantage. Fur-
thermore, LEDR can provide a power advantage, since only
one transition occurs on a rail per data bit transmission, while
return-to-zero schemes require two transitions. These bene-
fits have encouraged recent applications using LEDR encod-
ing [4, 9].

The goal of this paper is to explore more efficient protocols
for delay-insensitive communication. A new delay-insensitive
data encoding scheme for global communication, called level-
encoded transition signaling (LETS), is introduced. LETS is a
generalization of LEDR encoding. In LEDR, only one of two
wires changes value per data bit per transaction. In contrast,
in LETS, only one of N = 2n (1-of-N ) wires changes value
per n data bits per transaction. Hence, LEDR can be regarded
as a special case: 1-of-2 LETS codes. Compared to existing
non-return-to-zero schemes (LEDR), higher-dimension LETS
codes have a potential power advantage, with significantly re-
duced switching activity per data bit. Compared to most com-
mon return-to-zero encoding schemes [1, 6, 15], LETS also has
potential power and throughput advantages, since fewer rails
switch per transaction and no return-to-zero phase is required.

Contributions. Two alternative practical 1-of-4 LETS codes
are introduced, and their properties are defined. Efficient hard-
ware is then presented to support 1-of-4 LETS codes, for com-
pletion detection and conversion between 1-of-4 LETS and
four-phase dual-rail (i.e., return-to-zero) protocols. The con-
verter is based on a recent efficient design for a converter be-
tween LEDR and four-phase dual-rail, which was carefully

1Note that delay-insensitive codes usually refer to return-to-zero codes,
where all rails are reset to zero between successive transmissions. However,
the same concept naturally extends to non-return-to-zero codes, like LEDR, in
which the completion of a data transition is unambiguous.



simulated after layout [7]. The new 1-of-4 LETS converter
makes only small modifications to this existing design. Over-
all, this new design maintains similar performance, in terms of
latency and cycle time, as the original converter design. Ad-
ditionally, two alternative pipeline designs for maintaining ac-
ceptable throughput are presented. Finally, a general theoreti-
cal framework is defined which characterizes the properties of
arbitrary 1-of-N LETS codes, as well as a simple procedure to
generate such codes. An analytical comparison of the trade-
offs of LETS codes and existing approaches is also provided.

Several delay-insensitive 1-of-N encoding schemes have
been proposed for return-to-zero protocols; these schemes are
straightforward generalizations of dual-rail. However, LEDR
codes are significantly more complex, with subtle phase and
adjacency requirements on codewords. In particular, the con-
tribution of the paper is the first 1-of-N scheme (with N>2)
proposed for level-encoded transition signaling, which demon-
strates that it is both possible and practical to encode two bits
of data in four rails where only one rail makes a transition per
data communication (i.e. 1-of-4), and that such a scheme is
scalable to encode arbitrary higher numbers of bits (i.e. 1-of-
N).

Related Work. There has been a body of work that has ex-
plored alternative encoding styles using a return-to-zero (RZ)
protocol, but much less work on exploring variants for non-
return-to-zero (NRZ) protocols.

In recent work on RZ encoding, the classic four-phase dual-
rail protocol (1-of-2 RZ) has been extended to 1-of-4, 1-of-N,
and m-of-N RZ codes [1, 6]. A key benefit is the potential for
significantly lower transition power (or energy per transaction)
for global communication. For example, a 1-of-4 RZ code en-
codes two bits on four rails, with only one rail changing value
– twice – per communication. In contrast, using a classic four-
phase dual-rail code, two bits are also encoded on four rails,
but with two rails changing value – each twice – per communi-
cation. Hence, with the same coding efficiency (i.e., bits/wire),
1-of-4 RZ codes can have significantly lower switching activity
for global data transmission.

Other general delay-insensitive encoding schemes using RZ
protocols are surveyed in [14], but few of these have been
shown amenable to efficient hardware implementation.

Novel variants of RZ codes have also been proposed,
which effectively overlap the reset phase with the next eval-
uate phase, thus combining some of the throughput bene-
fits of LEDR (i.e., two-phase) with the simplicity of RZ
codes [12, 10]. However, in [10], coding efficiency is poor,
with three rails per bit, and suffers from the same power over-
heads of other RZ schemes. In [12], the encoding scheme uses
an RZ approach, but where codes depend on previous history.

Other encoding schemes for asynchronous communication
include pulse mode logic [8, 5], bundled-delay signaling [13],
and phase modulation signaling [2]. However, these are in gen-
eral less robust than delay-insensitive encoding styles.

2. 1-of-4 LETS Codes
This section focuses on one class of LETS codes: 1-of-4.

These codes encode n = 2 bits on N = 2n = 4 rails, where

exactly one of the four rails makes a single transition per data
communication. As with LEDR, the codes alternate strictly
between two phases of even and odd codes. 1-of-4 LETS codes
have the same relationship to classic LEDR codes (i.e., 1-of-2
LETS), as 1-of-4 RZ codes have to dual-rail RZ codes.

This section first illustrates the simple derivation of a 1-of-
4 LETS code. Some formal properties of 1-of-4 LETS codes
are then presented, as well as an enumeration of the number of
distinct codes that exist. Finally, two particular 1-of-4 LETS
codes are then highlighted, and hardware support for one of
these LETS codes is then presented.
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Figure 1. Derivation of a 1-of-4 LETS Code
2.1. Deriving a 1-of-4 LETS Code: an Example

Figure 1 gives a simple stepwise derivation of a legal 1-of-4
LETS code. The figure illustrates the assignment of symbols
to codes in the code space. Since 1-of-4 LETS codes encode 2
bits, there are 22 = 4 symbols that must be assigned to codes:
S0, S1, S2 and S3 (these correspond, for example, to respec-
tive binary data 00, 01, 10 and 11). In addition, since 4 rails
will be used for the codewords, there are 24 = 16 possible
codewords or vertices, as shown in a 4-dimensional Boolean
hypercube. Finally, codes are partitioned into even and odd
phases, which must strictly alternate.

Figure 1a shows the initial unassigned code space. Arbitrar-
ily, symbol S0 in the even phase can be assigned first to some
codeword. Any codeword can be assigned this symbol; in the
figure, it is arbitrarily assigned to the origin = 0000.2

The next step is shown in Figure 1b. Starting with the given
code for symbol S0 in even phase, all four symbols in the odd
phase must be immediately reachable by exactly 1 transition
each. That is, symbols S0-S3 in the odd phase must be as-
signed to codewords at Hamming distance 1 from the origin.
There are four symbols to be assigned, and four neighboring
vertices at Hamming distance 1; these codewords are all 1-hot.
These odd symbols are arbitrarily assigned.

2The terms “odd” and “even” are used to define abstract phases, and they
do not restrict the code assignment. For example, a codeword with an even
number of one rails can be assigned to either “odd phase” or “even phase”.



Figure 1c assigns new even phase symbols that are reach-
able from the odd symbols of Figure 1b. In particular, consider
the odd symbol S1 as a starting point. From the codeword of
this symbol, four even symbols must be reachable at Hamming
distance one: for S0-S3. Even symbol S0 is already assigned
to the origin and reachable with 1 wire transition; therefore,
only even symbols S1-S3 must be assigned codewords. An ar-
bitrary satisfying assignment is shown in Figure 1c. Figure 1d
completes the code assignment. Interestingly, there are no de-
grees of freedom in assigning the remaining symbols. To see
this, first, it is shown how an odd symbol S0′ (in Figure 1c)
must be assigned to codeword wxyz = 1110. Currently, even
symbol S2′ is adjacent to the existing S0 odd symbol (i.e.,
Hamming distance one). However, even symbols S1′ and S3′

are not adjacent to odd S0, so a new odd symbol S0′ must
be assigned. This new odd symbol S0′ cannot be assigned to
codewords wxyz = 1011; if it were, then the even symbol S2′

would have two of its neighbors being odd S0/S0′, but since
it has only four neighbors, it would not immediately reach all
four distinct symbols. Hence, odd symbol S0′ must be as-
signed to codeword wxyz = 1110. Next, starting with this
new odd symbol S0′, it must in turn reach all 4 even symbols
at distance one, so a new even S0′ must be assigned to code-
word wxyz = 1111. Continuing this process, every remaining
codeword is deterministically assigned. The result is a valid
1-of-4 LETS code.

The above assignment procedure highlights all the degrees
of freedom in creating legal 1-of-4 LETS codes. The codes are
“level-encoded” trivially: the target is a functional assignment
of symbols to codewords in a hypercube, hence each codeword
is assigned exactly one unique symbol in a designated phase
(even or odd). Furthermore, interestingly, a multicode is gen-
erated: each symbol has 4 corresponding codes, 2 codes for
even phase and 2 codes for odd phase.
2.2. Basic Properties and Rules

Several important properties hold for 1-of-4 LETS codes.
Property #1: Level Encoding. The 1-of-4 LETS code assign-
ment problem can be formulated as a functional mapping from
4-dimensional codeword space (containing 24 = 16 possible
codewords) to symbols (S0-S3) and phases (even or odd). Be-
cause the mapping is functional, it is inherently a level-encoded
assignment.
Property #2: Alternating Phases. By definition of 1-of-4
LETS, one further constraint must hold on the assignment: the
code for each odd (even) symbol must reach codes for each
even (odd) symbol at Hamming distance 1.

The definition of a Hamming (weight) class is as follows.
Definition. Given a code space of N-dimensions, codes in
Hamming (weight) class k (where 0 ≤ k ≤ N ) are the set
of all codes with exactly k one bits.

The following basic rules hold for 1-of-4 LETS codes.
Sandwich Rule #1: Distinct Phases. Given a codeword X
(assigned to a symbol and phase), no adjacent codewords (i.e.,
Hamming distance 1) can be assigned to symbols of the same
phase as X .

Since a codeword has (i) exactly 4 neighbors at Hamming
distance 1, and (ii) must reach codewords for exactly 4 sym-
bols of the opposite phase, none of its immediate neighbors
neighbors can have the same phase.
Sandwich Rule #2: Distinct Symbols. Given a codeword X
(assigned to a symbol and phase), no two adjacent codewords
(i.e., at Hamming distance 1 from X) can be assigned to the
same symbol.

A similar argument applies as for Sandwich Rule #1.
Mirror Code (1’s Complement) Rule. Given a codeword X ,
assigned to a symbol Sx and a phase, the 1’s complement (i.e.,
bitwise complemented) code X̃ must also be assigned to sym-
bol Sx and the same phase.

This mirror code rule can be seen in the 1-of-4 LETS code
of Figure 1. A sketch of the proof is straightforward: start-
ing from an arbitrary symbol (e.g. even S0) assigned to an
arbitrary codeword (e.g. 0000), no even S0 code will appear
at distance-2, and therefore one must appear at Hamming dis-
tance with all bits inverted.
Hamming Weight Class Rule. All codes of a given Hamming
weight class will always be assigned to the same phase.

The derivation is straightforward from the above example.
If some symbol (e.g. S0) is assigned to the origin (weight class
0), which is in the even phase, then all 1-hot codes (weight
class 1) must be in the odd phase (since S0 needs four neigh-
bors, and there are only four 1-hot codes of weight class 1
in total), all 2-hot codes (weight class 2) in the even phase,
and so on. Initially, it might not appear obvious that all 2-hot
codes must be in the even phase; however, consider the exam-
ple shown in Figure 1c. After S1 has been assigned neighbors,
three out of the six codewords in Hamming weight class 2 have
been assigned even phase. According to the Mirror Code Rule,
the other three codewords in Hamming weight class 2 must
also be even, because these codewords are the complements of
the three already assigned.

Hence the weight classes represent “slices” of the code
space, where each slice is assigned to only odd or only even
symbols.
2.3. Theoretical Result: Number of Legal 1-of-4 LETS

Codes
Given that a legal 1-of-4 LETS code exists, as illustrated in

Figure 1, it is now shown how many distinct legal codes exist.
The derivation of Figure 1 provides a framework for generating
any legal 1-of-4 LETS code. Each step makes binding choices
on the assignment of symbols (and phases) to codewords.

In Figure 1(a), there appear to be 16 distinct assignments
of an even S0 symbol. However, by the Mirror Code Rule
above, there are in fact only 8 distinct choices: once the even
S0 symbol is assigned to the w = 0 half space, its 1’s com-
plement codeword in the w = 1 half space is guaranteed to
be assigned to the same symbol and phase. Figure 1(b) then al-
lows arbitrary assignments of the 4 odd symbols, S0-S3, to the
1-hot codewords. That is, there are 4! legal assignments at this
step. Figure 1(c) focuses on, without loss of generality, assign-
ing even neighbors to odd symbol S1, and the 3 even symbols
S1-S3 can be arbitrarily assigned to its immediate codeword



neighbors. That is, there are 3! legal assignments at this step.
Finally, Figure 1(d) has no degrees of freedom. In summary
there are 8 · 4! · 3! = 1152 possible legal 1-of-4 LETS code
assignments.
2.4. Two Practical 1-of-4 LETS Codes

Given the large range of possible 1-of-4 LETS codes, it
is useful to select practical ones which are most amenable to
hardware implementation. Two such codes are now presented.

a. Quasi-1-Hot 1-of-4 LETS Codes
     Rails (r2, r1, r0) – symbols: S0 – 111, S1 – 100, S2 – 010, S3 – 001

     Sx’ – Prime of original Sx (mirror with distance 4)

 symbol r3 r2 r1 r0 symbol r3 r2 r1 r0

S0 1 0 0 0 S0’ 0 1 1 1

S1 0 1 0 0 S1’ 1 0 1 1

S2 0 0 1 0 S2’ 1 1 0 1

S3 0 0 0 1 S3’ 1 1 1 0

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0

S0 1 1 1 1 S0’ 0 0 0 0

S1 0 0 1 1 S1’ 1 1 0 0

S2 0 1 0 1 S2’ 1 0 1 0

S3 0 1 1 0 S3’ 1 0 0 1

b. Quasi-Binary 1-of-4 LETS Codes
     Rails (r1, r0) – symbols: S0 – 00, S1 – 01, S2 – 10, S3 – 11

     Sx’ – Prime of original Sx (mirror with distance 4)

symbol r3 r2  r1 r0 symbol r3 r2  r1 r0

S0 0  1  0  0 S0’ 1  0 1  1

S1 0  0  0  1 S1’ 1  1 1  0

S2 0  0  1  0 S2’ 1  1 0  1

S3 0  1  1  1 S3’ 1  0 0  0

symbol r3 r2  r1 r0 symbol r3 r2 r1 r0

S0 0  0  1  1 S0’ 1  1 0  0

S1 0  1  1  0 S1’ 1  0  0  1

S2 0  1  0  1 S2’ 1  0  1  0

S3 0  0  0  0 S3’ 1  1 1  1

1-Hot ODD Codes 1-Cold ODD Codes

1-Cold EVEN Codes 1-Hot EVEN Codes

ODD Sx Codes

EVEN Sx Codes

ODD Sx’ Codes

EVEN Sx’ Codes

Figure 2. Two Practical 1-of-4 LETS Codes

In Figure 2(a), a quasi-1-hot 1-of-4 LETS code is shown.
Each symbol has 4 corresponding assigned codewords, 2 in
each phase. By the Mirror Code Rule, the two codewords for
each odd (even) symbol are bit inversions of each other. This
code uses the lower rails in many (but not all) of the code-
words as a 1-hot representation. The bit-inverted versions then
become analogous 1-cold representations. The only exceptions
are in in the assignment of the S0/S0′ symbols.

In Figure 2(b), a quasi-binary 1-of-4 LETS code is shown.
The same properties of the Mirror Code Rule apply. Here, the
two lower rails in all of the codewords serve as a binary repre-
sentation of the data, in either non-inverted or inverted form.
2.5. Hardware Support

This paper focuses on LETS codes to be used for global
communication, not for implementing function blocks. Hence,
there are only two key hardware components that need to be
defined for 1-of-4 LETS codes: (i) completion detectors, and
(ii) converters to and from RZ codes, to support RZ function
blocks.
2.5.1 LETS Completion Detectors

In RZ codes, a dual-rail code has an OR2 detector for 1 bit
(i.e., 2 rails), while a 1-of-4 code has an OR4 detector for 2
bits (i.e., 4 rails). These individual completion signals are then
combined with a tree of C-elements.

phase

LETS data_r3<N/2−1>

C

LETS data_r0<0>
LETS data_r1<0>

LETS data_r2<0>
LETS data_r3<0>

LETS data_r2<N/2−1>

LETS data_r1<N/2−1>
LETS data_r0<N/2−1>

Figure 3. Completion Detector for 1-of-4 LETS Code

By analogy, with LETS codes, a dual-rail code, i.e., LEDR,
has an XOR2 detector for 1 bit, while a 1-of-4 code has an
XOR4 detector for 2 bits. These individual completion signals
are then combined with a tree of C-elements. A completion
detector for 1-of-4 LETS codes is shown in Figure 3. Since the
LETS completion detector uses combinational XOR2 gates in
the first layer where sequential 2-input C-elements are used in
the LEDR design, the LETS completion detectors are some-
what simpler than LEDR.

2.5.2 LETS Code Converters: To and from Dual-Rail RZ
A converter design is now outlined, converting between

1-of-4 LETS codes (for global communication) and dual-rail
four-phase RZ codes (for implementing function blocks).

The design builds directly on a solution by Mitra et al. [7]
for LEDR conversion. In this prior approach, a family of low-
overhead converters was defined, converting between LEDR
codes (for global communication) and RZ codes (for imple-
menting function blocks). Several RZ function block styles
were supported: dual-rail, 1-of-4, and bundled data. A full
VLSI layout was completed, and detailed post-layout simula-
tions performed, to validate the latency and throughput of the
converter. It was demonstrated that the converters were effi-
cient and had low area overhead.

In this section, the LEDR converter design is first reviewed,
and then small modifications are proposed to handle 1-of-4
LETS interfaces. These modifications do not alter the con-
currency of the protocol, and add little hardware to the critical
paths. The focus of this design is to handle the quasi-1-hot
1-of-4 LETS code.
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Prior Work: LEDR Protocol Converters. The micro-
architecture of an existing LEDR protocol converter is shown



in Figure 4 (see [7]). LEDR encoding is used for global com-
munication, while local computation is implemented using a
four-phase dual-rail (i.e., RZ) protocol. The block accepts
LEDR input data from the left environment, converts it to four-
phase dual-rail data protocol and processes it in the logic block,
then the results are converted back to LEDR and sent to the
right environment. The key control signals are the input phase,
which carries the parity of the most recent LEDR input data;
the output phase, which carries the parity of the most recent
wave of LEDR output data; the enable, which governs the eval-
uate and reset phases of the four-phase dual-rail logic block;
and the logic block’s completion signal, comp. Both enable
and comp are level signals, making two transitions per compu-
tation; the input phase and output phase signals are transition
signals, making one transition per computation.

The LEDR converter operates as follows. In a quiescent
state, both enable and comp are low, indicating that the four-
phase logic block is reset to NULL (i.e., all-0 outputs). The
input phase and output phase have the same parity, indicating
that the most recent LEDR input data has been fully processed
and the results passed as LEDR output data. When new LEDR
input data arrives, the left LEDR completion detector detects
the valid input data, and transitions the input phase signal. The
control block then asserts the enable signal; the LEDR inputs
are then converted to four-phase dual-rail encoding, as shown
in Figure 5a, and the logic block evaluates. When evaluation is
complete, valid dual-rail data appears on the logic block’s out-
puts. These outputs pass immediately to the four-phase decod-
ing block, where each LEDR output bit can be set based solely
on the value of its corresponding four-phase bit and the current
input parity, as shown in Figure 5b (details in [7]). Eventually,
the LEDR output completion detector will detect the new out-
puts, and transition the output phase signal; input and output
phases are again matching.
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Figure 5. LEDR Protocol Converter Bit-Slice: (a) LEDR to
4-phase encoder (b) 4-phase to LEDR decoder from [7]

Concurrently, the logic block’s dual-rail outputs pass
through a completion detector which eventually asserts comp.
Although the logic block is done evaluating, it will not be reset
until the LEDR output completion detector makes a transition,
since the four-phase output bits are needed to encode the LEDR
output bits. Once the LEDR output phase transitions, the con-
trol block de-asserts enable, thus driving the logic block to its
reset phase. When the block is fully reset, its completion signal
comp is de-asserted, and the circuit returns to its initial state.

The converter allows a good degree of parallelism with its
input environment. In particular, a left acknowledge is sent on
as soon as results are computed and converted to LEDR on the
right interface (i.e., after the falling edge of the enable). This
event occurs after the completion of the logic block’s evalua-
tion phase, rather than the completion of the reset phase.

For applications where the node is used in a feed-forward
pipeline (Figure 1, [7]), an additional synchronization point is
added, to ensure that the node does not begin to process new
input data (from the left neighbor) until the current result has
been acknowledged (from the right neighbor). The current data
is thus protected from overwriting until the right acknowledge
is received.

A circuit layout was implemented in 0.18 micron TSMC
process, with five metal layers and a 1.8 V supply, using stan-
dard cell gates. The design was not heavily optimized. The
area for a 16-bit converter with no logic block (i.e., a FIFO
stage, simply converting from LEDR to four-phase dual-rail
back to LEDR) was quite small: only 0.018 mm. The perfor-
mance of the converter was also quite reasonable: 2.7-3.1 ns
latency and 3.9-4.2 ns minimum cycle time.
New Approach: 1-of-4 LETS Protocol Converters.

The 1-of-4 LETS protocol converter uses an identical
micro-architecture as the previous LEDR converter of Figure 4,
but with changes to only three different components: (i) the
two LEDR completion detectors (on input and output data);
(ii) the left LEDR to four-phase dual-rail encoder (Figure 5a);
and (iii) the right four-phase dual-rail to LEDR decoder (Fig-
ure 5b).

(i) 1-of-4 LETS Completion Detectors. Each of the two
LEDR completion detectors is replaced by a 1-of-4 LETS com-
pletion detector, shown in Figure 3.

(ii) 1-of-4 LETS to Four-Phase Dual-Rail Encoder. The new
encoder is shown in Figure 6a. It replaces the LEDR to four-
phase dual-rail encoder of Figure 5a. The design is simple,
exploiting the properties of the quasi-1-hot 1-of-4 LETS code.
Unlike a transition-signaling to four-phase dual-rail translator,
it is combinational, since a level-encoded input can be func-
tionally (i.e., combinationally) translated.

(iii) Four-Phase Dual-Rail to 1-of-4 LETS Decoder. The
new decoder is shown in Figure 6b. It replaces the LEDR to
four-phase dual-rail encoder of Figure 5b. As with the earlier
decoder, four-phase dual-rail inputs are received on the left,
and a code is generated on the right through SR latches. In
this case, however, two four-phase dual-rail bits (i.e., 4 rails),
instead of one bit, is supplied on the left, and a two-bit 1-of-4
LETS code (i.e., 4 rails), instead of a one bit LEDR code (i.e.,
2 rails), is generated on the right.

A key difference from the earlier LEDR decoder is that the
LETS decoder is no longer combinational, but requires state.
In particular, the 1-of-4 LETS code is a multicode: there are
two distinct codewords for each symbol per phase (see Fig-
ures 1 and 2). The left encoder of Figure 6a is combinational,
since the LETS code is ‘level-encoded’. However, the right
converter of Figure 6b must include sequential state (i.e., store
the current LETS output code) to distinguish which of the two
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Figure 6. LETS Protocol Converter Bit-Slice: (a) LETS to 4-phase dual-rail encoder (b) 4-phase dual-rail to 1-of-4 LETS decoder

multicodes to generate on new data inputs. Figure 6b shows
how the LETS output code is fedback through transparent D-
latches, to be used as state, to determine which of the two mul-
ticodes to generate, given the new four-phase dual-rail inputs.
Also, unlike the circuit in Figure 5b, no explicit “input phase”
control signal is used in the LETS converter. Instead, phase in-
formation is implicitly extracted from the stored current LETS
output in the “Select” block to generate the new LETS output.

The decoder logic implementation also differs from that of
Figure 5b. The new logic performs the following operations,
from left to right: (a) converts the current 1-of-4 LETS code
to a two-bit binary value; (b) compares the above value with
a binary version of the new two-bit dual-rail input, and indi-
cates in which bits (in binary) the two data items differ, if in
any; and finally, (c) using this difference, resolves which of the
two multicodes to generate for the new data, and activates the
appropriate SR latch.

The new LETS decoder operates as follows. After a data
item is processed and a LETS output is generated, the logic
block resets. When fully reset, the comp signal makes the D-
latches transparent, feeding the current LETS output to the de-
coder logic inputs. At this point, the four-phase dual-rail inputs
are NULL, hence the SR latches are in the hold state. When en-
able is asserted high and the dual-rail logic block is activated to
start evaluation, the D-latches are made opaque. Finally, when
new four-phase dual-rail inputs arrive, the logic will activate
the set or reset of exactly one SR latch, corresponding to the
one bit which will flip in the current 1-of-4 LETS output code.
The new 1-of-4 LETS code is thereby directly generated to the
right environment.

Note that the “Storage” block component of Figure 8 is not
on the critical path of operation. In particular, when the dual-
rail logic block completes its reset, the current LETS output
can immediately pass through the D-latches and logic of “Stor-
age”, to reach the Comparator inputs. The critical dual-rail to
LETS output delay is therefore from the new dual-rail inputs
(bottom of Figure 8) to the SR latch outputs.

The area and delay overhead of the combinational logic
for this 1-of-4 LETS right decoder (which converts two bits)

should not be significantly different per bit than that of the
LEDR right decoder of Figure 5b (which converts only one
bit). Beyond the logic, only 4 transparent D-latches are added,
which are not on the critical path. Given the detailed break-
down of post-layout area, latency and throughput for the pre-
vious LEDR converter [7], the modifications to create a LETS
converter are expected to have only small difference in area,
and to have little effect on overall latency and throughput.

(iv) Summary. Because 1-of-4 LETS codes are level-
encoded, they can be functionally translated by the left en-
coders – with only combinational logic – to any other RZ code.
This is a clear advantage over transition-signaling codes, which
require state to translate.

However, because the 1-of-4 LETS codes are multicodes,
the right decoders must include state. Note, this disam-
biguation is a simpler problem than translating to transition-
signaling codes: with 1-of-4 LETS codes, there are only two
alternative multicodes in each phase to translate a given sym-
bol. However, in transition-signaling, any codeword may be
used for any symbol, depending on the previous history.

The hardware complexity presented in this section was de-
rived using 1 of the 1152 possible legal 1-of-4 LETS code as-
signments (see Section 2.3). The converter hardware imple-
mentation for other 1-of-4 codes requires only minor modifica-
tions to the circuits shown in Figures 6a and 6b. More specif-
ically, for the encoder, the only modification needed is the re-
placement of the two XOR gates to left of the figure by some
other 3-input combinational logic; likewise, modifications to
the combinational logic in the “Storage” block of the decoder
may also be necessary. Other than these, only minor wiring
changes are needed in the “Comparator” and “Select” blocks
of the decoder.
2.5.3 Performance Analysis

The performance analysis of the LETS protocol converter
follows the same approach used for the earlier LEDR convert-
ers (Section 4, [7]). Three key metrics, (i) latency, (ii) sta-
bilization time, and (iii) minimum cycle time, are derived and
the results are compared to those of the LEDR design. Since
a layout was performed on the LEDR implementation and ac-



curate simulation results are available, this analytical compari-
son provides a rough estimate of the performance of the LETS
design. For the LETS converter analysis, a simplified design
was assumed without function blocks. In practical applica-
tions where function blocks are used, overheads of the LETS
converter should be significantly reduced (c.f., LEDR analy-
sis in [7]). More details on each metrics are summarized as
follows.

(i) Latency. The latency of the protocol converter circuit is
defined as the delay between the arrival of a full set of LETS in-
puts from the left environment to the circuit at quiescent state,
to the output of a full set of LETS data from the circuit to the
right environment. Referring to the micro-architecture diagram
in Figure 4, the latency is the delay through the left completion
detector, followed by the delay through the logic in the control
logic block to generate the enable signal, and the delay through
the four-phase encode, logic and decode blocks.

Both the LEDR and LETS protocol converters have the
same blocks on the critical path, therefore the difference in
their latency metrics is only due to the different implementa-
tion of the following two blocks: (a) LETS completion detec-
tor: replacement of a layer of 2-input C-elements by XOR2
gates; and (b) four-phase decode: two extra layers of AND2
gates. Note that even though the implementation of the encoder
block is different for the LEDR and LETS designs (compare
Figure 5a to 6a), the extra layer of XOR gates in the LETS de-
sign does not contribute to extra delays, as they are not on the
critical path: outputs at the XOR gates are always expected to
be available before the arrival of the enable signal at the AND
gates under normal operating conditions.

From the extracted-layout simulations of the LEDR design,
the latency (assuming no function blocks) was 2.7-3.1 ns.3 The
implementation differences in the LETS design is expected to
add an overhead of roughly 15%-20% to these numbers.

(ii) Minimum Pipelined Cycle Time. The minimum
pipelined cycle time is defined as the steady-state processing
time per data item in a pipelined environment where the left en-
vironment acts as a continuous data source, and the right envi-
ronment a continuous sink, assuming a set of identical stages.
The minimum pipelined cycle time of the LETS protocol de-
sign is the same as that of the LEDR design, except for the
difference in latency (as previously described), and the delays
through the completion detection due to implementation dif-
ferences.

In the extracted-layout using the LEDR converter design,
the minimum pipelined cycle time was 3.9-4.2 ns. The extra
logic in the LETS design is expected to impose a 15%-20%
overhead on the cycle time (assuming no function blocks).

(iii) Stabilization Time. The stabilization time of the LETS
protocol converter is defined as the delay between the arrival
of a full set of LETS input from the left environment to the
circuit in quiescent state, to the time when the circuit returns to
its initial quiescent state. It includes the latency of the circuit,
plus the delay through the output completion detector block,

3The range is due to different data inputs for the simulation runs in the
LEDR design.

followed by the delay though the control logic block, the reset
time of the four-phase function block, and the delay through
the “Storage” block of the LETS decoder logic.

Compared to the original LEDR design, the stabilization
time of the LETS design differs in its latency (as described
above), the delay through the output completion detector (due
to the different internal implementation), and in an additional
delay through the storage block of the LETS decoder logic.

In the extracted-layout using the LEDR converter design,
the stabilization time was 5.9-6.7 ns. Given that the comple-
tion detectors have comparable performance, it is expected that
the overall difference for the stabilization time, due to latency
and “Storage” block overhead, is roughly 30% over the LEDR
stabilization time (assuming no function blocks).
2.5.4 Timing Constraints

As in the LEDR design, the LETS design is nearly quasi-
delay insensitive (QDI), but needs a few one-sided timing con-
straints to ensure its correct operation. When compared, the
LETS design eliminates one of the two LEDR design timing
constraints, but adds two easy-to-satisfy constraints.

The previous LEDR design observes two one-sided timing
constraints: (i) a pulse-width requirement for the control sig-
nal of the SR-latch that is used to generate the enable signal
(Figure 9, [7]); (ii) a setup and hold time requirement for the
D-latches in the four-phase to LEDR decoder block (Figure 5).
In the LETS design, (i) is still necessary since the LETS con-
verter uses the same logic for generating the enable signal;
however, (ii) is eliminated due to implementation differences
in the LEDR and LETS converters. Although there are setup
and hold time requirements for all SR-latches, these constraints
can be avoided by replacing the SR-latches with C-elements.

The two new timing constraints for the LETS converter de-
sign are: (i) the control input at the D-latches used in the four-
phase decoder (Figure 6b) must be long enough to latch the
input data properly, and must end before the new four-phase
input arrives; (ii) in the four-phase decoder (Figure 6b), by the
time the new four-phase input arrives, the LETS output from
the previous iteration must have propagated through the logic
in the storage stage and arrived at the comparator stage.
2.6. Improving Throughput: Pipelining LETS Channels

The focus of this paper is to use LETS codes for robust
point-to-point global communication. However, when commu-
nicating over long wires, one problem that may arise is main-
taining acceptable throughput. Pipelining can be introduced to
address this problem. Two LETS pipeline designs for sustain-
ing throughput are presented; the first uses a simple one-sided
timing constraint, while the latter is more robust (QDI).

The design in Figure 7 is based on the MOUSETRAP
pipelines in [11]. The structure of the LETS pipeline design is
the same as in the original MOUSETRAP design, except that
the bundled data path and bundled delay are now replaced with
the 1-of-4 LETS data path and completion detectors, respec-
tively. The LETS design is more timing-robust than MOUSE-
TRAP; it eliminates that latter’s one-sided bundling constraint,
but still retains the one-sided data overrun constraint (stage N
must close its latch before N-1 sends new data).
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Alternatively, a more timing-robust LETS pipeline can be
used, which is based on Dean’s LEDR-style pipelines (see [3],
Fig. 11). As in the LEDR-style design, special customized
identity function latches are created to selectively store even
and odd phase data, which allow “self-latching” of data. The
LEDR-style latches can be modified to LETS-style structures
(designs omitted due to space limitations).

3. 1-of-N LETS Codes
This section presents a general framework for encoding n

bits of data in N = 2n rails in LETS, i.e., 1-of-N LETS. This
framework serves two purposes. First, it allows for the charac-
terization of the entire class of LETS codes – including LEDR
and any N beyond N = 4 – in terms of its code space and gen-
eral properties. Second, it provides a formal method for con-
structing LETS codes based on fundamental properties of level
encoding and transition signaling. Both the properties and the
method can be used as a basis for exploring other codes.

Three key results are presented: (i) a characterization of the
minimum requirements, in terms of the number of rails and
the size of code space, required to encode n bits of data (Sec-
tion 3.1); (ii) a procedure for generating legal 1-of-N LETS
codes for any given N (Sections 3.2-1 and 3.2-2); and finally,
(iii) a proof of the correctness of the procedure (Section 3.2-3).
3.1. Basic Properties

Some basic properties and theorems on 1-of-N LETS codes
are presented in this section.

Informally, a LETS code is one that satisfies two properties:
(A) Level encoding: datum value can be extracted directly from
a codeword; and (B) Transition signaling: there is no return-to-
zero phase, or equivalently, each symbol can reach all symbols
by a single transition on exactly one rail, and can likewise be
reached by all symbols.

This is more formally stated as follows.
Definition 1 (1-of-N LETS code) A 1-of-N LETS code is
triple (S, C, h) where S is a set of symbols, C ⊆ {0, 1}N a
set of codes and h : C → S a function which maps a code
c ∈ C to a symbol s ∈ S, such that the following two proper-
ties are satisfied:

A. Level encoding: h maps each code c ∈ C to at most one
unique symbol s ∈ S,

B. Transition signaling: if c is assigned a symbol, then for
each symbol sj ∈ S, there exists exactly one code of Ham-
ming distance 1 from c which maps to sj .

The 1-of-N LETS code assignment problem can now be
formally defined.

Definition 2 (1-of-N LETS code assignment problem) Given
n bits of data to encode on N wires, the LETS code assignment
problem is to define a set of mappings h : C → S, where
C ⊆ {0, 1}N is a set of codes and S = {s1, s2, ..., s2n} a
set of symbols representing n bits of data, such that both the
level-encoding and transition-signaling properties of LETS in
Definition 1 are satisfied.

Theorems 1 and 2 show the minimum requirements for the
number of rails and the size of the code space needed to encode
n bits of data in LETS, respectively.

Theorem 1 (Non-existence of solution for N < 2n ) Given n
bits of data to encode on N rails, there does not exist a LETS
code for any N < 2n.

Proof: For any LETS code, a symbol must be able to reach all
symbols by flipping a distinct bit of a codeword that is assigned
to it (transition signaling property of LETS). If fewer than N
rails are used to encode a symbol, then the symbol must have
fewer than N adjacent neighbors of Hamming distance one,
therefore it cannot reach all symbols. It follows that there does
not exist a LETS code to encode n bits of data using N < 2n

rails. �

Theorem 2 (Complete code assignment) If there exists a
LETS code to encode n bits of data in N = 2n rails, the entire
code space C = {0, 1}N must be assigned.

Proof: This is a proof by induction.
Base case: Suppose an all-zero code {0}N (Hamming class

zero) is assigned a symbol. In order for this code to reach all N
symbols (to satisfy the transition-signaling property of LETS),
all N codes of Hamming class one must be assigned unique
symbols.

Hypothesis: Assume all codes in Hamming class m were
assigned symbols, then all codes in Hamming class m+1 must
also be assigned symbols.

Induction: Every m+2 codes in Hamming class m+1 form
a group which reaches a unique code in Hamming class m+2.
For example, suppose m = 1, then the codes 0011, 0101 and
0110 from Hamming weight class two form a group with a
common neighbor 0111 in Hamming weight class three. There
are

(

N

m+2

)

ways to form such groups in Hamming weight class
m+1, if all codes in this class were assigned; therefore,

(

N
m+2

)

codes in Hamming class m + 2 must be assigned symbols.
However, in total, there are only a maximum number of

(

N
m+2

)

possible codes in Hamming class m + 2. As a result, all codes
in Hamming class m + 2 must be assigned.



This proof assumes the assignment begins with a codeword
in Hamming class zero. However, it also applies if any arbi-
trary codeword is chosen, as the code space is isomorphic up
to the re-labeling of symbols. �

Interestingly, the complete code assignment property
of Theorem 2 implies the multi-code property of higher-
dimensional LETS codes, as in 1-of-4 LETS.
3.2. Generating 1-of-N LETS Codes

Having shown that there does not exist any 1-of-N LETS
code to encode any n bits of data for N < 2n, this section in-
troduces a general procedure for deriving arbitrary LETS codes
for N = 2n. More specifically, a solution to the 1-of-N LETS
code assignment problem is presented.
3.2.1. Overview of Approach

The strategy to solve the LETS code assignment problem
follows three main steps. First, a data structure, called the bit-
flip matrix, which defines a mapping between symbols, is in-
troduced. Second, it is shown that the bit-flip matrix can be
used to generate a consistent code. Finally, it is shown that any
code it generates is also always a LETS code.

More concretely, the bit-flip matrix is an N × N matrix
where each row and column represent a symbol in a 1-of-N
code, and each matrix entry represents the bit position which
differs between a codeword assigned to the symbol in the cor-
responding row, and that in the corresponding column. The
bit-flip matrix can be used as a code generator: when given a
symbol which has already been assigned a codeword, the ma-
trix can be used as a lookup table to assign further codewords
to symbols, by indicating which bit to flip in order to get to the
new symbol.

The rest of this section is organized as follows. Subsec-
tion 3.2.2 presents a formal definition of the bit-flip matrix
problem. It also shows that a solution to the problem always
exists, and a procedure to derive the solution is introduced.
Subsection 3.2.3 presents a simple and direct procedure to gen-
erate a code from a bit-flip matrix. In Subsection 3.2.4, the re-
lationship between the bit-flip matrix problem and the 1-of-N
LETS code assignment problem is formally established. More
specifically, it is shown that a legal bit-flip matrix always gen-
erates a legal 1-of-N LETS code.
3.2.2 The bit-flip matrix problem

The bit-flip matrix constraint-satisfaction problem is de-
fined as follows.
Definition 3 (The bit-flip matrix problem) Given an N × N
matrix, assign integers 0...N − 1 to the matrix such that the
following three properties are satisfied:

1. For each row, all row entries must be distinct.
2. For each column, all column entries must be distinct.
3. Given column i and two entries in the column, mki = a

and mli = b, there must exist another column, j, such
that mkj = b and mlj = a.

Figure 8 shows an example bit-flip matrix, A, for N = 8.
A quick inspection verifies that this matrix satisfies all three
constraints for the bit-flip matrix problem, namely, all rows

and columns have distinct entries, and for every pair of entries
in a column, there is always another column with the same pair
in the corresponding row positions, in reverse order.

Intuitively, the bit-flip matrix can be understood as follows.
The rows and columns of the matrix represent a set of sym-
bols s0...sN−1, and the matrix entries mij = {0...N − 1} a
set of operations for mapping si to sj . Given a set of bit vec-
tors, they can be partitioned into N non-overlapping sets, each
associated with a single symbol. In this way, the operation de-
fined by each matrix entry mij can be considered a “bit flip”
function, determining the bit position to flip in a bit vector be-
longing to symbol class si, in order to map it to a bit vector
belonging to symbol class sj .

s0 s1 s2 s3 s4 s5 s6 s7

s0 0 1 2 3 4 5 6 7
s1 1 0 3 2 5 4 7 6
s2 2 3 0 1 6 7 4 5
s3 3 2 1 0 7 6 5 4
s4 4 5 6 7 0 1 2 3
s5 5 4 7 6 1 0 3 2
s6 6 7 4 5 2 3 0 1
s7 7 6 5 4 3 2 1 0

Figure 8. A Bit-Flip Matrix

Having formally defined the bit-flip matrix problem, it is
now shown that there always exists a matrix which satisfies all
the constraints defined in Definition 3 for all N = 2n, and that
there is a mechanical procedure to construct such a matrix.

Theorem 3 (Existence of legal bit-flip matrices) There al-
ways exists a solution to the bit-flip matrix problem for any
N = 2n.
Instead of a formal proof, a general method which can be used
to generate a legal bit-flip matrix for any N = 2n is sketched
below. Since such a general method exists, it indirectly proves
that there always exists a solution to the bit-flip matrix problem
for N = 2n.

Consider again the matrix shown in Figure 8. Notice that
the upper left quadrant (rows and columns 1 to 4) is a legal bit-
flip matrix for N = 4. Further notice that the upper left corner
with rows and columns 1 to 2 is also a legal matrix for N = 2.
It is also not difficult to see that all four quadrants of the N = 8
matrix have similar properties. It is obvious then, given a legal
matrix for N = 2k code, one can construct a legal N = 2k+1

matrix by repeating this recursive structure. Moreover, a sys-
tematic re-labeling of the matrix entries will also always result
in a legal matrix. It should be noted that not all legal matrices
can be constructed by this method. However, by following this
method, one can always generate a legal matrix.
3.2.3 Generating a consistent code from a bit-flip matrix

It is now shown how any legal bit-flip matrix satisfying all
rules in Definition 3 of the bit-flip matrix problem can be used
to generate a consistent code, i.e., one in which every codeword
is assigned to no more than one symbol.

Let the row and column indices of a bit-flip matrix, A, rep-
resent symbols in a code, and each matrix entry m(i, j) a bit-
flip function which maps the symbol in row i, si, to that in



1 GEN CODE(A, c0, s0)
2 c′0 = complement(c0)
3 GEN NEXT(A,c0, s0, c′0)
4 return h

5 GEN NEXT(A,c, s, c′0)
6 if (c = c′0)
7 return h

8 else
9 for j = 0 to 1 do
10 c+ ← bit invert(A[s][j], c)
11 h(c+)← sj

12 GEN NEXT(AT , c+, h(c+), c′0)

Figure 9. Pseudocode: generating a code from the bit-flip ma-
trix
column j, sj , by flipping the bit at position m(i, j) of a code-
word assigned to si, then given a codeword c that has already
been assigned to symbol si, the bit-flip matrix can be used as
a look up table to assign symbols to the set of N codes which
are of Hamming distance 1 from c. Each of these N new code-
word/symbol pairs (ci, si) can then be used to generate N new
codeword/symbol pairs each using the transpose of matrix A,
i.e., AT , as a look up table.

Starting with an arbitrary “seed assignment” of a codeword
of length N , c0 = {0, 1}N , to a symbol s0, and repeating the
procedure described above, an N × N bit-flip matrix A (and
its transpose, AT) can be used to assign symbols to the entire
code space C = {0, 1}N .

The pseudo-code for this procedure is shown in Figure 9.
The procedure accepts as parameters a bit-flip matrix A and a
seed code/symbol assignment (c0, s0), and returns a mapping
function h which maps each code c ∈ {0, 1}N to a symbol
s ∈ {s1, s2, ..., sN}. The procedure GEN CODE first com-
putes the bitwise complement of c0 (line 2), which is used as
terminator for the recursive procedure GEN NEXT, which it
calls in line 3. Given a codeword/symbol pair, GEN NEXT
assigns N next codeword/symbol pairs by using the matrix A

(and its transpose, AT) as a lookup table, and recursively calls
itself. The recursive call terminates when the bitwise comple-
ment of the seed code is reached (line 6). At this point, the
mapping function h is returned.

It is now proved that a code generated by this method is
always consistent.

The entries in a bit-flip matrix can be viewed as ‘bit-flip’
functions, defined as follows.

Definition 4 (Bit-flip function) Given a set of codes C and a
set of symbols S, and a pair (c ∈ C, s ∈ S), where c is a code-
word assigned to symbol s, i.e., h(c) = s, the bit flip function
fj : C × S → C × S maps the pair (c, s) to (c′, s′), where c′

is obtained from c by flipping its jth bit, and s′ any symbol in
S.

In order for the bit flip function to always generate a consis-
tent code, it must have the following properties:

Property 3 (Consistency properties of bit flips) A bit flip
function must have the following properties in order to
generate a consistent code:

A. Symmetry: if fi(c, s) = (c′, s′), then fi(c
′, s′) = (c, s)

Flipping the same bit of a codeword assigned to a symbol
twice always results in the symbol itself.

B. Commutativity: fifj(c, s) = fjfi(c, s)
From a codeword assigned to a symbol, flipping two bits
in succession always lead to the same symbol, regardless
of the order in which the bits are flipped.

It is now shown that any code generated by a legal bit-flip
matrix indeed satisfies Properties 3A and 3B.
Theorem 4 (Consistency of codes) Any code generated by a
legal bit-flip matrix is always consistent, i.e., any codeword
is assigned to at most one symbol.
Proof: Since a matrix A and its transpose A

T are used to
generate codes of opposite phases, the symmetry property of
bit-flips is satisfied. Constraint 3 of the bit-flip matrix, in ad-
dition, ensures that any code it generates satisfy the commu-
tativity property. Since the algorithm shown in Figure 9 starts
the code assignment process with a code that is already consis-
tent (i.e., a code with a single member, the seed code/symbol
pair), and the symmetry and commutativity properties of bit-
flips preserve the consistency (i.e., level-encoding) property of
a code that is already consistent, the code generated from a
legal bit-flip matrix must also be consistent. �

3.2.4 Existence and generation of LETS codes
Having shown how a legal bit-flip matrix is constructed, and

how it can be used to generate a consistent code, it is proved
in this section that this method can be used to generate a LETS
code. More specifically, it is shown in Theorem 5 that a legal
bit-flip matrix can be used to generate a LETS code, and fur-
thermore, in Theorem 6 that any code generated by this method
is always a legal LETS code.

It has been shown in Property 3 that in order for the bit-flip
function to generate a consistent code, it must process symme-
try and commutativity properties. It is now shown in Property 4
that in order for the bit-flip function to generate a LETS code,
it must possess two additional properties:
Property 4 (Transition signaling properties of bit-flips) To
satisfy its transition signaling properties, the bit-flip function
of a LETS code must have the following properties:

A. i 6= j ⇒ fi(c, s) 6= fj(c, s)
Flipping different bits of a codeword always results in
codewords that are assigned to different symbols.

B. for each s ∈ S, s = f(c, s′) for any s′ ∈ S
Every symbol can be reached by another symbol with a
single bit flip.

A formal relationship between the constraints in the bit-flip
matrix problem (Definition 3) with the LETS properties (Def-
inition 1) can now be established. More formally, it is shown
in Lemma 1 that the matrix constraints imply the LETS prop-
erties. This Lemma will be used to prove Theorems 5 and 6.
Lemma 1 The constraints for the bit-flip matrix problem (Def-
inition 3) implies the LETS properties (Definition 1), i.e., any
code that satisfies the constraints imposed by the code genera-
tor matrix must also satisfy the LETS properties.



Proof: Matrix Constraint 1 (distinct row entries) implies Prop-
erties 4A and 4B (transition signaling) of the bit flip function.
Matrix Constraints 1 and 2 (distinct column row entries) to-
gether further implies Property 3A (symmetry) of the bit flip
function, which requires that the bit-flip matrix for opposite
phases (odd and even) of a code be transposes of each other.
Finally, matrix Constraint 3 (reversal of column pairs) implies
Property 3B (commutativity) of the bit flip function. Together,
the set of constraints for the matrix constraint satisfaction prob-
lem implies the bit-flip function, which in turn guarantees that
the LETS properties in Definition 1 are satisfied. �

Theorems 5 and 6 can now be directly proven.
Theorem 5 (Existence of a 1-of-N LETS code) A code gener-
ated by a legal bit-flip matrix is always consistent (i.e., any
codeword is assigned only one symbol), and that it is also a
LETS code.
Proof: The consistency of any code generated by a bit-flip ma-
trix has already been proven in Theorem 4. This implies that
the code satisfies the level-encoding property of LETS (Defini-
tion 1). Constraints 1 and 2 of the bit-flip matrix further ensure
that Properties 4A and 4B of the bit-flips are satisfied. There-
fore the transition signaling property of LETS is also satisfied.
It follows that the code is also a LETS code. �

Theorem 6 (Safety of LETS code generation method) All
codes generated by a legal bit-flip matrix are legal LETS
codes.
Proof: Since all codes generated by a legal bit-flip matrix must
satisfy all of constraints 1 to 3 of the bit-flip matrix problem
(Definition 3), then by Lemma 1 and Theorem 4, they must all
be legal LETS codes.
3.2.5 Summary

This section presented a method for generating arbitrary 1-
of-N LETS codes based on the properties of level encoding
and transition signaling. It is proved that this method is safe,
i.e., all codes generated by the method are LETS codes. It is
conjectured that this method is also complete, i.e., all LETS
codes can be generated by this method, though a proof would
require further investigation.

It should also be noted that the LETS converter designs pre-
sented in Figure 6 can be directly extended to handle 1-of-N
codes for N > 4. The complexity of the hardware is expected
to scale linearly with respect to N .

4. Analytical Evaluation
A comparison table of global communication coding

schemes is presented in Table 1. The columns are divided into
two parts. In the left-most part, the ”Encoding Schemes” col-
umn lists the general categories and names of several protocols
used for asynchronous global communication; these protocols
were then evaluated using the metrics listed in the right-most
part of the table.

For the evaluation metrics, the “Throughput” column, indi-
cates if a 4-phase (RZ) protocol or a 2-phase (NRZ) protocol is
used. In the next two columns, “Coding Efficiency” and “Tran-
sition Power Metric” are reported based on the number of bits

per wire and the number of transitions per bit (bit-flips) in a
single transaction, respectively. The “Latency Overhead Met-
ric” column gives the implementation of the completion detec-
tors, from which one can infer the overhead on latency. The
final column, “Timing Constraints”, lists details of the timing
robustness for each protocol.

The rows of the table are divided into three parts. The first
part, “Return-to-Zero”, contains four classes of codes which
include 1-of-2 Dual Rail, 1-of-4, 1-of-8, 1-of-N , and M -of-N .
Similarly, in the second part, 1-of-2, 1-of-4, 1-of-8, and 1-of-
N are analyzed for the LETS encoding protocol. The last part,
“Miscellaneous”, shows details of the three encoding styles for
transition signaling, bundled data,4 and pulse mode.

Based on this table, LETS shows potential benefits in tran-
sition power and coding efficiency when compared to other
schemes. More specifically, the table indicates that 1-of-4
LETS has coding efficiency comparable to that of 1-of-2 RZ,
1-of-4 RZ, and LEDR, and at the same time, yields maximal
throughput since it does not use a RZ phase. In addition, it
has significant transition power benefits over 1-of-2/1-of-4 RZ
and LEDR. In Section 2.5, it has been shown that the converter
hardware for 1-of-4 LETS requires only moderate changes to
the LEDR converter hardware; therefore, there should be no
significant performance penalties using a 1-of-4 LETS con-
verter over an LEDR converter.

An interesting observation about 1-of-N LETS encoding is
that, like 1-of-N RZ, the power begins to experience diminish-
ing return for N > 4. For example, the transition power for a
1-of-4 LETS code is 50% of 1-of-2 LETS code, while a 1-of-8
LETS code uses 66% of the transition power of 1-of-4 LETS.
This indicates that within the LETS codes, 1-of-4 appears to be
an ideal coding design or “sweet spot” because of its increase
in coding density without degradation in other metrics.

Finally, when compared to the three miscellaneous encod-
ing schemes, LETS appears to have comparable results to that
of transition signaling, and shows clear advantages over pulse
mode, which uses two transitions for each data transaction, and
requires a complex completion detector, as two pulses, rather
than two edges, need to be caught [5, 8]. The LETS protocol
is also more robust than the bundled data scheme.

5. Conclusions and Future Work
A new general delay-insensitive data encoding scheme for

global communication, called level-encoded transition signal-
ing (LETS) is introduced. LETS is a generalization of an
existing scheme, LEDR, and encompasses a wide family of
codes. Two alternative practical 1-of-4 LETS codes are pro-
posed, along with efficient hardware for completion detection
and conversion between 1-of-4 LETS and four-phase dual-rail
protocols. A general theoretical framework is presented, which
characterizes the properties of arbitrary 1-of-N LETS codes, as
well as a simple procedure to generate legal LETS codes. An
analytical comparison of the tradeoffs between LETS codes
and existing approaches is also provided.

4The “Transition Power Metric” for bundled data is calculated based on the
assumption that data is random, i.e., the probability of a bit flipping on a wire
per data transaction is 0.5.



Encoding Scheme
Throughput

Metric
(RZ vs. NRZ)

Coding
Efficiency

(# of
bits/wire)

Transition
Power Metric

(# of transitions/
bit/transaction)

Latency
Overhead Metric

(due to Completion Detector)
Timing

Constraints

Return-to-Zero
(RZ)

1-of-2 (dual-rail) RZ 1
2 2 OR2/bit into n-input C-element Delay insensitive

1-of-4 RZ 1
2 1 OR4/bit into

l

N
2

m

-input C-element Delay insensitive

1-of-8 RZ 3
8

2
3

OR8/bit into
l

N
3

m

-input C-element Delay insensitive

1-of-N RZ dlog Ne
N

2
dlog Ne

ORn/bit into
l

N
dlog Ne

m

-input
C-element

Delay insensitive

M-of-N RZ
l

log
“

n

m

”m

N

2
l

log
“

n

m

”m
M -of-N majority function into
C-element Delay insensitive

Level-Encoded
Transition
Signaling
(LETS)

1-of-2 (LEDR) NRZ 1
2 1 XOR2/bit into n-input C-element Delay insensitive

1-of-4 NRZ 1
2

1
2

OR4/bit into
l

N
2

m

-input C-element Delay insensitive

1-of-8 NRZ 3
8

1
3

XOR8/bit into
l

N
3

m

-input C-element Delay insensitive

1-of-N NRZ dlog Ne
N

1
dlog Ne

XORn/bit into
l

N
dlog Ne

m

-input
C-element

Delay insensitive

Miscellaneous

Transition
signaling NRZ 1

2 1 XOR2/bit into n-input C-element Delay insensitive

Bundled data RZ or NRZ 1 1
2

Wire with delay Bundled path delay

Pulse-mode RZ 1
2

2 Complex ([5, 8]) Pulse-width timing

Table 1. Comparison of Asynchronous Global Communication Coding Schemes

LETS has potential throughput and power advantages over
many delay-insensitive schemes, since only one rail switches
per data transaction, and no return-to-zero phase is required. It
was shown that LETS is practical for implementation.

For future work, a layout of the proposed circuits and post-
layout simulation will be necessary to better evaluate area over-
head and performance, especially in terms of throughput and
power consumption, as well as the evaulation of the effects of
cross-coupled capacitance, which may also have an impact on
power. Novel designs for functional blocks implemented to
directly use LETS data without the need for conversion can
also be explored. Finally, as in [7], modified LETS converters
can be derived that support other common RZ function blocks
(e.g., bundled data and 1-of-4).
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