
Performance Analysis of An RSVP-Capable Router 1

Tzi-cker Chiueh Anindya Neogi

Computer Science Department

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

fchiueh, neogig@cs.sunysb.edu

Paul Stirpe

Reuters Information Technology, Inc.

88 Parkway Drive South

Hauppauge, NY 11788

paul.stirpe@reuters.com

Abstract

RSVP is a bandwidth reservation protocol that allows distributed real-time applica-

tions such as video-conferencing software to make bandwidth reservations over packet-

switched networks. Coupled with real-time scheduling mechanisms built into packet

routers, the network guarantees to provide the reserved bandwidth throughout the life-

time of the applications. Although guaranteed services are of great value to both end

users and carrier providers, their performance cost, due to additional control and data

processing overhead, can potentially have a negative impact on the packet throughput

and latency of the RSVP-capable routers. The goal of this paper is to examine the

performance cost of RSVP based on measurements from an industry-strength RSVP

implementation on a commercial IP router. The focus is on the detailed evaluation of

the performance implications of various architectural decisions in RSVP, as well as the

e�ectiveness of RSVP in the presence of network faults. We found that RSVP's control

messages do not incur signi�cant overhead in terms of processing delay and bandwidth

consumption. However, the performance overhead of real-time packet scheduling is no-

ticeable in the presence of a large number of real-time connections. In extreme cases,

the performance guarantees of existing real-time connections may not be kept, and some

best-e�ort packets are actually dropped, although the overall bandwidth requirement

from these connections is smaller than the available link bandwidth.

1The research was supported by a student grant from Reuters Information Technology, Inc.

1 Introduction

Distributed multimedia applications such as audio/video conferencing require end-to-end real-time

performance guarantees from the underlying network. These applications can request guarantees on

the quality of service in terms of bandwidth, delay, delay jitter, etc. The general approach towards

real-time networking is that applications �rst make reservation requests on certain network service

quality, and once the network determines that su�cient resources are available to accommodate

such requests, it guarantees that service quality throughout the lifetime of the applications, by

scheduling packets from these applications with higher priority inside network switches and routers.

The priority levels are commensurate with the service quality requested. To ensure that applications

do not abuse the service quality guarantee mechanism, a proper pricing mechanism is necessary to

complete the real-time networking system.

Because network devices such as routers need to recognize packets from particular applications,

they are required to maintain per-network-connection states that include information such as con-

nection ID, resource reservation, and routing information. This is fundamentally di�erent from

traditional network architectures that never keep information about the applications at the end

points. In terms of the OSI layering framework, the network strictly works at the network layer.

RSVP [ZHANG93] is a network resource reservation protocol that has been approved by IETF

as an industry standard recently. RSVP was originally proposed as the reservation scheme for

the Integrated Services Packet Networks architecture, which aims to integrate real-time and non-

real-time network services within a uni�ed framework. In its most general form, RSVP provides a

robust mechanism for each network connection to leave per-connection state on the network devices

along the path with which packets on that connection traverse the network. To keep it as generic as

possible, the design of RSVP is intentionally decoupled from both resource reservation speci�cations

and from routing. RSVP ensures delivery of the tra�c speci�cation and reservation objects without

interpreting them. In addition, RSVP relies on unicast and multicast routing protocols to route

the reservation messages, as well as the real-time data streams.

While various components of the Integrated Service network architecture have been developed

over the last several years, most of the works in this area focused on either the development of the

protocols or their impacts on the network system/applications through simulation-based studies.

The actual performance overheads associated with the implementations of these protocols are largely

left unaddressed in most cases. Two technology trends motivate us to carefully examine the perfor-

mance cost associated with these advanced protocols, and investigate their scalability behavior with

higher link speeds. First, the bit rates on both production LAN and WAN links are approaching

Gbits/sec. Second, network devices are tasked with more and more functionality on a connection

by connection basis. Both trends suggest that future network devices are required to carry out

more and more work per unit time. Therefore, the feasibility of the whole reservation/priority-

scheduling paradigm rests as much on the e�cient implementations of the underlying protocols

as on the protocols themselves. The goal of this paper is to report the measurement results of a

detailed performance study on an industry-strength RSVP implementation on a state-of-the-art

1

commercial IP router. To our knowledge, this is one of the �rst reports on RSVP's performance

based on empirical measurements.

In Section 2, previous works related to this work are brie
y reviewed. To set the stage for

subsequent discussions on the performance measurements, a general description of the RSVP pro-

tocol and its architectural features that have performance implications are presented in Section 3.

The experiment setup and evaluation methodology used in this work are described in Section 4.

Section 5 includes the measurement results from the performance study and their analysis. Section

6 concludes this paper with a summary of the major �ndings and an outline of on-going work.

2 Related Work

To our knowledge, this is the �rst empirical measurement study of the RSVP protocol, with a focus

on the overhead of supporting real-time network data transfers, and the performance implications

of its architectural parameters. A simulation based study of the architectural decisions was made

by Mitzel et al. [MITZ94] where the authors discussed how the design goals of RSVP overcome the

shortcomings of STII [TOPO90]. [SCHW97] also discusses the applicability of RSVP but reports

limited performance metrics to consolidate the claims. There have been suggestions regarding

improvement of the soft-state timer management in [PAN97]. We study the timer mechanisms in

detail and present the advantages and disadvantages of various alternatives. An alternative protocol

called YESSIR [PAN98] has also been proposed recently. The goal is to design a light-weight

reservation protocol with reduced number of messages, message types and protocol processing.

But the
exible model of reservation as in RSVP, is lost in the process. The model makes some

restricted assumptions such as sender-initiated reservation like STII, etc. In order to improve the

scalability, the authors propose to use YESSIR in the local and regional networks and establish a

small number of large-bandwidth "virtual paths" in the backbone, using RSVP.

3 RSVP Protocol Overview

RSVP is a transport layer bandwidth reservation protocol that uses out-of-band control mes-

sages to instantiate reservations and routing information on the intermediate network nodes. There

are two types of controlmessages: PATH and RESV. These messages de�ne QoS speci�cations based

on IntServ formats. The formats of the message contents are opaque to RSVP and are interpreted

by the tra�c control modules at network nodes. The tra�c control module consists of the packet

classi�er, which distinguishes packets that belong to di�erent real-time sessions, the packet sched-

uler, which prioritizes the packets on an output link's waiting queue according to certain real-time

packet scheduling discipline such as weighed fair queueing (WFQ), and admission control, which

determines if there are su�cient resources available at the node to accommodate new requests.

2

Connection Establishment

RSVP is designed from the beginning to support multicast communication. Thus it chooses a

receiver-initiation style for connection setup, similar in spirit to the IP multicast group management

protocol (IGMP). This decision is also motivated by the requirement that heterogeneous receivers

may request di�erent QoS levels and thus should be charged di�erently for the same real-time

session. When a unicast or multicast real-time connection is to be established, the real-time data

source �rst sends the desired QoS request to the local RSVP daemon on the host. The host RSVP

daemon then sends out a PATH message containing the session descriptor (source address and

port number) and source tra�c characteristics (TSpec: Token bucket rate, Token bucket size,

max/min packet sizes) destined for the lone receiver or the multicast group. The �rst-hop router

or the designated router on the sending host's Ethernet segment picks it up. From this point

on, the PATH message travels through the network according to the unicast or multicast routing

protocol implemented on the network nodes. RSVP is completely independent of the underlying

routing protocol 2. PATH messages are forwarded by each intermediate router to the next until

the destination(s) subnetwork(s) is(are) reached. Along the way a PATH state is created in each

node for this real-time session 3. At the last hop, the router forwards the PATH message to the

receiver host. In case of multicast there may be multiple receiver hosts on di�erent LAN segments

interested in the session. At each network element, the address of the last RSVP capable router

is always extracted from the PATH message and kept in the PATH state block for the real-time

session.

On receipt of a PATH message, the receiver requests the actual reservation in a RESV message,

which is sent upstream to the last RSVP capable router. Contrary to PATH messages, RESV

messages are always unicast even for multicast sessions. The RESV message contains a session

descriptor, a style descriptor and a
ow-spec object. The style descriptor speci�es the reservation

style, or which data sources can use the reserved resources. The possibilities are wildcard, �xed or

shared-explicit reservation styles. If multiple sources can share a resource reservation, a wildcard

�lter may be used. For example, in an audio conference, normally one audio source is active at a

time. For video tra�c we may want to establish distinct reservations for di�erent senders. This is

a �xed �lter reservation. A hybrid approach would be to partition senders into groups such that

senders within a group are rarely active simultaneously, and to set up a shared reservation to satisfy

their cumulative bandwidth requirement. Finally, the
ow-spec object de�nes the QoS required by

the receiver for the session. Each receiver can choose a di�erent QoS for the same real-time session.

When the RESV message traverses towards the sender, at each node the QoS request is passed

2At each network node, the route query result may be cached however, to prevent repeated lookups. It is also

possible that a particular interface has not been administratively enabled to carry reserved tra�c. In that case the

decision not to forward the message through that interface may be made by the RSVP daemon. Otherwise the IP

layer needs to keep track of the protocol enabling information for each higher layer protocol and future ones that

may be added.
3If PIM-SM is the multicast routing protocol then an additional delay may be needed for the routers to create the

PATH state.

3

to the admission and policy control modules. The implementation of admission control is left to

individual router vendors and is not speci�ed. The policy control module checks on administrative

permissions for making reservations. For example, certain nodes are only allowed to reserve certain

amount of bandwidth. If both checks succeed, control parameters are set in the packet classi�er

and scheduler accordingly to ensure the desired QoS level when packets on the real-time session go

through. On failure of any one of the checks, an error noti�cation message is sent to the receiver

that initiated the RESV message. The e�ective time to establish a reservation is the interval

between the time when the �rst PATH message is sent from the source LAN segment to the time

the �rst RESV message is received at the source LAN segment.

Soft State

Another architectural feature of RSVP is its use of soft state in adapting the resource reservations to

changes in network routes and multicast group membership, and occasional node and link failures.

The issue is that the reservation states installed on the network devices may need to be invalidated

when the reservations are no longer required, such as when members leave and join the multicast

group, or when the path used by a real-time data source to reach the receivers is no longer available.

Instead of using explicit invalidations, RSVP chooses to treat the reservation states that will be

automatically invalidated after a period of time unless being refreshed explicitly. This soft state

mechanism simpli�es the management of reserved resources in the face of changes because reserved

resources can be re-cycled without being explicitly freed by the reserving nodes. However, during

normal operation when there are no changes, both senders and receivers need to periodically initiate

control messages to refresh the PATH and RESV states on the network devices. Essentially, RSVP

optimizes for the changing case at the expense of additional control tra�c in the no-change case.

Because RSVP is designed to scale to large networks and large multicast groups, this architectural

decision seems to be a good one.

For a network node, let R be the soft state refresh period with which its neighbor node sends

in the control messages for a reserved connection, and let the node's local state lifetime for the

corresponding connection be L. Each PATH/RESV message contains a TIME VALUES object

specifying the R value. To avoid message synchronization [FJ94], the actual refresh period used

by the neighbor node is randomly set between 0:5R to 1:5R in most implementations. A node's

local soft state timeout period for a reserved connection, L, is determined by the last received R

for the corresponding connection, and a parameter K, which depends on the bit error rate of the

link on which the control messages are sent. Speci�cally, K is a small integer that approximately

represents the maximum number of consecutive packet losses that could possibly occur on the link.

Given R and K, L is set to

L � (K + 0:5)� 1:5� R

where in the worst case K � 1 messages may be lost without false state timeout. The value of

R may be chosen locally by a node. R may be also changed dynamically to improve robustness.

4

A

 R

B

64 Kbits/sec

64 Kbits/sec

32 Kbits/sec

Figure 1: An example network to illustrate the concept of Reservation merging.

However R cannot be increased at an arbitrary rate. We will discuss the implications when we

discuss soft state refresh overheads in Section 5.3, and fault recovery time in Section 5.5. Most

implementations simply use a �xed timer value, i.e., R is set at 30 secs.

Reservation Merging

If a reservation state for a real-time session is already present at a network node, an incoming

RESV message for the same session would not create a new reservation state. But the original

reservation state may be updated to add a new reserved interface for the session. This process is

called reservation merging and reduces the amount of resources reserved and the control message

overhead substantially.

Figure 1 shows an example. A and B are two receivers requesting 32Kbps and 64Kbps reserva-

tions for the same real-time session. The router R will merge these two reservations and forward

to the upstream node only the least upper bound (LUB) of these two RESV messages. If the data

rate is beyond 32Kbps then only 32Kbps of the
ow will be reserved for A and the rest will be

delivered to A as best e�ort tra�c. In addition, media �lters may be installed in the routers to

sensibly reduce the resource requirements of a real-time
ow. For example a MPEG video
ow

may be reduced in quality to reduce bandwidth requirements for some receivers. The merging of

reservation also makes it possible to limit the periodic refresh control message so that each link

carries no more than a single path/reservation message in each direction during each refresh period

for a given real-time session. In particular, each network node gets to independently choose the

refresh interval with which to exchange control messages with neighboring nodes.

4 Evaluation Methodology

We use an IP router testbed installed in a commercial site for the performance experiments and

tra�c statistics collection. There are �ve routers in the testbed organized in a square-like topology.

The network routers are Cisco 4700 routers each with 8 MBytes of DRAM as shared bu�er memory

and a 133MHz CPU as the control processor. The hosts are Pentium 200MHz machines with 64MB

5

Router 2Router 1

10 Mbps hub 10 Mbps hubjackfield

C

T1 lines

P

Control PC

LAN Probe 1

LAN Probe 2

WAN Probe

Sting Genesis

Figure 2: The setup of LAN/WAN sni�ers for throughput and latency measurements.

memory. Both LAN and WAN links are available in the testbed. The WAN links run at 1 Mbits/sec

and the LAN links are Ethernets at 10 Mbps and 100 Mbps. Packet traces were collected on the

LAN and WAN segments, using 2 W&G LAN sni�ers with 4MB memory and a W&G WAN sni�er

with 24MB memory. We have to use network sni�ers to accurately measure packet latency and

system throughput because there are no measurement support facilities on the Cisco routers.

The sni�er probes are daisy chained and the �rst probe in the chain is connected to the parallel

port of a PC. Thus all the sni�er probes are synchronized with the PC clock with negligible clock

skews. The LAN sni�er probe can be connected to a port of the Ethernet hub. The WAN sni�er

probe can be tapped into the WAN link using a jack�eld, as shown in Figure 2. The serial line

ports on the routers and the WAN sni�er both use a V.35 physical interface standard. The two

router cables are plugged into the upper two jacks of a single column, Column C of the jack�eld

in Figure 2. The WAN sni�er probe is connected to one side of the double sided port P in the

jack�eld. A cable is then used to connect the other side of the port P with the third slot of column

C in the jack�eld.

The control PC is used to collect the trace �les from the three sni�er probes, �lter out irrelevant

packets and save the traces on a hard disk as comma separated value (CSV) �les. These trace �les

contain records separated by newline characters and �elds separated by ','. Each trace record

includes a packet's protocol headers and a timestamp. They can be read into any analysis tool

which can handle CSV �les. We have written our own scripts to �lter relevant records and �elds

and analyze the traces.

The operating software on the routers is Cisco IOS version 11.2.9, which supports the Protocol-

Independent Multicasting Dense-Mode (PIM-DM) protocol as the multicast routing protocol and

Open Shortest Path First (OSPF) protocol as the unicast routing protocol. This seemed to be

the most stable version as far as PIM-DM and RSVP are concerned. RSVP connections were

set up using a RSVP Toolkit from Precept Software, Inc. This toolkit also includes a service

application that can set up a real-time session by reserving bandwidth according to user-de�ned

6

QoS speci�cations. A large number of sessions were automatically set-up by capturing mouse

and and keyboard events using Visual Test4.0. This software generates a Visual Basic script

corresponding to the user events during the recording period while a single RSVP session is set up.

The script may then be customized by hand, like introduction of a loop etc. to repeat the events

for a speci�ed number of times in order to set up a speci�ed number of sessions. The Visual Basic

script may also be written directly if one is pro�cient enough with the scripting language.

A major problem with the network sni�ers is the limited trace length due to the small bu�er

memory. As a result, periodically the sni�ers have to be stopped and the traces collected until

that point are transferred to the control PC's disk for o�-line analysis. Once the trace transfer is

completed, a new cycle of trace collection and transfer repeats. Because the clocks on the sni�ers

are synchronized, it is possible to identify the "trajectory" of a particular packet by matching

packet headers in the traces from adjacent network segments.

The following two trace snapshots were taken on the Ethernet and the serial line on Router 1

after �ltering out other types of control messages.

Ethernet trace records :

--

Abs Time Destination Source Interpretation

--

11:05:23.66931, 132.132.21.1, sting.rrxnet, RSVP Path Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9002 Src_Port=9002

11:05:23.68145, sting.rrxnet, 132.132.21.1, RSVP Resv Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9002

11:05:53.67283, 132.132.21.1, sting.rrxnet, RSVP Path Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9003 Src_Port=9003

11:05:53.68561, sting.rrxnet, 132.132.21.1, RSVP Resv Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9003

--

Serial line trace records :

--

Abs Time Destination Source Interpretation

--

11:05:23.67141, GENESIS.rrxnet, sting.rrxnet, RSVP Path Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9002 Src_Port=9002

11:05:23.67834, 132.132.130.2, router2.rrxnet, RSVP Resv Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9002

11:05:53.67491, GENESIS.rrxnet, sting.rrxnet, RSVP Path Name=Session

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9003 Src_Port=9003

11:05:53.68179, 132.132.130.2, router2.rrxnet, RSVP Resv Name=Session

7

Dest(IPv4)=GENESIS.rrxnet ID=UDP Dest_Port=9003

--

The reservation is from Sting to Genesis. Hence we see PATH messages with Source as Sting

and Destination as Genesis on the serial line. On the Ethernet, PATHs are sent to the �rst hop

router by the RSVP daemon on the host. Hence in the Ethernet trace records the PATHs have

Destination set to 132.132.21.1, which is the Ethernet interface of Router 1. Since RESV messages

are sent hop-by-hop, we see the Source is Router 2 and the destination is 132.132.130.2 (the next

hop serial interface on Router 1) for the serial line trace. On the Ethernet trace the RESV messages

are from the Ethernet interface 132.132.21.1 of Router 1 to the host. The trace records for di�erent

sessions are distinguished based on Dest Port in this case.

On the control PC the traces collected from di�erent sni�er probes are correlated to deduce

such information as the latency of a packet through a router. As shown in Figure 2, a trace of an

RSVP session may be collected, say between host1 and host2, using a chain of sni�ers. Before the

sessions are started, the sni�ers are put in the capture mode. After a period of time, the sni�er

capture bu�ers were dumped to the hard disk and analyzed o�-line. To measure the delay for the

�rst PATH message of the real-time session with destination UDP port 9002, through Router 1,

we �nd the di�erence of the absolute timestamps associated with the packets (given by the sni�er)

in the �rst Ethernet trace record and the �rst serial line trace record in the snapshots shown. A

latency measurement is taken only for the �rst control message for the session. Therefore we can

correlate the �rst messages for a given destination port from the two trace �les. In our example

the PATH message latency for port 9002 is 11 : 05 : 23:67141� 11 : 05 : 23:66931 = 0:0021ms.

5 Performance Measurements and Analysis

All performance measurements are on unicast reserved connections between the sender hosts, Sting,

and the receiver host, Genesis, as shown in Figure 2. In some cases other hosts are used to generate

network tra�c through the routers.

5.1 Packet Latency

The packet latency through a router is measured by calculating the di�erence between the times-

tamps at which the packet appears on the input and output links. For RSVP control messages,

only the �rst such message of a session is measured, since the routers do not immediately forward

the subsequent control messages. Also, this measurement is useful to correlate with the connection

setup time. Table 1 shows the latency of RSVP control packets in the loaded and unloaded cases

when a certain number of real-time sessions already exist. �P and �R are the packet latency of

a PATH and RESV message through a router. The �rst column indicates the number of real-time

connections already existent before the connection being measured is established. The second and

third columns show that the average RESV messages take more router processing than PATH mes-

sages, because the reservation-related processing such as admission control is actually performed

8

Unloaded Loaded
No. of Sessions

�P �R �P �R

0 2.00(1.00) 3.07(1.00) 4.30(1.00) 5.60(1.00)

9 2.82(1.41) 3.90(1.27) 5.98(1.39) 7.17(1.28)

99 3.90(1.95) 5.41(1.76) 8.51(1.98) 10.1(1.80)

499 4.93(2.47) 6.08(1.98) 10.79(2.51) 11.26(2.01)

999 5.44(2.72) 6.40(2.08) 12.04(2.80) 11.87(2.12)

Table 1: Average Control Packet Latency (in msecs) when there are a variable number of real-time

sessions, which may be loaded or unloaded.

during the processing of RESV messages. The numbers in the parenthesis show the relative factor

with respect to the case without any real-time session. In the unloaded case, there is no best-e�ort

tra�c and real-time sessions only generate RSVP control tra�c but no actual data
ow. Control

messages for the real-time sessions are sent out using 30 seconds �xed refresh timers in this exper-

iment. The performance impact of existing connections' control tra�c on the setup time for new

connections is minimal. For example, the control overhead of 999 connections only increases the

packet delays of the �rst PATH and RESV messages of a new connection by a factor of 2.72 and

2.08, respectively.

To further isolate the router processing overhead due speci�cally to RSVP, we measure �IPP

for the unloaded case, the average message latency of an IP packet of the same size as a PATH

message, and �IPR
, the average message latency of an IP packet of the same size as a RESV

message in the unloaded case. In our testbed, �IPP
and �IPR

are measured to be 0:00140 and

0:00095 secs, respectively. Therefore the true RSVP PATH message processing overhead, �Pheader ,

can be calculated as �P � �IPP
. Similarly, the RESV message processing overhead, �Rheader

, is

equal to �R � �IPR
. Table 2 shows the pure CPU processing overhead associated with RSVP

control packets. The 0-connection case demonstrates that the PATH message processing overhead

is only half the data forwarding overhead, but the RESV message processing overhead is more than

twice as much as the data forwarding overhead.

In the loaded case the same measurements were repeated with a constant load of 10K packets/sec

with 64 bytes/packet pushed through the router by transferring packets between hosts on di�erent

Ethernet interfaces of the router. Figure 3 shows the network setup for this experiment. The control

packet latency through the routers in this case is about doubled compared to the unloaded case.

The relative latency increase is also slightly higher than the unloaded case because of non-linear

queuing delay e�ects. But even in the worst case, the packet delay is low enough such that RSVP

state timeouts will not occur unless consecutive messages are lost. It will be shown later that best

e�ort packets start being dropped after about half the pipe is reserved for real-time connections.

Thus PATH, RESV messages may also be dropped in such cases.

Table 3 gives an idea of the scalability of the host implementation of the router daemon with

varying number of sessions handled by the host.

9

Sting

R3

R2

H2

H1
H4 H5

Beatles

Genesis

R1
H3

Figure 3: The network topology of the measurement study in the loaded case. The router, R1, is

stressed with tra�c between H1,H2/H3, H4,H5, while the measurements are made on the connec-

tions between Sting and Genesis/Beatles.

No. of Sessions �Pheader �Rheader

0 0.60 2.12

9 1.42 2.95

99 2.50 4.46

499 3.53 5.13

999 4.04 5.45

Table 2: Processing overhead of RSVP header in routers (in msecs), when there are a variable

number of real-time connections in the unloaded case.

No. of Sessions �PR

0 1.72

9 1.85

99 2.14

499 2.56

999 2.98

Table 3: Latency at receiver host(in msecs)

10

M=2 M=3
No. of Sessions

�T (model) �T (measured) �T (model) �T (measured)

0 11.86 12.00 16.93 16.84

9 15.16 15.14 21.88 21.91

99 20.34 20.20 29.65 29.52

499 23.74 23.60 34.75 34.81

999 25.40 25.60 37.24 37.39

Table 4: Connection setup time (in msecs) from the model and the actual measurements when

there are a variable number of unloaded real-time connections.

5.2 Connection Setup Time

The connection setup time, �T , is de�ned as the delay between the time when the �rst PATH

message is seen on the sender's local Ethernet and the time when the �rst RESV message is seen

on the same Ethernet. The receiver processing delay during connection setup, �PR, is the latency

between the time the �rst PATH message is seen on the receiver's local Ethernet and the time at

which the �rst RESV message is seen on the same Ethernet. Let �Tn , �Pn , �Rn , and �PRn be

the corresponding �T , �P , �R, and �PR values when n� 1 real-time sessions are already active.

Therefore,

�Tn =M ��Pn +M ��Rn +�PR1
(1)

where M is the number of routers between the sender and receiver, and we assume each of the n

connections goes to a di�erent destination host. Table 4 shows the measured connection setup time

and the calculated connection setup time according to Equation 1 and the measurements in Table

1, when the real-time connections are unloaded. The number of hops, i.e.,M , is 2 and 3 in the two

cases shown. As can be seen, the numbers from the model and the measurement are very close.

Similar measurements may be made to determine the approximate connection setup time when the

network routers are under a given loaded condition. In this discussion, we ignore the propagation

delay, which may be signi�cant in large-scale wide-area networks.

The above discussion focuses on unicast real-time connection setup. In the case of multicast, the

connection setup time should be similar to the unicast case, except that M should be the longest

path between a sender and its farthest receiver in the multicast tree. The resulting estimate would

be too conservative because merging of RESV messages should reduce the second term in Equation

1. For example, A RESV message from the farthest receiver may be dropped because an earlier

reservation from another receiver that can accommodate it, is already made at some intermediate

router.

5.3 Soft State Refresh Overheads

Most RSVP implementations use a �xed value for the refresh timer, R. Larger R values incur less

control tra�c, but result in longer recovery time when control messages triggered by route changes

11

or network node/link failures are lost. To resolve this problem, a staged refresh timer scheme is

proposed that adaptively increases the R value after a route change, starting from a small R value

[BRDN96]. That is, when a RSVP-capable router notices a route change for a real-time connection,

it starts to send out refresh control messages at R1, R2,...,Rs intervals, where R1 < R2::: < Rs, and

Rs is the stable soft state refresh interval. This method makes it possible to use large Rs values

to reduce the control overhead during the stable period without lengthening the fault recovery

time. Another minor disadvantage of large refresh timer values is that the period during which the

resource reserved by a real-time connection is wasted after the connection is torn down, is longer

because some connections can only be torn down implicitly through soft state timeouts. The Cisco

routers in our testbed implement a trivial version of staged refresh timers. After a network failure

or connection startup, control messages are immediately forwarded, and from the next message

onward, R is set to about 30 secs. This is why all our measurements of control packet latencies

had to be taken only for the �rst message for a session.

If Rf is the �xed refresh timer value, then the bandwidth overhead for control tra�c with the

respect to the total available link bandwidth is

1
Rf
� (PATHsize + RESVsize)

Bandwidth

where Bandwidth is the link bandwidth. Figure 5 shows the bandwidth overhead for a �xed refresh

scheme for various line capacities and a �xed refresh interval of 30 secs. In the case of staged refresh

timers, let Rl be the refresh interval,R for the �rst refresh message. Let the constant rate of increase

of the refresh interval be r, i.e. Ri=Ri�1 is r. Let the Rs be the stable state refresh timer value, as

already de�ned. Finally, let t be the minimum of mean time between failures and expected session

duration time.

The number of messages required to reach Rs from Rl with a rate of increase r is logr(Rs=Rl).

The time taken to reach Rs from Rl with a rate of increase r is de�ned as td, which is equivalent

to Rl + rRl + r2Rl:::+ rlogr(Rs=Rl)Rl, or Rl(rlogr(Rs=Rl) + 1 � 1)=(r� 1).

If t > td , as shown in Figure 4, then the control bandwidth overhead is

(logr(
Rs

Rl
) + t�td

Rs
)� (PATHsize + RESVsize)

Bandwidth � t

If t < td, then the number of messages sent during t is x, where Rl+ rRl+ r2Rl::::+ rxRl = t,

and therefore x = logr(
t(r�1)
Rl

+ 1) � 1. Consequently, the control bandwidth overhead is

logr(
t(r�1)
Rl

+ 1) � 1)� (PATHsize + RESVsize)

Bandwidth � t

The value of r cannot be arbitrary because if one or more successive control packets are lost,

the receiving node's timer value may be out of date, and a false state timeout with state deletion

may result [BRDN95].

To further reduce the refresh message overhead, an acknowledgement-based control messaging

scheme may be used [PAN97]. An echo-replymessage is used to explicitly acknowledge each received

12

ttd0

Stable
Region

Dynamic
Region

Time

Rs

Rl

Refresh Interval

Figure 4: The evolution of the timer value in the staged-timer scheme within the lifetime of a RSVP

session.

0

10

20

30

40

50

60

0 50 100150200250300350400450500

O
ve

rh
ea

d(
%

)

Number of Sessions (x 10)

64Kb/Sec
256Kb/Sec

1.55Mb/Sec
2.48Mb/Sec

Figure 5: The Bandwidth overhead with varying number of sessions for various line capacities, if a

�xed refresh timer with refresh interval = 30 secs is used.

13

control message. As soon as the sender node receives the acknowledgement, it can immediately

switch to the stable state refresh interval, Rs. The receiving node should now expect a refresh

interval of Rs and tunes its state life timer accordingly. Changing the state life timer is critical in

this case because otherwise it may lead to pre-mature soft state timeouts and deletion. The only

problem with this echo-reply scheme is that it requires a new message.

5.4 Throughput Impacts of Real-Time Packet Scheduling

Once the reservation states have been established in the routers, some sort of real-time packet sched-

ulers are required to schedule the packets in the transmission queue associated with each output

link to ensure that the real-time performance guarantees are indeed met at run time. Compared

to conventional IP packet forwarding, real-time packet schedulers incur additional performance

overheads. In our testbed, Cisco routers implement some variant of packetized weighted fair queu-

ing, which incurs a well-known log2(K) overhead of sorting the �rst packets of the K currently

active sessions according to the priority indices. When there are only non-real-time sessions, the

packet scheduler simply uses the FIFO policy and therefore doesn't cause extra overheads. In this

subsection, we quantify these performance costs under di�erent workload conditions.

Each output interface of real-time routers typically could be con�gured to grant a fraction

of the link bandwidth to real-time
ows and leave the rest for best-e�ort tra�c. Based on the

measurements on the packet loss rate and increased latency for best-e�ort tra�c, one can determine

what the maximum percentage of the link bandwidth should be reserved for guaranteed
ows.

Figure 3 shows the network setup for the following measurements. Only Sting, Genesis and

Beatles are used as hosts for tra�c generation or reception. Guaranteed
ows are set up from Sting

to Genesis and best-e�ort connections from Sting to Beatles. First, a best-e�ort session is set up

with constant packet injection rate of 1K packets/sec with 64 bytes per packet. Thus half the link

bandwidth, 1 Mbits/sec, is �lled with best-e�ort tra�c and the router R1 is fed with constant

load throughout the experiment. Then a di�erent number of real-time sessions are established,

each with a bandwidth reservation of 125 bytes/sec. The average latency of 100 best-e�ort packets

is calculated from the traces collected from the links Sting-R1 and R2-Beatles, and on the link

R1-R2. Next we replace those real-time sessions with one best-e�ort session that consumes the

same amount of bandwidth as those real-time sessions as a whole. Again the average best-e�ort

packet latency is measured. In both cases, packet loss rates for best-e�ort tra�c are also calculated

from the number of best-e�ort packets sent out from Sting and the number of packets received at

Beatles.

The experiment is repeated for an increasing number of real-time sessions, and its best-e�ort

counterpart. The best-e�ort session which �lls half the pipe is constant throughout all these

measurements. The total tra�c through the router never exceeds the link bandwidth, 1 Mbits/sec.

Packets for real-time sessions are generated on a cycle by cycle basis. In every cycle a random

order is chosen for the packets belonging to di�erent real-time sessions. This random ordering is

necessary to stress the real-time packet scheduler inside the router. In every cycle, the best-e�ort

14

packets are sent after all the the real-time sessions' packets. This ensures that best-e�ort tra�c

never experiences queuing delay that is due speci�cally to low scheduling priority.

The di�erence in the best-e�ort packet latency measurements for the case when a �xed number

of real-time sessions go through the router, and for the case when those real-time sessions is replaced

with a best-e�ort session with equal aggregate bandwidth, represents the performance overhead due

to the router's real-time packet scheduler. Table 5 shows the measurements of the packet latency

and packet loss rate under di�erent numbers of real-time sessions. The second column shows the

percentage of the link bandwidth consumed by real-time connections. The third and fourth columns

show the best-e�ort packet latency under real-time and best-e�ort loads with the same bandwidth

requirement. The di�erence between the two, as shown in the �fth column, is the real-time packet

scheduler overhead. The sixth and seventh columns show the best-e�ort packet loss percentages

under real-time and best-e�ort loads.

No. of RT % of Pkt Latency Pkt Latency Scheduler Pkt Loss Pkt Loss

Sessions Bandwidth with RT with NRT Overhead with RT with NRT

1 0.1 0.51 0.46 0.05 0% 0%

10 1 0.54 0.47 0.07 0% 0%

100 10 0.59 0.49 0.10 0% 0%

400 40 1.65 1.52 0.13 0% 0%

450 45 3.87 2.59 1.28 1% 0%

500 50 4.11 2.71 1.40 6% 0%

1000 100 x 2.98 x 100% 0%

Table 5: The best-e�ort packet latency and packet loss rates under real-time and non-real-time

loads of the same aggregate bandwidth requirement. All latency values are in milliseconds

The real time scheduling overhead increases with the number of real-time sessions, because

the priority sorting delay depends on the number of active connections. As shown in Table 5,

after about 400 real-time sessions, the real-time scheduling overhead seems to increase drastically.

This increase is mainly due to the fact that the packet scheduler cannot keep up with the packet

arrival rate, and as a result, each real-time packet will incur extra queuing delay in addition to

the scheduling delay. To verify that the bandwidth reservations indeed start to break down at this

point, we measured the amount of bandwidth that the router gives to each real-time connection.

The average bandwidth given to a sample of sessions was measured over a period of around 30

minutes. Table 6 shows that after 400 sessions the packet scheduler overhead is too much for the

router to be able to keep up with these many real-time
ows.

The best-e�ort packet delays and loss rates in Table 5 can also be used to determine the number

of real-time sessions that should be admitted without impacting the best-e�ort tra�c. For example,

at 450 real-time sessions, although the total amount of bandwidth required is less than the total

15

No. of Sessions Sample1 Sample2 Sample3 Sample4 Sample5

1 125.8 NA NA NA NA

10 125.1 126.3 125.3 126.1 125.2

100 125.9 125.2 125.1 125.5 124.7

400 125.1 124.2 126.8 125.3 124.8

450 121.1 119.8 121.2 121.6 118.6

500 119.2 124.1 115.9 120.1 114.2

1000 110.1 115.2 112.1 112.2 119.9

Table 6: Sampled measurements of the received bandwidths in the presence of a varying number

of real-time connections. The original reservation is 125 bytes/sec.

link bandwidth, the best-e�ort packet loss rate is 1%. This indicates that the real-time packet

scheduling overhead when the number of sessions is large can decrease the e�ective link bandwidth,

and therefore causing best-e�ort packet dropping.

Because RSVP control messages are essentially best-e�ort packets, congestion may cause con-

secutive control packets to be dropped, leading to false soft state timeout. It is thus questionable

whether control messages should be sent as best-e�ort packets, because performance guarantee is

most needed during congestion, but during congestion the control messages for resource guarantees

actually have a high probability of getting dropped. One possible solution may be to set the TOS

�eld inside the IP packets to assign a higher priority to the control messages, i.e., in-band-signalling,

and require RSVP-capable routers to treat these packets specially during packet forwarding.

5.5 Fault Recovery Time

The fault recovery time of a RSVP capable network may be decreased by reducing the refresh

interval. We have already explained how staged refresh timers can reduce the failure recovery time.

In a multicast session, if one of the links or interfaces on a router fails, then the corresponding

new interface should switch to a high refresh frequency, but the other interfaces should continue

with the stable refresh frequency. The router should not
ood the stable regions of the multicast

tree with unnecessary refresh messages, just because one link on the multicast tree fails. For this

to work, separate refresh timers need to be maintained for di�erent interfaces of a router for the

same session. In a �xed refresh timer scheme, if the �rst refresh message after fail-over is lost, we

have to wait an entire refresh interval for a recovery procedure to continue. In the case of a staged

refresh timer however, the failure recovery time is largely insensitive to the refresh interval in the

stable case, Rs. A large number of messages have to be lost in succession to make the recovery

time sensitive to Rs.

Even if staged refresh timer is implemented, the major portion of failure recovery time is the

convergence time of the routing protocol. The RSVP implementation we have, waits about 2 secs

for the routing protocol to settle. During this time all reserved tra�c previously
owing through

the failed node or link are given best e�ort service. This is unacceptable in most real time
ows

16

R3 R7 R6

R5
R4

R2

R1

H

X

Figure 6: Re-establish reservations via alternate routes during network link/node failures. In this

case, the link between R2 and R3 is down.

that require hard guarantees of the QoS even during the fail-over period.

Let us take the unicast routing case as in Figure 6. If the link between R2 and R3 fails, the

routing protocol, say OSPF, will establish an alternate route through R2-R4-R5-R6-R7-R3. Let,

�OSPF be the time taken by OSPF to converge to a new route, �PRrouter be time taken by a router

to send a RESV message upstream after it receives a PATH message from a di�erent previous hop,

and �G be the time taken to re-establish the reservation after failure, i.e. the gap in reserved service.

�OSPF is a function of the length of the alternate path. We have not measured OSPF convergence

times on our testbed because it is di�cult to extrapolate measurements of �OSPF obtained from

the small testbed for arbitrarily large networks. However, we assume a good network design should

ensure that the route convergence time after a link/node failure should be relatively small with a

relative large network.

After the routing protocol converges, a reservation has to be established along this alternate

route. The reservation latency on this new segment is purely a function of the length of this

alternate route. When a router receives a PATH message from a previous hop di�erent from the

current one in the PATH state block [ZHANG96], it immediately sends a RESV refresh to the new

previous hop, which is then forwarded upstream. In this example R3 will receive a PATH message

from R7 since R2-R3 link has failed.

If N is the number of routers on the alternate route, then

�G = �OSPF +N ��P +N ��R + �PRrouter

As in connection set-up times, we ignore the propagation delay, which may be signi�cant in large-

17

scale wide-area networks. Here we have assumed that when the local OSPF module noti�es RSVP

about a local interface or link failure, RSVP will send out a refresh on the new interfaces for those

sessions that have been re-routed, immediately after waiting for the OSPF to converge. Also, we

assume that there is indeed a new route and the routers on that route have su�cient resources to

admit the re-routed
ow. If that is not the case, the connection has to be torn down. Assume

�PRrouter
is of the same order as �PR measured on the host (3ms for 1000 sessions, as shown in

Table 3), if N is around 10, then by substituting �P and �R with the measurements (12ms for

1000 sessions, as shown in Table 1), we get �G = 2 + 0:243 = 2:243 secs.

However, for certain applications, the fault recovery time, �G, must be reduced to preferably

zero. There are two separate issues that need to be addressed to support fault-tolerant real-time

networks. First, a new route from the source of each connection in
icted by a network failure to its

destination(s), that is not a�ected by the network link/node failure and that has su�cient resources

must be identi�ed quickly. Secondly, the same reservation must be made along the new route to

re-establish each a�ected connection.

Because the route convergence time is the major cost, one method to reduce the fault recovery

time is to pre-compute a secondary route between pairs of consecutive nodes on the primary path

and perhaps to make the same reservation on the secondary route in advance. When a link fails,

the end points of this link can decide to switch all the connections previously travelling over the

failed link to the secondary path immediately. As a result, the fault recovery time is close to 0. A

reservation is established along the alternate

Of course, the disadvantage of this approach is that it is too expensive to have alternate path

reservations among all pairs of consecutive routers. A more scalable and less expensive option would

be to establish these duplicate reservations only among some of the stable routers on the primary

path. In this case, the primary and secondary paths must be disjoint. These routers are stable in

the sense that their software/hardware are fully replicated and assumed to never die. When some

link on the path between a pair of stable routers fails, a special message should be sent to the

upstream stable router, which would then switch all real-time connections a�ected by the failed

link to the alternative path. The fault recovery time in this case is not zero, but is bounded by the

number of hops between consecutive stable routers. Given the fault recovery time measurement and

the application requirement, the network designer can structure the network topology and position

stable routers accordingly.

6 Conclusion

Several important conclusions can be drawn from this performance study of RSVP-capable routers.

First, the control message latency of RSVP is reasonable compared to normal IP forwarding, and

the control message bandwidth overhead can be carefully controlled without any serious negative

side e�ects. Second, it is a good idea to send RSVP's control messages at higher priorities. Ad-

mittedly, most existing IP routers ignore the priority �eld of the IPv4 headers. However, since

RSVP requires modi�cation to the IP routers anyway, it may be worthwhile to include support

18

for prioritization. Third, the performance overhead associated with real-time packet scheduling at

each output port is non-negligible. The admission control module should factor this overhead in

the admission decision-making process given the existing real-time connections. Finally, although

RSVP is designed to be routing protocol independent, this decision makes it di�cult to implement

e�cient connection setups because the routing metrics used by existing routing protocols do not

necessarily re
ect what RSVP wants. It also creates problems for supporting fault tolerance using

redundant path reservation, because most routing protocols only support single-path rather than

multi-path routing. Of course, the measurements reported in this paper are performed on a rela-

tively small testbed with low-end routers. All the measurements should thus be interpreted with

respect to such a setup. However, we believe the methodology we used to carry out this study is

equally applicable to other testbeds, and may help others to perform similar studies for di�erent

con�gurations, thus advancing the �eld's understanding of the performance behavior of RSVP.

We are currently working on the following issues related to this project. First, we are looking

at extensions of RSVP that can provide a general framework to trade o� between amount of

redundant reservations and fault recovery time. Second, we are planning to build a larger RSVP

network testbed using commodity PCs to experiment with a larger number of hops and faster link

speeds. Thirdly, we are currently implementing RSVP under the OPNET simulation system, and

plan to port it over Linux. Finally, we are investigating a scalable weighted fair queuing technique

that can scale up with higher link speed while providing a guarantee bound that is close to the

uid fair queuing model.

References

[BRDN95] Braden R., Estrin E., Steven B., Herzog S., Zappala D.; The Design of the RSVP

Protocol; USC/ISI FINAL REPORT, Contract DABT63-91-C-0001 27 May 1993-30June 1995

[BRDN96] Braden R., Zhang L., Berson S., Herzog S., Jamin S.; RSVP Version 1 Functional

Speci�cations; Internet Draft 1996

[FJ94] Floyd S., Jacobson V.; Synchronization of periodic routing messages; IEEE/ACM Transac-

tions on Networking, Vol.2, No.2, April, 1994

[MITZ94] Mitzel D., Estrin D., Shenker S., Zhang L.; An architectural comparison of ST-II and

RSVP; Infocom'94, June, 1994

[PAN97] Pan P., Schulzrinne H.; Staged Refresh Timers for RSVP; IBM Research Report RC 20966

(09/02/1997), Global Internet 1997

[PAN98] Pan P., Schulzrinne H.; YESSIR: A Simple Reservation Mechanism; IBM Research Report

RC 20967 (09/02/1997), Submitted for Publication, 1998

19

[SCHW97] Schwantag U.; An Analysis of the Applicability of RSVP; Diploma Thesis at the Ad-

vanced Network Technology Center, University of Oregon and Inst. of Telematics, University

of Karlsruhe

[SHEN96] Shenker S., Wroclawski J.; General Characterization Parameters for Integrated Service

Network Elements; Internet Draft 1996

[SHEN97] Shenker S., Partridge C., Guerin R.; Speci�cation of the Guaranteed Quality of Service;

Internet Draft 1997

[TOPO90] Topolcic C.; Experimental Internet Stream Protocol: Version 2(ST-II); Internet RFC

1190, October 1990

[WROC96] Wroclawski J.; The use of RSVP with IETF Integrated Services; Internet Draft 1996

[ZAPP96] Zappala D.; RSRR: A routing interface for RSVP; Internet Draft 1996

[ZHANG93] Zhang L., Deering S., Shenker S., Zappala D.; RSVP: A New Resource Reservation

Protocol; IEEE Network, September 1993

[ZHANG96] Braden R., Zhang L.; RSVP Version 1 Message Processing Rules; Internet Draft 1996

20

