
Scalable Resource Reservation Signaling
in the Internet

Ping Pan

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2002

c� 2002

Ping Pan

All Rights Reserved

ABSTRACT

Scalable Resource Reservation Signaling

in the Internet

Ping Pan

Resource reservation protocols were originally designed to signal end hosts and net-

work routers to provide quality of service to individual real-time flows. More recently,

Internet Service Providers (ISPs) have been using the same signaling mechanisms to set

up provider-level Virtual Private Networks (VPNs) in the form of MPLS Label Switched

Path (LSP). It is likely that the need for reservation signaling protocols will increase, and

these protocols will eventually become an indispensable part of Internet service. Therefore,

reservation signaling must scale well with the rapidly growing size of the Internet.

Over the years, there have been debates over whether or not there is a need for re-

source reservation. Some people have been advocating over-provisioning as the means

to solve link congestion and end-to-end delay problems. The over-provisioning argument

is largely driven by the expectation that the bandwidth price will drop drastically. From

our investigation, however, we found that many end users have not been benefiting from

over-provisioning: the current Internet has bandwidth bottleneck links that can cause long-

lasting congestion and delay. At the same time, leased line cost has not been reduced

sufficiently in a timely manner for many network providers to deploy high-speed links ev-

erywhere in their networks.

Applying resource reservation brings many benefits to the network users. Unfortu-

nately, the current resource reservation framework has scalability problems in terms of

storage, bandwidth, message processing and manageability. To address these problems, we

first evaluate methods that are designed to improve the scaling properties in RSVP. Though

some of the methods can reduce protocol processing overhead substantially, they do not re-

duce the total number of reservations in the network. Thus, we argue that merely enhancing

the existing signaling protocols may not be sufficient.

Generally, scalability problem can be solved by building a hierarchy. Resource reser-

vation signaling is no exception. Depending on traffic behavior and service requirements,

we propose a hierarchical reservation model that will support reservation signaling capa-

bility at end-user’s application layer as well as at network provider’s backbone level. In

the model, end users may use lightweight signaling protocols to setup reservations for

short-lived real-time applications. Within the network, service providers, based on bilat-

eral agreements, establish long-lasting and more static reservation “trunks” among each

other. At the network edge or border, end-user reservations are aggregated into provider’s

reservation “trunks”, depending on user’s qualification and network resource availability.

To explore our understanding on lightweight signaling, we introduce YESSIR, a sim-

plified application-layer reservation protocol. It is designed to establish reservations for

real-time streaming traffic. To simplify the processing at routers, YESSIR uses one-pass

signaling sequence and allows data senders to initiate reservations. YESSIR also uses par-

tial reservation and reservation retry techniques to speed up the setup. Our implementation

results show that with proper protocol design and implementation, network routers can

support a large number of user reservations (10,000 reservation requests per second on a

FreeBSD prototype).

One of the most challenging aspects on provider-level signaling is that the protocol

needs to be applicable and scalable to potentially all network providers in the Internet. Af-

ter evaluating traffic traces from the Internet backbone, we derive a sink-tree algorithm,

where the reservations from other providers following inter-domain routing path to a des-

tination provider’s network form a tree, rooted at the destination provider’s border router.

The sink-tree approach has the property that the maximum number of reservations at net-

work routers is always ����, where � is the total number of routing domains in the net-

work. This should reduce the total number of inter-domain reservations to a manageable

level. We present an inter-domain reservation protocol, BGRP, that is based on the sink-

tree algorithm. BGRP also has several built-in features that allow fast setup and make it

resilient to route flapping.

Contents

Table of Contents v

List of Figures vi

List of Tables x

Acknowledgments xi

1 Introduction 2

1.1 Network Model and Terminology . 4

1.2 Dissertation Overview . 6

2 Do We Need Resource Reservation? 9

2.1 Background . 9

2.2 Performance Evaluation for Real-Time Applications 10

2.3 Traffic Condition in Today’s Internet . 14

2.3.1 Bandwidth Bottlenecks . 16

2.3.2 Getting Connected Is Costly . 21

2.3.3 The Vast and Flat Internet . 23

2.4 Sustaining Internet Traffic Growth . 26

2.5 Scalability in Resource Reservation . 27

2.5.1 Router Memory Usage . 28

2.5.2 Bandwidth Utilization . 29

2.5.3 Message Processing Cost . 30

i

2.5.4 State Management Cost . 31

2.6 Discussion . 33

3 Enhancing RSVP Scalability 35

3.1 Introduction . 35

3.1.1 RSVP . 35

3.1.2 Problems with Soft-State Refresh 37

3.1.3 Terminology . 38

3.2 RSVP Staged Refresh Timer Extension 39

3.2.1 Outline of Operation . 40

3.2.2 Time Parameters . 40

3.2.3 Staged Refresh Timer Algorithm 41

3.2.4 Protocol Design Considerations 44

3.3 Evaluation . 47

3.4 Related Work . 50

3.4.1 Summary Refresh . 50

3.5 Message Bundling . 50

3.6 Discussion . 52

4 The Hierarchical Reservation Model 54

4.1 Reservation Scalability Revisited . 55

4.1.1 The State Management Problem 55

4.1.2 Reservation Granularity . 57

4.1.3 What to Reserve? . 59

4.2 The Hierarchical Reservation Model . 61

4.2.1 Inter-domain Reservation . 62

4.2.2 Improving Scalability of Application-Layer Reservation 65

5 Designing Scalable Signaling Protocols 66

5.1 Design Choices . 68

5.1.1 Reservation Model: One-pass vs. Two-pass 68

ii

5.1.2 Path Pinning . 69

5.1.3 Partial Reservation and Reservation Blocking 70

5.2 Fast Reservation Setup . 72

5.2.1 Reservation Retry and Resource Grabbing 72

5.2.2 Fragmentation Recovery . 75

5.3 Simulation . 77

5.3.1 Simulation Methodology . 77

5.3.2 Partial Reservation . 78

5.3.3 Fragmentation Recovery Performance 81

5.4 Discussion . 83

6 YESSIR: An Application-Layer Reservation Protocol 84

6.1 Introduction . 84

6.2 Relevant Protocols and Features . 85

6.2.1 RTP . 85

6.2.2 IP Router Alert Option . 86

6.3 Design Objectives . 86

6.4 YESSIR Protocol . 89

6.4.1 Outline of Operation . 90

6.4.2 Flow Specification . 91

6.4.3 Error Handling and Killer Reservation 94

6.4.4 Reservation Styles . 96

6.4.5 Other Considerations . 98

6.5 Description of YESSIR Algorithm . 99

6.5.1 Flow Merging and Shared Reservation 104

6.5.2 Updating the Packet Classifier . 106

6.6 YESSIR Implementation and Results . 106

6.6.1 BSD Kernel Extension . 109

6.6.2 Reservation State Management . 111

6.6.3 FreeBSD Implementation . 113

iii

6.6.4 YESSIR and RSVP Performance Comparison 115

6.7 Related Work . 118

6.8 Conclusion . 119

7 BGRP: An Inter-Domain Reservation Protocol 121

7.1 Introduction . 121

7.2 Requirements and Network Environment 122

7.2.1 Requirements and Assumptions 122

7.2.2 Network Environment . 123

7.3 Design Choices . 124

7.3.1 Two-Pass Reservation Model . 124

7.3.2 Sink Tree Approach . 125

7.3.3 How to Create Sink Trees? . 126

7.4 The Border Gateway Reservation Protocol (BGRP) 127

7.4.1 Terminology . 127

7.4.2 Outline of Protocol Operation . 130

7.4.3 Operation Illustration . 131

7.4.4 Comparing BGRP with RSVP . 133

7.5 BGRP Enhancements . 134

7.5.1 Over-reservation, Quantization and Hysteresis 135

7.5.2 CIDR Labeling and Quiet Grafting 135

7.5.3 Self-Healing . 136

7.5.4 Reservation Damping . 136

7.6 Protocol Scaling Evaluation . 137

7.6.1 Topological Distribution of Demand 137

7.6.2 Reservation Dynamics . 139

7.6.3 Over-reservation, Quantization and Hysteresis 143

7.7 Related Work . 147

7.8 Conclusion . 148

iv

8 Summary and Future Work 149

8.1 Summary of the Proposals . 149

8.2 Our Main Contributions . 150

v

List of Figures

1-1 A generic Internet structure. Each network consists of many routers. For

illustration purposes, we only show the edge/border routers that are func-

tioning as POP’s. The Internet is built on top of circuit networks, that

switch traffic using Frame Relay, ATM or SONET. For clarity, we only

display the network that is visible from IP routing protocol perspective. . . 5

2-1 The utility function for rigid and adaptive applications. 12

2-2 NORDUnet traffic average and peak link utilization at the NAP’s from Oc-

tober 1999 to September 2000. Note that the DGIX NAP runs on a 100

Mb/s Ethernet, that has a maximum link utilization of 70-80%. 18

2-3 NORDUnet traffic average and peak link utilization with three different

peers from October 1999 to September 2000. NORDUnet has multiple

peering links to FUNET and TeleGlobe. The data here is the average from

those links. 19

2-4 NORDUnet traffic average and peak link utilization on the transatlantic

links from October 1999 to September 2000. NORDUnet has three OC-3

transatlantic links. The data here is the average of those links. 20

2-5 The AS path length information gathered from BGP AS-Path attribute. . . . 25

2-6 The growth of the Internet from 1994 to 2002 [1, 2, 3]. The number of net-

works was collected by Geoff Huston of Telstra at AS-1221 by monitoring

BGP routes. The AS data was collected by Tony Bates from Global Cross-

ing Network. Due to CIDR aggregation, both numbers can differ slightly

at different locations inside the network. 32

vi

3-1 Staged refresh timer at a sending node - router algorithm 43

3-2 Comparison of RSVP refresh rates for different mechanisms: ��� � � s��� �

�� min��� � �� s�� � ���� . 44

3-3 Staged refresh timer at a receiving node - router algorithm 46

3-4 Example: PATH messages in an NBMA network. 47

3-5 PATHTEAR message in an NBMA network 48

3-6 Protocol overhead (bytes sent) for setting up a new reservation session in

the first 60 seconds and 60 minutes for different RSVP timer mechanisms:

��� � � s��� � �� min��� � �� s�� � ���� 48

3-7 Comparison of message loss probability as a function of time for fixed and

staged refresh timers. 49

3-8 Comparing kernel and user processing overhead 52

4-1 Reservation looping problem in multicast: ��� ��� �� and �	 belong to

the same multicast group �, and don’t keep track of reservation source

information. 55

4-2 Distribution of connection by bandwidth. 59

4-3 Source-destination-pair to destination-only ratio with standard deviation . . 60

4-4 The Hierarchical Reservation Model . 62

5-1 Partial reservation comparison. The bold lines represents the links that can

successfully make a reservation. 71

5-2 Reservation Pending Queue Structure . 73

5-3 Reservation retry algorithm and supplemental procedures 74

5-4 Modified reservation retry algorithm that uses a threshold to control frag-

mentation recovery. 76

5-5 The network topology used in the reservation retry simulation. 77

5-6 Regular load: RSVP reservation: reservation completed after 150 s and 5

tries. 79

5-7 Regular load: one-pass reservation without grabbing; reservation com-

pleted after 77 s and 3 tries. 79

vii

5-8 Regular load: one-pass reservation with resource grabbing; reservation

completed after 12 s and 19 tries. 80

5-9 Regular load: Reservation sequence for RSVP, one-pass reservation with

refresh, and one-pass reservation with refresh plus resource grabbing. The

ordinate shows the node number in the simulation network of Figure 5-5.

The figure shows the amount of time it would take to setup a successful

reservation. 81

6-1 Protocol relationships. 89

6-2 YESSIR Message Structure with Explicit Flowspec. 91

6-3 RTCP Sender-Report Format. Copied from RFC1889, pp. 23. 93

6-4 Problems due to resource contention . 96

6-5 Different reservation styles (S1 and S2 are senders, R1, R2 and R3 are

receivers in a single multicast RTP session; Rt1, Rt2 and Rt3 are routers) . . 97

6-6 YESSIR router algorithm - setting up a distinct explicit reservation 101

6-7 YESSIR router algorithm - for setting up a distinct measurement-based

reservation . 102

6-8 YESSIR router algorithm - for terminating a distinct reservation flow. . . . 103

6-9 Flow merging for shared reservation. 105

6-10 YESSIR router algorithm - for setting up a shared reservation 107

6-11 YESSIR router algorithm - for terminating a shared reservation 108

6-12 A router model for reservation support. 109

6-13 YESSIR reservation processing flowchart at routers. 110

6-14 Relationship of IPOPTION processing to rest of FreeBSD kernel. The

shaded box is where the IP option packets to be processed. The imple-

mentation supports all defined IP options. RA is the Router-Alert option,

and LSRR is the Loose Source Routing Record option. 112

6-15 An example of reservation state management in our implementation. 113

viii

7-1 Example of Internet domains. There are two types of stub domains: single-

homed stub domains connect to the backbone at a single point, multi-homed

stub domains at several points. 128

7-2 BGRP example at a router: bandwidth reservation aggregation from sources

S1, S2 and S3 to destination D. 129

7-3 Example of a sink tree rooted at �� . 131

7-4 Model for analyzing the topological distribution of demand 137

7-5 Worst case scaling comparison between RSVP and BGRP. 140

7-6 The number of BGRP and RSVP reservations as functions of load � 142

7-7 BGRP and RSVP message rates as functions of refresh rate � 143

7-8 State transition diagram for 	 � �. 144

7-9 BGRP message reduction factor as function of 	 and �. 145

ix

List of Tables

2.1 Network utilization estimation from [4]. 16

2.2 Monthly link utilization in SWITCH access links on September, 2000. . . . 17

2.3 Monthly Cost (in US Dollars) to connect to a NAP in a 3-year term. The

NAP’s listed here use ATM PVC to guarantee bandwidth for peer-to-peer

traffic. The NAP’s that operate with Ethernet and provide shared bandwidth

among peers have a much lower price. 23

4.1 Flows and aggregations based on a 90 s packet trace from MAE-West . . . 58

5.1 Number of retries in the network, measured for a 550 s simulation duration. 82

6.1 Hash table performance with collision resolution by chaining. The hash

table size is 1537. 114

6.2 Timing for single measurement-based YESSIR flow on a 700 MHz Pentium. 115

6.3 Router processing overhead for a new RSVP flow. 116

6.4 Router processing overhead for a new YESSIR flow. 116

6.5 Router processing overhead for RSVP refresh message. 117

6.6 Processing overhead for YESSIR refresh message. 117

x

Acknowledgments

The work presented in this dissertation was inspired and supported by my advisor, Pro-

fessor Henning Schulzrinne. I am deeply grateful for his guidance, his patience, his un-

derstanding, his insight, and his friendship. The calibration of ideas, debates and frequent

exchange of suggestions have been invaluable to me and enabled me to conduct sound and

fun research. It has been a privilege to be advised by him.

I wish to thank the members of my dissertation committee, Professor Nick Maxemchuk,

Professor Vishal Misra, Professor Dan Rubenstein and Professor Roch Guérin.

Many people have influenced me greatly since the beginning of my professional career

in 1991. Tim Rolfes, Marc Cochran and Bill Guckle, who were my mentors, colleagues

and friends during the years of building NSFnet routers in IBM, had taught me to roll-up

the sleeves and become an engineer. Dr. Roch Guérin, my manager and mentor while I was

in IBM T. J. Watson Research Center, has broadened my professional horizon greatly. I am

forever indebted to Roch for showing me the discipline and the ethics in research. I owe

many thanks to Dr. Ellen Hahne for her patience and technical advice while I was working

at Bell Labs, Lucent.

I have enjoyed the privilege of sharing spirited discussions with many other researchers

and developers over the years, in particular, Alex Birman (IBM Research), Robert Haas

(IBM Research), Vinod Peris (IBM Research), Liang Li (IBM NHD), Bernard Suter (Bell

Labs), Rohit Dube (Bell Labs), Luca Salgarelli (Bell Labs), Jim Murphy (Juniper Net-

works), Yakov Rekhter (Juniper Networks) and Der-Hwa Gan (Juniper Networks). I also

thank many people in the Internet technical community, whose opinion, suggestions, re-

quirements and disagreement have helped to shape the outline of this dissertation.

I gratefully acknowledge the support of IBM (Dr. Rick Bovie and Dr. Paul Stirpe) and

Bell Labs (Dr. David Lee, Dr. Al Aho and Dr. Tom LaPorta) for allowing me to pursue

my Ph.D. degree while working full-time. I thank my fiancée, Jenny Yeh, for her loving,

kindness, understanding and all the “headless” muffins and extra-strong coffees during the

crunch time. Thanks also go to many of my friends (including those who keep asking

“when are you going to finish?” and “why?”) and my IRT Lab colleagues, in particular,

Jonathan Rosenberg, Xin Wang and Maria Papadopouli, for encouraging me over the years.

xi

Finally, I dedicate this dissertation to my father, Professor Cheng-Sheng Pan, and my

mother, Dr. Chung-Xiou Wang, for giving up so much in China and coming to America

years ago, so that I could have a better future. Despite hardships and illness over the years,

they have been encouraging me and reminding me to follow my heart and go after the

things that worth a while. I would not have completed this work if not for them. I hope I

have made them proud!

1

Chapter 1

Introduction

The Internet was designed to provide connectivity to computers so that the end users can

exchange data. It offers best-effort service, in which the network does not guarantee any-

thing, not even the delivery of the data. Originally, the Internet was relatively small in

terms of nodes, and users, and was managed by a small number of research institutes. The

original user applications, such as, telnet, e-mail and FTP, do not have real-time delivery

requirements, where user packets do not have to be delivered over the network within a

delay bound. Consequently, the network was simple to design, and easy to deploy.

However, with time, the Internet has rapidly expanded in several dimensions:

More users: The Internet is expanding at a rate of 80-100% per year in terms of users

and computers on line. Some [5] have estimated that there would be nearly 2.5

billion devices on the Internet by 2006 and by 2010 half the world’s population will

have access to the Internet. The rapid growth thus presents a scalability challenge in

network design, deployment and operation.

More services: To continue generating revenue and reduce operational cost, media providers,

traditional telephone companies and Internet service providers (ISP’s) need to create

and converge various services into the Internet. The new service features include

support for voice, computer games, radio and, potentially, television. Subsequently,

delivering real-time data will becomes a new requirement for the Internet. Note that

radio and television are not necessarily delay-sensitive when using playback tech-

2

niques, such as buffering.

Private network integration: To reduce the cost of network operation, many privately

leased lines and private networks can be replaced with virtual private networks (VPNs)

over the public Internet. VPN clients require secure and predictable data delivery.

This adds another constraint to the existing Internet model.

Network heterogeneity: In addition to the legacy networks, such as TDM and ATM, in

the next few years, the Internet will have ultra-fast optical links as well as very low

speed wireless access connections. Compounded with the rapid network expansion

measured in hop-counts and ISP-counts, user traffic is likely to traverse over more

network links that can have different bandwidth spectrum, noise level and media

characteristics. As a result, transmission latency and jitter may cause serious prob-

lems to some of the end-user applications.

ISP isolation: After NSFnet, the government-sponsored Internet backbone, was officially

turned off in 1995, commercial ISP’s began to proliferate and became increasingly

competitive. Today, there are thousands of ISP’s world-wide. They compete against

each other by offering more services (such as IP telephony and virtual private net-

working) and better services (more predictable delay and more bandwidth) within the

bounds of the ISP. Unfortunately, this practice has failed to take into consideration

the end-to-end traffic flows that may travel through multiple ISP networks. Today’s

Internet consists of many well-engineering “islands” connected together by some

weak links. We will provide evidence for ISP isolation in Chapter 2.

Consequently, as new services have been deployed throughout the Internet, we are

likely to run into the following limitations:

� the network cannot efficiently provide end-to-end service guarantees to real-time

inter-active traffic;

� there is no efficient and feasible control mechanism in place that can offer service

guarantees beyond a single provider’s network.

3

One way to overcome these limitations is to support resource reservations, in which net-

work resources (e.g., bandwidth, packet buffers) are set aside for a particular flow. Reserva-

tions can be user-to-user and network-to-network. To obtain a reservation, clients signal the

network to request the amount and quality of service; the network then decides to whether

or not it can satisfy this request. In this dissertation, we study several scalable and efficient

approaches in reservation signaling.

This introductory chapter first explains some basic terminology and the network model

that the work is based on. We then provide an overview of the rest of the dissertation.

1.1 Network Model and Terminology

The current Internet structure is based on a distributed architecture that is operated by many

commercial providers, such as UUnet, Sprint and AT&T, interconnected at various traffic

exchange points. Figure 1-1 illustrates the general structure of the Internet.

Each provider’s network has a number of connection points called POPs (Points of

Presence). Customers are connected to the providers via the POPs. Providers that have

POPs in multiple regions are called backbone providers, as oppose to regional providers

that only have POPs in a single region. A typical POP has a large number of modem ports

for dial-up, Frame Relay, DSL or customer T1. For instance, in 2000, the UUnet network

had more than 2,500 POPs throughout North American, Europe and the Pacific Rim, and

supported more than 1.6 million modem ports [6].

Providers connect to other providers at one or multiple points. These interconnection

points are called NAP’s (Network Access Points), and enable users of one provider to reach

users of another provider. A typical NAP is a high-speed network (such as FDDI or Gigbit-

Ethernet), or an ATM switch to which a number of routers can be connected for the purpose

of traffic exchange. In 2000, there were more than 50 public NAP’s [7] in North America.

Small NAP’s, such as Mountain Area Exchange in Denver, Colorado, typically interconnect

less than a dozen regional networks, whereas some of the larger NAP’s (such as MAE East)

provide connectivity to more than 100 providers.

Providers are also connecting each other through private peering, where two providers

4

Regional
Provider

Private
Network

Regional
Provider

Backbone
Provider

NAP

LAN

Dial-up User

Backbone
Provider

POP

Private Peering

Private Peering

POP

End User

Figure 1-1: A generic Internet structure. Each network consists of many routers. For
illustration purposes, we only show the edge/border routers that are functioning as POP’s.
The Internet is built on top of circuit networks, that switch traffic using Frame Relay, ATM
or SONET. For clarity, we only display the network that is visible from IP routing protocol
perspective.

are directly connected by high-speed links. The benefits for private peering are cost saving

and eliminating inter-provider traffic latency. In recent years, providers have moved from

inter-connected through NAP’s to through peered links. It has been reported that some

ISP’s transmit about 70-80% of their traffic through private peering [8].

Private corporate networks access the Internet at private POP’s, or through private

peering to large ISP’s. It’s difficult to estimate the capacity and internal structure of pri-

vate networks, however, it is believed [9] that most of the current corporate networks are

structured either in mesh or star topology, and mostly running at T1 (1.54 Mb/s) or T3 (45

Mb/s) link speed.

Most of the today’s Internet end users are residential computer users. Most of them

access the Internet via low-speed modems, though this situation is likely to change as DSL

5

and cable modem are being deployed. Potentially, another low-speed end-user population

comes from cellular networks, where the connection speed is in the range of 10 kb/s in

GSM. However, 3G technologies can improve wireless user data rate to as high as 2 Mb/s.

The Internet is connected by routers, a type of special-purpose computer, that can direct

traffic from one place to another. The protocols that dynamically inform the routers of

the paths that the data should take are called routing protocols. Routing protocols can

be categorized into two types. The protocols that distribute routing information within a

regional or backbone network are IGP (Interior Gateway Protocols). Some of the typical

IGP are RIP [10], OSPF [11] and IS-IS [12]. Both OSPF and IS-IS are well designed, and

have no stability and scalability problems in reasonably structured networks [13], while

RIP has been phasing out in production networks. The protocols that exchange routing

information between provider networks are EGP (Exterior Gateway Protocols). Currently,

the de facto EGP is BGP4 [14] and several of its important extensions [15, 16, 17, 18,

19]. After years of experimenting and engineering, BGP is reasonably stable and scalable,

although route instability [20] and slow route convergence [21] remain significant problems

in the backbone networks today.

The entire Internet is divided into a number of routing domains, domains, or Au-

tonomous Systems (AS’s). All the routers in an AS share the same routing policy, and

are under single technical administration. Each AS could be a collection of IGP’s working

together to provide interior routing. To the outside world, the whole AS is viewed as one

single entity. Each AS has a unique identifying number throughout the Internet, which is

used by EGP during route distribution. In most cases, each provider network has one AS,

however, some of the larger backbone providers can have multiple somewhat independent

networks, and use several AS’s in routing.

1.2 Dissertation Overview

Resource reservation has been a very controversial issue among academic scholars and

network operators. The next chapter examines the question of whether or not the Internet

is better off with resource reservation from several aspects. An analytical model shows that

6

reservation-capable networks provide better performance for real-time traffic than best-

effort-only networks. A study on today’s Internet traffic volume, bandwidth pricing, and

network topology indicates that network heterogeneity could be a significant problem that

prevents ISP’s from delivering predictable services to end users. We also evaluate some of

the potential network applications and conclude that supporting resource reservation is a

key to deploy those applications.

RSVP [22, 23] is the most recent resource reservation protocol for the Internet, however,

it has many scaling problems. To improve scalability, Chapter 3 describes a mechanism

called staged refresh timer that can reduce the total number of RSVP messages in the

network, while improving hop-by-hop message delivery. The enhancement is backwards-

compatible and can be easily added to current implementations. We also evaluate several

other proposals that are aimed to enhance RSVP scalability.

Running a single protocol to setup all the reservations in the Internet is bound to have

scalability problems, as the Internet size is growing exponentially at a rate that is similar to

the one that has produced “Moore’s Law” in semiconductors. Chapter 4 presents a hierar-

chical architecture for providing resource reservations in the Internet. At the bottom level

of the hierarchy, end-user applications can initiate, modify and terminate reservations. The

key requirements for application-layer reservation protocols are that reservations must be

simple to process, and fast to set up. At the top of the hierarchy, network providers can cre-

ate large and more static reservation trunks between each other. Inter-provider reservations

are created based on bilateral or multilateral agreements. The key requirements here are:

the total number of reservations must be manageable; the reservations have to be robust

during frequent routing changes.

Chapter 5 investigates two key issues in designing reservation protocols: signaling se-

quence (i.e.sender-initiated vs. receiver-initiated), and partial reservation. Both contribute

directly to protocol’s scalability. In particular, we investigate techniques that allow routers

to quickly recover from partial reservations.

In Chapter 6, we present the design, implementation and performance of a lightweight

signaling protocol, YESSIR (YEt another Sender Session Internet Reservations). YESSIR

is designed to setup resource reservations for real-time streaming applications that use

7

RTP [24]. Senders generate requests to reduce processing overhead, and it uses user-to-

user soft state to maintain reservation states. It also supports the features such as sharing

reserved resource among a group of senders, and network resource advertisement. More

importantly, it extends the all-or-nothing reservation model to support partial reservations

that improve over the duration of the session.

Chapter 7 presents a provider-level reservation protocol called BGRP (Border Gateway

Reservation Protocol). It manages network resources at routing domain (AS) level, and

interacts closely with BGP. BGRP can aggregate all the traffic going to the same destination

AS. Therefore, it keeps the number of the reservations in backbone routers to����, where

� is the total number of AS’s. Since BGRP is built on top of BGP, it is not effected by

route looping, flapping and convergence problems.

We conclude in Chapter 8.

8

Chapter 2

Do We Need Resource Reservation?

2.1 Background

In 1993, Zhang et al. [22] described resource reservation as an important component for

providing service guarantees in the Internet. RSVP [23] has been proposed as the signaling

protocol that is responsible for setting up reservations for user packet streams in the net-

work. However, over the years, many people [25, 26] have been debating over whether or

not there is a need for resource reservation in the Internet in the first place. The arguments

against resource reservations include:

Over-provisioning is good enough: Because bandwidth is becoming a cheap commodity,

the networks can afford to be over-provisioned to eliminate link congestion and to re-

duce packet transmission latency. This popular argument seems to be confirmed by

the fact that several large backbone providers, UUnet and Verio, have been deploying

high-speed links (up to OC-192, or 10Gb/s, in 2000), and used over-provisioning to

overcome link jitters and congestion. It is important to note here that this argument

is based on the expectation that, as more advanced technology (such as optical net-

working and gigabit Ethernet) becomes available, the bandwidth price will be driven

down rapidly and consistently in the near future.

Applications can adapt: End users can use various adaptation mechanism, such as buffer-

ing, signal reconstruction, and adaptive compression, at the application layer to adapt

9

to network delay and packet losses. For example, NeVot [27] and rat [28] have a built-

in buffering mechanism to adjust play-out delay, and vat [29] and rat can reconstruct

lost signal.

Real-time traffic volume is too small: Most of the network traffic is elastic, and has loose

time constraints. Most of the multimedia data (video and audio) transmission should

not be considered as real-time either, since users have the option to download or

cache data in advance. Therefore, engineering a network to accommodate small

amount of inter-active real-time traffic does not seem to be economical.

Adds QoS support processing cost to routers: Processing control messages, maintain-

ing reservations states and running admission control contribute to heavy processing

and memory overhead at routers. This argument has gained a lot of support among

engineers during the development of RSVP and IntServ [30, 31, 32, 33].

Adds complexity to service providers: Reservations categorize user traffic into multiple

“flows”, each may associate with a different accounting, authentication and billing

procedure, and needs to be handled separately by the ISP. Given that the number of

“flows” can be very large, a scalable management and billing system can be compli-

cated and costly to develop and deploy.

Do we need to use reservations in the Internet? The answer to this question depends on

many factors, such as, bandwidth cost, Internet growth rate, service deployment process,

and the emergence of “killer” applications in the future that can significantly change traffic

pattern and traffic dynamic. In this chapter, we argue the necessity of resource reservation

from several aspects, and evaluate some of the flaws in the above argument.

2.2 Performance Evaluation for Real-Time Applications

Shenker and Breslau studied [34, 35] the performance of real-time applications in the In-

ternet through the use of a utility function formulation and several simple models. They

concluded that depending on traffic pattern, reservation-capable networks retain significant

advantages over best-effort-only networks, no matter how cheap bandwidth is.

10

Two types of real-time application are defined here: rigid and adaptive. The rigid

applications are extremely sensitive to delay and have hard real-time requirements. These

applications need their data to arrive within a given delay bound. An example of such

applications is the traditional phone service. Adaptive applications, on the other hand,

can be audio and video applications that are implemented to tolerate occasional delay-

bound violations and dropped packets. A typical adaptive application is VoIP, that can have

adjustable delays.

The utility functions for both rigid and adaptive applications are illustrated in Figure 2-

1. The utility function for a rigid application flow is

��� �

���
��

� for � � b̄

� for � � b̄

where b̄ is the bandwidth needed for real-time applications.

For applications that can adapt to both changes in rate and delay, the transition in utility

will be smooth from low bandwidth to high bandwidth. For example, the utility function

can be characterized as the following:

��� � ��
���

���

where � is a constant. Similar to other elastic applications (file transfer and email), at high

bandwidth, there is only a marginal performance gain with additional bandwidth. Nev-

ertheless, the adaptive applications always have an intrinsic bandwidth requirement, and

this intrinsic generation rate is independent of the network congestion. The performance

degrades badly as soon as the bandwidth share becomes smaller than the intrinsic rate.

Thus the network can become overloaded, though the applications can adapt to network

congestion.

The fundamental difference between a best-effort-only network and a reservation-capable

one is that, in the former, user flows are never denied access to the network, whereas a

reservation-capable network can deny reservation requests.

Let � ��� be the possibility that there are � flows requesting service, and � be the link

11

0

0.2

0.4

0.6

0.8

1

U
til

ity

Bandwidth

(a) Rigid application utility function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
til

ity

Bandwidth

(b) Adaptive application utility function

Figure 2-1: The utility function for rigid and adaptive applications.

capacity. The average number of the requesting flows in the network is
� �
�
�

��� � ����.

Hence, the total utility of a best-effort-only network is given by:

����� �
��
���

� ����
�
�

�
�

For a reservation-capable network that can admit at most ������� flows, the total utility

becomes

����� �
�����	��
���

� ����
�
�

�
� �

��
�������	���

� ����������
�
�

�������
�

The normalized utility functions for best-effort-only and reservation-capable networks

are respectively,

���� �
�����

�

12

and

���� �
�����

�

By modeling � ��� as Poisson, exponential and algebraic load distributions1, they ob-

served the following important insights:

� Performance and bandwidth benefits: The best-effort-only networks may be sim-

ple to build, but they require additional bandwidth in order to match the performance

of the reservation-capable networks. This additional bandwidth is defined as the

bandwidth gap, ����, such that, ���� � ��� ������.

When evaluating the utility functions and the bandwidth gaps for both rigid and adap-

tive applications, it was found that, not surprisingly, rigid applications perform much

better in a reservation-capable network than that in a best-effort-only network. How-

ever, surprisingly, for Poisson and exponential load distribution, the performance

results for adaptive applications are almost identical in both best-effort-only and

reservation-capable networks. The bandwidth gap disappears at high link capacity

region. This behavior demonstrates the advantage that adaptive applications can tol-

erate network overload conditions, and raised the issue whether reservations have

any advantage. However, when using algebraic load distribution in the model, the

bandwidth gap between two networks is a constant2 regardless of link capacity. This

implies that the best-effort-only networks always require more bandwidth than reser-

vation networks to match their performance.

� Cost and bandwidth trade-off: The reservation-capable networks impose the bur-

den of additional complexity compared to best-effort-only networks. If the cost of

extra complexity in building a reservation-capable network is converted to the cost

of additional bandwidth, we can have the following welfare function:

1In the paper [35], the Poisson distribution is defined as � ��� � �����

��
, and the exponential distribution

is � ��� � �� � �������. The algebraic distribution is defined as � ��� � �
����

. Note, when setting � to
be zero, it becomes a simple Pareto distribution, which has been used to model the self-similarity behavior
of Internet traffic. For detailed mathematical analysis, refer to the paper directly. We only present the model
and the results here for clarity.

2For � � ��, the constant is �.

13

� ��� � � ������� � ����

where � is the cost per unit bandwidth. When setting the welfare of reservation-

capable and best-effort-only networks to be equal, (i.e., ���
�� � �����),
� is the

cost per unit bandwidth in reservation-capable networks, and the ratio ���� � �

thus indicates the added complexity in reservation-capable networks relative to the

best-effort-only networks.

It was shown that when using adaptive applications, for Poisson and exponential

distributions, ���� � � as �� �. This implies that as bandwidth becomes cheaper,

�� �, i.e., if adding reservation capability to the network introduces any additional

per-unit bandwidth cost, it would make the best-effort-only network the preferable

choice.

However, in contrast, in the algebraic case, ���� is always greater than one, and does

not converge. This implies that the best-effort networks cannot perform as well as the

reservation-capable networks, no matter how inexpensive the bandwidth becomes.

Thus, when by introducing a small amount of additional per-unit bandwidth cost, a

reservation network is always the preferable choice over a best-effort-only one.

In conclusion, it has been shown that there is a significant performance gain between

best-effort-only and reservation-capable networks for rigid applications. For adaptive ap-

plications, with Poisson and exponential load distributions, there is no strong need for

reservations, but with algebraic load distribution, reservations yielded significant benefits.

Therefore, the need for reservation-capable networks depends on the traffic pattern in the

future.

2.3 Traffic Condition in Today’s Internet

Despite the claims by some providers [36, 37] that their networks have little jitter and

congestion, end-user traffic suffers from significant delay and jitters. From the Internet

14

traffic dynamic studies conducted by Vern Paxson [38, 39], it was shown that by sampling

over 20,000 TCP traces from 1994 to 1997 among 35 widely spread sites:

� Overall packet loss was between 2.7% to 5.2% randomly during the measurement

period.

� Available bandwidth is defined as the proportion of the total network resources that

were available by an end-to-end connection itself. A value of 1 means that bandwidth

is available on all physical links that are used by the connection, whereas a value of

0 indicates no link bandwidth. The was shown that the available bandwidth varied

widely, from very little to almost 1.

� The end-to-end packet delay varied from 100 to 1,000 ms, but extended out quite

frequently to much larger times.

The results indicate the following: the Internet has both high-bandwidth links, where

packets can sail through without any disturbance, and bandwidth bottleneck links. When

packets go through the bottleneck links, the transmission can take a very long time.

The range of the delay variation was particularly troublesome: to transmit one-way

voice data, the maximum allowed end-to-end delay is approximately 200 ms [40]. Let’s

estimate that the total time for packetization and coding/decoding [41] is approximately

100 ms. This leaves approximately 100 ms, which is the lower bound in Paxson’s measured

delay variation, as the total network latency allowed for voice packets. This implies that, at

worst, the end-user applications may have to absorb as much as 900 ms of delay. This kind

of delay variance is not acceptable for real-time voice traffic.

Hence, it is reasonable to claim that, in order to support delay-sensitive end-user appli-

cations in the Internet, unless the network can always transmit user packets over the links

that have plenty of bandwidth, the applications will suffer from jitter, or excessive delay.

This raises the following issues: Where are the bandwidth bottleneck links? Can we

just over-reserve the bottleneck links? How real is the problem that end-user traffic actually

travels through the bottleneck links? We will try to provide some insights to these questions

in the following sections.

15

2.3.1 Bandwidth Bottlenecks

Network links cover a large spectrum of speeds. Typically, backbone networks have link

speeds ranging from OC-3 (155 Mb/s) to as high as OC-192 (10 Gb/s), and are likely to

operate at higher speed in the future, as the next-generation optical equipment is being

deployed.

Within private and local-area networks, each user normally has at least 10 Mb/s (i.e.,

switched Ethernet LAN’s) of bandwidth to share, normally with a small number of other

users. Most of the residential dial-up users run at 56 kb/s modem speed. With the emer-

gence of high-speed LAN’s (100 Mb/s Ethernet) and DSL/cable modem technologies, end

users will eventually have more bandwidth to access the Internet. For wireless users, cel-

lular (GSM) technology can only provide approximately 10 kb/s of bandwidth. However,

in 3G, user data rates vary extensively depending on the technology (GPRS, 3G-1x, HDR,

etc.). Wireless data rates can range from 64 kb/s all the way up to almost 2 Mb/s.

From recent measurement results [4], it was estimated that private, local-area and back-

bone networks are lightly loaded, as shown in Table 2.1. The particular reason for light

traffic load within corporate networks is to maintain a low transaction latency within the

network. This suggests that as long as user traffic stays in the same network, latency and

jitter are not a problem. Hence, if there is any congestion in the Internet at all, it must come

from places that interconnect subnetworks.

Network Type Average Utilization

Backbones 10-15%
Private Networks 3-5%
LAN’s 1%

Table 2.1: Network utilization estimation from [4].

We refer to the links that connect private networks to the Internet, or interconnect

provider networks at POPs (Points of Presence), NAP’s (Network Access Points) and pri-

vate peering points, as access links. It is believed that the access links are the main points

of congestion. The NAP’s are particularly problematic. Unfortunately, most of the com-

mercial ISP’s do not publicly reveal the traffic statistics of their access links. We have to

16

rely on traffic traces from several academic and research networks to piece together the link

utilization conditions.

SWITCH [42] is a regional ISP that provides Internet connectivity to Swiss academic

and research institutions. In 2000, the backbone consists of E3 (34 Mb/s) and OC-3 trunks.

Table 2.2 shows the traffic statistics on some its access links. The measurement was made

by collecting traffic counters from the routers every 5 minutes using SNMP. From the col-

lected data, we notice that although the average link utilization is low, the peak utilization

at the NAP and the direct peering links are quite high. In fact, the peak utilization at the

CERN NAP had reached the maximum link capacity, since the NAP is operating on an

Ethernet. Unfortunately, there is no data available for us to determine congestion duration.

Average Utilization Peak Utilization
Link Type In out In out

Transatlantic OC-3 Link
(Zurich - New York) 16.1% 5.6% 49.4% 32.1%

Trans-Europe OC-3 Link 10.5% 17.0% 23.9% 48.9%
CERN NAP, Geneva

(100M Ethernet) 13.7% 25.1% 70.3% 89.6%
Direct Peering (to Swisscom)

(100M Ethernet) 3.0% 12.5% 64.8% 67.0%

Table 2.2: Monthly link utilization in SWITCH access links on September, 2000.

NORDUnet [43] is a reasonably sized backbone network that connects Nordic countries

to the rest of the world. The backbone itself is a mix of OC-3 and OC-12 trunks. NOR-

DUnet connects to several NAP’s, including the Chicago NAP, and is peering with several

other large provider backbones, such as TeleGlobe, Telia and FUNET. Most of the access

links are OC-3 trunks, except that the Chicago NAP link runs at DS-3 speed, and the link

to DGIX NAP is a 100 Mb/s Ethernet connection. Similar to other providers, NORDUnet

uses multiple links to peer with other providers, and traffic to and from other providers is

evenly distributed across all the links. We selected the 12 busiest links out of a total of 36

access links in the backbone, and analyzed the peak and average link utilization shown in

Figures 2-2, 2-3 and 2-4.

We observe the following interesting results:

17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct-99 Dec-99 Feb-00 Apr-00 Jun-00 Aug-00

L
in

k
U

ti
liz

at
io

n

Peak at Chicago
NAP

Peak at DGIX NAP

Average at Chicago
NAP

Average at DGIX
NAP

(a) Input traffic link utilization at the NAP’s.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct-99 Dec-99 Feb-00 Apr-00 Jun-00 Aug-00

L
in

k
U

ti
liz

at
io

n

Peak at Chicago
NAP

Peak at DGIX NAP

Average at
Chicago NAP

Average at DGIX
NAP

(b) Output traffic link utilization at the NAP’s.

Figure 2-2: NORDUnet traffic average and peak link utilization at the NAP’s from October
1999 to September 2000. Note that the DGIX NAP runs on a 100 Mb/s Ethernet, that has
a maximum link utilization of 70-80%.

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct-99 Dec-99 Feb-00 Apr-00 Jun-00 Aug-00

L
in

k
U

ti
liz

at
io

n

Peak at Trans-Europe
Link

Peak at FUNET Link

Peak at TeleGlobe
Link

Average at Trans-
Europe Link

Average at FUNET
Link

Average at TeleGlobe
Link

(a) Input traffic link utilization with peers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct-99 Dec-99 Feb-00 Apr-00 Jun-00 Aug-00

L
in

k
U

ti
liz

at
io

n

Peak at Trans-Europe
Link

Peak at FUNET Link

Peak at TeleGlobe
Link

Average at Trans-
Europe Link

Average at FUNET
Link

Average at TeleGlobe
Link

(b) Output traffic link utilization with peers.

Figure 2-3: NORDUnet traffic average and peak link utilization with three different peers
from October 1999 to September 2000. NORDUnet has multiple peering links to FUNET
and TeleGlobe. The data here is the average from those links.

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct-99 Dec-99 Feb-00 Apr-00 Jun-00 Aug-00

L
in

k
U

ti
liz

at
io

n

Input Peak Rate

Output Peak Rate

Input Average Rate

Output Average
Rate

Figure 2-4: NORDUnet traffic average and peak link utilization on the transatlantic links
from October 1999 to September 2000. NORDUnet has three OC-3 transatlantic links. The
data here is the average of those links.

� Both NAP (Figure 2-2) and private peering links (Figure 2-3) can get congested. This

is somewhat surprising, since it has been perceived that unlike NAP’s, private peering

links are better managed and thus have less congestion.

� Transatlantic links are a part of the provider’s backbone, and have very high peak

utilization (Figure 2-4). This implies that there are bottleneck links within provider

networks, and user traffic that stays within the same provider’s network can also get

congested.

� Most importantly, the average link utilization is quite low, around 20% to 30%, how-

ever, the peak link utilization is high on all links. Some of the links had reached

100% link utilization. The congestion occurrence varies depending on links. From

the statistics maintained at NORDUnet, the Chicago NAP link operated at peak only

once in August, 2000, which lasted approximately 7 hours. The DGIX NAP link

20

operated at peak (over 80% link utilization) five times in September, 2000, and only

once in August, 2000. Each congestion in DGIX lasted between around 1 hour to as

many as 10 hours. We have also observed frequent and long-lasting congestion on

several peering links. During August and September, 2000, the TeleGlobe links had

operated at peak (over 80% link utilization) almost every workday. Each peak lasted

about 8 hours.

To understand the reasons for link congestion, we extensively studied the link utiliza-

tion history3. We discovered that network links are being frequently re-configured and

upgraded. One of its reasons is that providers regularly re-arrange or shift user traffic

between links to balance traffic load and optimize bandwidth usage. For example, the rea-

son for the sharp traffic increase and subsequent link congestion on the TeleGlobe links

(Figure 2-3-(a)) was that to reduce the traffic “flooding” from external users and to make

bandwidth available for internal users, NORDUnet had shut off one of the three OC-3 links

to the TeleGlobe backbone.

Since we do not have the access to many other ISP’s traffic statistics, we cannot make

the claim that the traffic conditions in NORDUnet network are typical for the rest of

the Internet. However, from the statistics collected from several other ISP’s, such as

SWITCH [42], Above.net [44] and BBC [45], we discovered a very similar traffic behavior:

the average link utilization is always reasonably low, and many links are lightly loaded at

all time. However, every network always has busy links (particularly, access links at NAP’s

and peering points) that have long lasting high bandwidth utilization.

2.3.2 Getting Connected Is Costly

One obvious solution to reduce or eliminate the congestion and jitters problems is to add

more bandwidth at congested links, such as the access links. Unfortunately, this is unlikely

to happen any time soon for many networks, especially those operated by the smaller ISP’s.

This is because most of these links are leased from telephone companies, and are very

expense.

3We acknowledge the kind and detailed response from Havard Eidnes at NORDUnet.

21

Although many people have predicted that bandwidth would become ”dirt” cheap, the

reality is that leased line prices have not decreased consistently and rapidly.

Andrew Odlyzko in [46] had estimated the tariffed price for a T1 link from New York

City to Pittsburgh, a distance of about 300 miles, which is about the average distance for

long distance private line links. In 1987, the link was priced at $10,000 per month. After

a consistent decrease for 5 years, the price had shrunk to $4,000 in 1992. However, from

1992 to 1998, the link price has climbed by over 50%, to $6,000 per month. What is

surprising here is that the price increase has taken place during the same period at the peak

of Internet commercialization, which has been one of the largest network infrastructure

expansions in history: thousands of ISP’s were founded, and the demands of leased lines

were skyrocketing.

In spite the bandwidth price increases in the 1990’s, compared with Europe, North

America has much lower leased line prices [47]. At the end of 1998, for comparable dis-

tances (300 km) and bandwidth (2 Mb/s), US leased lines are four times less expensive than

ones within the same European country, and sixteen times less expensive than international

links within Europe.

An important factor that is contributing to high bandwidth price is the costs of cable

installation. Normally, cable installation expense includes engineering and construction

expense (such as digging), negotiating right-of-way (ROW) costs and fiber costs. It was es-

timated that for phone or cable companies to install cables, the average cost for installation

is between $7 and $15 per meter [48]. However, to put the fibers in use (such as generating

signal, building regeneration sites), the total cost becomes $50 to $70 per meter [49].

Not only are leased lines expensive, interconnecting ISP’s can be costly as well. Ta-

ble 2.3 shows the connection fees at some of the NAP’s.

A network provider needs to pay neighboring providers very high prices for carrying

its traffic. Recently, some North American providers [8] have claimed that the peering

cost for a transit DS-3 link was $50,000 per month, and a OC-3 link costs up to $150,000

per month. To reduce costs, providers have begun to adapt the method of establishing

private peering arrangements among each other, and have reduced the amount of traffic

going through public NAPs. Typically, in a private peering arrangement, two connected

22

NAP E-3 DS-3 OC-3 OC-12
(34 Mbps) (45 Mb/s) (155 Mb/s) (600 Mb/s)

Chicago (Ameritech) - 3,900 4,700 -
Bay Area (PacBell) - 3,750 5,000 13,500

France (Parix) 4,086 - 4,458 -

Table 2.3: Monthly Cost (in US Dollars) to connect to a NAP in a 3-year term. The NAP’s
listed here use ATM PVC to guarantee bandwidth for peer-to-peer traffic. The NAP’s that
operate with Ethernet and provide shared bandwidth among peers have a much lower price.

providers share the cost of a single link, assuming that the traffic volume on the link are

roughly equal.

For example, Telia, a backbone provider in Sweden, had analyzed their transit costs

and recognized that approximately 85% of their traffic at MAE-East, a large public NAP,

was to their transit providers (i.e., the providers that are paid to carry Telia’s traffic) and

the remaining 15% was through peering relationships. By focusing on establishing peering

relationships with the top 25 destination AS’s, they shifted the mix to 70% through private

peering, with the remaining 30% of traffic going through the NAP. The result was increased

traffic efficiency and a reduction in the cost of transit.

In conclusion, we believe that, similar to many other commodity products, such as

computer software and microprocessors, the rapid technological progress and the rising

consumer demand do not necessarily translate to rapid price decrease in the market. Due

the monopoly by a small number of major players (phone companies, cable companies,

and large Internet providers) [50], and strict and protective government regulations [51],

the price for bandwidth will not decrease fast enough.

2.3.3 The Vast and Flat Internet

So far, we have shown the existence of bandwidth bottleneck links in the network, many

of which are located at network access points. But how much end-user traffic is actually

going over these links?

The answer depends on the size and the geographic location of the provider networks.

For example, UUnet has a very dense network infrastructure in the United States. When

23

two UUnet users communicate with each other in US, it is most likely that their traffic stays

within the same network, and won’t go over bandwidth bottleneck links. However, for

European, Asian and Australian users, a large percentage of their Internet traffic is actually

with US networks. According to an estimate [52], 60% of Telstra (the dominant Australian

provider) Internet traffic had been with US provider networks. Therefore, it’s reasonable to

assume that a large portion of end-to-end traffic traverse over multiple provider networks.

The average end-to-end router hop-count was 16 in a 1996 measurement [53]. As

measured by Paxson [54], the longest end-to-end hop-count in the Internet was greater

than 30 in 1997. However, looking at the router hop-counts alone does not reveal traffic

conditions inside the network. In fact, it is when user packets traverse multiple providers,

they are more likely to experience congestion at inter-provider access links.

A typical example is the following: suppose that users from regional network � need

to communicate with users in regional network �. Backbone provider � provides transit

service for �; backbone � for �. Backbone � and � exchange traffic at a NAP or through

private peering. Thus, end-to-end traffic involves all four �, �, � and � networks, and has

a provider-hop-count of 4. Of course, it is also possible that there are more than two transit

networks (� and �, as illustrated here) to interconnect sparsely located user populations.

Figure 2-5 shows the AS path information gathered at BGP border routers at the Univer-

sity of Oregon [55] and BELNET [56] 4. The �-axis is the provider-hop-count (represented

as AS length), and the �-axis is the percentage of the destination networks. The figure

shows the number of providers that a user at the measured network has to travel in order to

reach a destination network. Most of the destination networks are 3 to 5 providers away.

This result has been further confirmed by data gathered by Telstra [2].

Here, we need to take into account the following two considerations: First, the AS

information is announced by the destination networks, and distributed by BGP. Border

routers can receive the same AS reachability data from multiple neighboring networks. It’s

up to the border routers to determine the most suitable routing path. Hence, the collected

AS path information may not reflect the actual data forwarding path.

4The data was collected by Olivier Bonaventure of BELNET in December 1999. We acknowledge his
timely response to our inquiry.

24

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 3 4 5 6 7 8 9 10

AS Path Length

P
er

ce
n

ta
g

e

Oregon (US),
1997

BELNET
(Belgium),
1999

Figure 2-5: The AS path length information gathered from BGP AS-Path attribute.

The BGP routing information (such as route prefix and AS path) is aggregated at border

routers. The reason for BGP aggregation is to reduce the total number of states maintained

by the routers, and to localize the route flapping effects to a smaller portion of the network.

It is possible that the measured AS path length has been aggregated and suppressed, and

the actual AS length (or provider hop-count) may be longer.

The more network providers that user packets travel over, the more likely that they will

go over bandwidth bottleneck links. Given the on-going rapid Internet deployment in the

Far East and Latin America, and continuing growth in US and Europe, we predict provider

hop-counts between large user populations will increase in the near future.

25

2.4 Sustaining Internet Traffic Growth

The Internet is in a transitional period. According to an 1998 estimate by Coffman and

Odlyzko [9], Internet traffic has a 100% annual growth rate. We predict that, in the near

future, some of the new applications may not only accelerate traffic growth, but change

traffic characteristics as well. This will add more network deployment and management

challenges to providers. Here are some of the emerging applications.

VPN traffic: In studies conducted by Coffman and Odlyzko [9, 52], it was shown that

in 1997, the traffic carried by private lines and the Internet was 3,000 - 5,000 TB/month,

and 2,500 - 4,000 TB/month, respectively. In 1999, there was 5,000 - 8,500 TB/month

for private lines and 10,000 - 16,000 TB/month for the Internet. In 1997, the revenue for

retailed leased lines for private non-Internet carriers companies was 10 billion dollars in

US. The numbers imply that private networking is a profitable and growing business.

For this reason, nearly all network providers have entered the private networking busi-

ness by offering VPN (Virtual Private Network) services over their Internet backbones.

Currently, there are two trends in provider-based VPN: one is to interconnect existing pri-

vate networks, such as Frame Relay and ATM networks, over the public Internet infrastruc-

ture, and the other is to replace some of the legacy private networks with the new IP-centric

VPN technologies. In both cases, it requires the Internet to be able to duplicate the same se-

cure and predictable services as in the private networks. Specifically, legacy services such

as SNA require timely packet delivery and are extremely sensitive to packet loss. There

is also a need for having a scalable and robust signaling mechanism that can establish and

maintain those VPN connections.

Real-time data: Though streaming data with real-time requirements represents a very

small portion of the total Internet traffic today, this situation can be quickly altered if Inter-

net is to carry telephony voice traffic. In 1999 [52], the total voice traffic in US telephone

systems was 40,000 TB/month, which is about four times more than the Internet traffic

during the same period. This implies that, even with a small portion of the voice traffic

going through the Internet, it can dramatically change traffic pattern and traffic dynamics

26

in the network.

Some have argued that there is no good economical reason for introducing voice service

to the Internet, because the net cost of using the Internet and the existing phone networks is

pretty much the same. However, this is not a proper measure to evaluate the emergence of

IP telephony technology. The most significant advantage that IP telephony can offer is not

as a telephone service replacement, rather it is meant for service integration, where voice,

messaging and audio/video streaming applications can be accessed by end users from a

single networking interface. It thus forces the networks to add the capability to deliver user

packets that have different criteria in terms of delay and throughput. Once again, we notice

that it requires scalable and efficient signaling mechanisms to ensure appropriate services

for the voice sessions within the Internet.

“Killer” applications: Network engineering and deployment take time. The past history

tells us that user traffic triggered by some “killer” applications could potentially “flood” the

network before the providers can respond and adjust their network capacity. For instance,

due to Web browsing, the Internet traffic has an abnormal growth [52] that doubles every

three or four months in 1995 and 1996, which represents a 100-fold traffic explosion over a

two-year span. Another traffic explosion took place more recently. In 1999, some networks

had observed abnormal traffic growth [57] due to Napster, a service that allows Internet

users to exchange music files.

2.5 Scalability in Resource Reservation

It was shown previously that reservation-capable networks deliver better performance than

best-effort-only networks for both rigid and adaptive traffic depending on the traffic as-

sumption. However, reservation-capable networks require the routers to have admission

control capability, which is believed to impose various scalability problems.

The scalability problem can be categorized into two aspects: data-plane and signaling

(or controlr-plane).

In the data-plane, in a network that has many user flows, the processing overhead asso-

27

ciated with real-time scheduling and queuing becomes non-negligible [58]. The overhead

is caused by maintaining queues for each “micro” (per-user) flow and assigning packets

to each queue. To reduce per-flow queuing overhead, several alternative architecture have

been proposed, including the IETF DiffServ model [59] and the dynamic packet state [60]

architecture. In the DiffServ model, routers simply implement a set of buffer management

and priority-like queuing disciplines for each of a very small number of traffic “classes”,

providing them with coarse grained rate guarantees. At the network edge, user flows are

aggregated into these classes. It has been shown [61] that routers can indeed provide rea-

sonably accurate rate guarantees and fair distribution of excess resources, with minimal

impact on raw forwarding performance.

In this dissertation, we focus on the scalability issues related to reservation signaling.

The scaling issues include the following:

� Memory utilization in routers (Section 2.5.1),

� bandwidth utilization for control messages (Section 2.5.2),

� control message processing cost, and

� manageability by network operators.

2.5.1 Router Memory Usage

When RSVP was first proposed in 1993, routers were not equipped with much memory

due to the high cost of fast memory at the time. Router’s software was carefully designed

and developed to make a good use of the limited memory to support rapid growing IP

routes. For example, in 1993, a typical IBM NSFnet backbone router was configured to

operate with 16 MB of 80 ns DRAM. During the implementation of RSVP, some developers

realized that storing a single reservation could take as much as 500 bytes [62, 63]. Thus,

to support 10,000 RSVP sessions would take at least 5 MB of memory. At the time, there

were concerns among developers over RSVP’s large memory requirement.

However, in the intervening years, the cost of memory has gone down dramatically.

Today’s routers are equipped with more memory: Cisco 12416 routers [64] can support up

28

to 256 MB DRAM, and Juniper M-160 routers [64] are equipped with 768 MB of DRAM

by default. Nowadays, memory usage is no longer a bottleneck for signaling protocols.

2.5.2 Bandwidth Utilization

Frequent control message exchanges between routers consume significant amounts of link

bandwidth. This is particularly significant in soft-state based protocols such as RSVP. In

RSVP, control message bandwidth���� is proportional to the total number of reservations,

� , reservation message size �, and soft-state refresh period �:

���� �
� 	 �

�

Assume each reservation is associated with user flow rate �. The ratio between control

message and reserved data traffic is determined by � � �
���

.

Suppose there are � = 10,000 RSVP sessions going over a backbone link. The soft-

state refresh interval � is 30 sec, and the combined message size � is 350 bytes5. We have

����
 0.93 Mb/s. Take � to be 64 kb/s, the typical voice transmission rate. We have �

0.146%, which is not a very large portion of the overall reservable link bandwidth. This

implies that, when RSVP is used to make explicit bandwidth reservations, the maximum

number of sessions on any given link is bound by the reservable link capacity, and the upper

bound for control message bandwidth usage is predictable and manageable.

However, there is one exception when dealing with MPLS “label-switched path”, where

RSVP is used to setup and maintain the connections. Since each RSVP session may or

may not be associated with link bandwidth, ���� is no longer bounded. On the other

hand, MPLS is designed to operate in high-speed networks, where the bandwidth used for

exchanging control messages should not be a serious issue.

Nevertheless, efficiently utilizing bandwidth should be one of the important objectives

in every signaling protocol design. In Chapter 3, we will introduce a scheme called staged

refresh timers that can reduce ���� by increasing refresh interval �, while improving mes-

5Both � and � are the default values specified in RSVP and IntServ. A typical RSVP Path message is
200 bytes, and a RSVP Resv message for Controlled Load service is 150 bytes.

29

sage delivery reliability. We will also evaluate a mechanism, summary refresh, that reduces

���� by reducing reservation message size �. Another method is to limit the total number

of reservation sessions, � , by introducing reservation aggregation. In Chapter 7, we will

present a sink-tree based aggregation method for inter-domain reservations that can achieve

good bandwidth scaling properties.

2.5.3 Message Processing Cost

Message processing cost is directly related to protocol complexity. Here, we must differ-

entiate the complexity introduced by running resource reservations inside a network from

the complexity and the scalability problems that are involved in reservation protocol design

and implementation.

Implementing RSVP in a scalable manner is difficult. This is because the protocol is

receiver-initiated, multicast-driven and supports shared reservation and complex error re-

covery algorithms. In particular, receiver-initiated reservation is troublesome, since the

routers must develop efficient algorithms to map the reservation requests that are installed

by the senders to the reservations initiated by the receivers, while taking into the consid-

eration of network topology changes, one-to-many mapping (multicast) and many-to-one

mapping (shared reservation). Nevertheless, the IBM RSVP router implementation [65]

was able to setup a new RSVP session in 1.1 ms, and process a refresh message in 0.64 ms

for a low-cost, low-performance 32 MHz Motorola processor.

By simplifying the reservation sequence on routers, we can drastically reduce process-

ing overhead. For instance, we proposed a lightweight sender-initiated, one-pass reserva-

tion protocol, YESSIR. On the same IBM router platform, the YESSIR implementation

improved the reservation setup time by 70% over RSVP. It was also shown that with care-

ful implementation and by using basic hashing techniques to manage reservation states, a

stand-alone YESSIR implementation can process up to 10,000 flow setups per second (or

support up to 300,000 flows per router) on a 700 MHz Pentium PC [66]. We will describe

YESSIR’s design and implementation in Chapter 6.

30

2.5.4 State Management Cost

Each individual reservation needs to be managed separately by providers. Improper reser-

vation management can cause service disruption and waste network resources. Manage-

ment includes tasks such as optimizing and monitoring user traffic. The complexity and

the overhead involved in reservation management increase linearly with the number of

reservations. Therefore, there can be a scaling problem if there are too many reservations

in the network.

To grasp the scope of this issue, we need to understand the maximum number of “states”

that providers are capable or willing to handle. A close analogy is the number of routing

policies managed by each ISP. Presently, network providers regulate incoming and outgo-

ing transit traffic by setting up routing policies at border routers. A typical routing policy

consists of a list of destination networks whose traffic the router is allowed or not allowed to

receive. Each policy is derived from the bilateral agreement among neighboring providers.

If an ISP does not manage its routing policies properly, it will cause traffic “flooding” and

looping in the Internet. The consequence is catastrophic and can result in neighboring

providers blocking all traffic coming from and going to the offending ISP. The maximum

number of routing policy entries at a large provider’s backbone is of the order of 100,000,

which is the total number of routes in today’s Internet. In reality the actual number of rout-

ing policy entries is much smaller due to route aggregation. We believe that the complexity

of handling resource reservations is comparable to managing routing polices.

Figure 2-6 plots the total number of end users, networks and routing domains in the

entire Internet over the years. Reservations can be made at either per-user, or per-network,

or per-domain level. Though reservations may spread out among many routers and net-

works, it is possible that a transit provider or a border router has to process a large number

of reservations.

One important factor that contributes to the large number of reservation states depends

on how the signaling protocol is designed. The de facto signaling protocol, RSVP, has a

state management problem. To support a RSVP-initiated reservation, each router has to

maintain both reservation source and destination information. We shall further investigate

31

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02

End Users

Networks

Routing
Domains
(AS's)

Figure 2-6: The growth of the Internet from 1994 to 2002 [1, 2, 3]. The number of net-
works was collected by Geoff Huston of Telstra at AS-1221 by monitoring BGP routes.
The AS data was collected by Tony Bates from Global Crossing Network. Due to CIDR
aggregation, both numbers can differ slightly at different locations inside the network.

the RSVP state management problem in Chapter 4.

In conclusion, we believe that managing reservations efficiently is very critical to net-

work operation, and can be difficult to accomplish. We propose a two-folded solution.

First, we need to reduce the number of reservations that network operators have to manage.

This can be accomplished by introducing a hierarchical reservation model in the Internet,

where the user-level reservations are processed by the users and access networks, while the

backbone networks only maintain reservations at network-level or AS-level. The second

part of the solution is to design a new reservation protocol that has a good scaling property

for the backbone networks. In Chapters 4 and 7, we will further describe the concept of

hierarchical reservation and scalable backbone reservation protocols.

32

2.6 Discussion

From our investigation in Section 2.3, we discovered that the Internet has bandwidth bot-

tleneck links that can cause long-lasting congestion. At the same time, leased line cost has

not been reduced sufficiently in a timely manner for many ISP’s to deploy high-speed links

everywhere in their networks. The continuing Internet expansion has simply aggravated

this situation. It is our belief that the applicability of over-provisioning is questionable.

It is possible that over-provisioning is sufficient to reduce packet transaction delay and

link congestion within some of the large backbones, however, it is not a cost-effective prac-

tice for most ISP’s. Many providers have been adapting techniques such as web caching

and private peering to reduce the cost and the volume of transient traffic,

We cannot predict exactly what will happen to the Internet in the future. In today’s fast

growing inter-networking environment, network deployment is not about meeting today’s

traffic demand, instead, it is to anticipate and be ready for new services, new applications

and new types of traffic. We believe that it would be a near-sighted argument to rule out the

possibility of wide-deployment of inter-active real-time applications (such as voice over

IP) in the Internet. Since it is almost impossible to sufficiently over-provision network

resources for the future, thus, we have to seek for a better solution that can accommodate

network growth at a reasonable cost. If we continue to allow, as we have seen today’s

Internet, traffic sources to grab resource as they need for free, and not providing traffic

isolation and protection to mission-critical data flows, we are bound to experience network

congestion and unacceptable end-to-end delays.

Applying resource reservation can bring many benefits to the network. It can provide

traffic protection and service guarantees to user flows inside the network, so that the re-

motely located user populations can have acceptable and consistent communication over

the Internet. Also, it can be used as a tool to service providers to prevent unregulated traffic

from flooding the network to degrade other user’s applications.

We need to be careful with where to apply resource reservation. Simply because reser-

vations can protect user flows from temporary link congestion, it is not a tool to compensate

for resource inadequacies caused by over-subscription, and sloppy network design. In fact,

33

applying resource reservation in an over-subscribed network can cause service degradation

to many users, and aggravate congestion conditions in the network.

We need to separate the concept of resource reservation from the complexity and scala-

bility issues involved in resource reservation protocols. Issues for the former include when

and how to apply reservations. Message processing, state maintenance and reservation ag-

gregation are the challenging issues that fall into the latter category, and will be addressed

in the rest of this dissertation.

Resource reservation requires states to be installed and maintained at the routers. To

support a large number of reservation flows efficiently, reservation protocols must be scal-

able and relatively simple to process. From our studies of the reservation scalability issues,

we argue that the scalability problem is not only an issue about the number of the flows

that routers can process, but also an issue about the number of the flows that providers can

manage for policing, accounting and billing.

In conclusion, we believe that much future research is needed on understanding network

resource manageability.

34

Chapter 3

Enhancing RSVP Scalability

3.1 Introduction

In this chapter we explore the scaling problems in RSVP state management, and present a

simple and backward-compatible solution that can reduce signaling traffic volume inside

the network.

3.1.1 RSVP

RSVP (ReSerVation Protocol) [22, 23] was the first widely developed [67, 58, 68, 69] and

well studied [70, 71, 72, 73, 74, 75, 76] resource reservation protocol in the Internet. It was

originally designed as the signaling protocol to support Integrated Services (IntServ) [30,

31, 32, 33], where end users can trigger RSVP to establish simplex reservation “flows” in

the network. Each flow is defined as a source-destination pair, and each destination can be

either a unicast user, or a multicast group.

RSVP is a two-pass signaling protocol, that is, it takes two messages, PATH and RESV,

to complete a reservation. To setup a reservation between source � and destination �, �

first adds a reservation description or flowspec in a PATH message. The PATH messages

are periodically sent toward �. Each router along the way records the flowspec from �.

Upon reception of a PATH message, � adjusts the flowspec to its needs, and puts a mod-

ified flowspec in a RESV message. RESV messages are periodically sent toward � along

35

the path traveled by the PATH messages. At each router, a local reconciliation must be

performed on the flowspec’s from � and �. A local reconciliation process is to merge the

flowspec’s in such as way that the resulting flowspec can satisfy the reservation require-

ments from � while within the bound of the original requirements from �. If the router

can accommodate the resulting flowspec, a reservation is made and the RESV message is

passed on.

During RESV message processing, if a router cannot establish the required reservation,

it returns an explicit error message back to �. At the same time, the router has to keep a

copy of the failed flowspec from�, and retry the reservation during the next refresh cycle.

This latter process is referred as killer reservation prevention: since the failed reservation

requests are identified and cached, they won’t deny service to other requests during the

reservation process. The failed flowspecs that routers keep for reservation retries are called

blockade states.

RSVP uses the underlying routing protocols to discover the reservation path. When

a router detects a route change, it sends PATH messages to the new route for the flows

whose route has changed. When the downstream routers, situated at the junction of the old

and new routes, receives these PATH messages, they immediately sends a RESV message

upstream along the new route to setup a new reservation. This process is called local repair.

There are two styles of reservations in RSVP: distinct and shared. A distinct reser-

vation, called fixed filter (FF), maintains one reservation per source-destination pair. A

shared reservation allows multiple sources going to the same destination to share a single

reservation in the network. RSVP permits a reservation to be shared in two ways: a shared-

explicit (SE) reservation is to have only explicitly identified sources sharing a reserved flow,

whereas a wildcard filter (WF) allows a reservation to be shared by all sources.

RSVP uses soft-state to maintain reservation states. Each router periodically issues its

own PATH and RESV messages to the adjacent routers about the reservations it holds.

Reservations will disappear by themselves if they are not refreshed periodically. This

avoids orphan reservations and allows reservations to adapt to routing changes, without

involvement of the end systems.

RSVP sends its control messages as IP datagrams with no reliability guarantee. It relies

36

on the periodic refresh messages from hosts and routers to handle the occasional loss of a

PATH or RESV message. Each RSVP host or router maintains a cleanup timer. A state is

deleted if no refresh messages arrive before the expiration of a cleanup timeout interval.

To remove a reservation from the network, users can either stop sending the PATH and

RESV refresh messages, or issue explicit teardown messages, PATHTEAR and RESVTEAR.

3.1.2 Problems with Soft-State Refresh

The use of soft states in RSVP can result in both reliability and scaling problems. The

reliability problem occurs when RSVP messages are lost during transmission. Packet losses

in the current Internet can be frequent on some links, unfortunately. In one extreme case,

it was measured in 1996 [77] that the packet loss rate in the Internet multicast backbone

(Mbone) [78] was approximately 1-2% on average, and could occasionally reach 20% or

more on congested links. The existing RSVP message delivery mechanism will not work

well in such an environment. For example, when a user tries to make a reservation over

the network, if the first reservation request (RESV) is lost due to congestion, it will not

be retransmitted over the congested link until the next refresh cycle. The default refresh

interval is 30 seconds.

Thus, the first few seconds of, say, a multimedia flow may experience degraded quality

of service as packets are carried on a best-effort basis rather than as a reserved flow. Unfor-

tunately, packet loss is more likely to delay reservations just when needed most, i.e., when

packet loss rates for best-effort service are high.

Another problem related to reliability is that RSVP does not retransmit tear-down mes-

sages. If, for example, a user tries to remove a reservation, and the message (RESVTEAR)

is lost, the reservation will remain in place until it times out, by default after 90 seconds. If

holding a reservation incurs costs, the user will have to pay for the extra time that has been

spent waiting for the reservation to time out. Also, network resources are used inefficiently.

Network providers will have to account for this uncertainty in their billing policies.

The scaling problem is linked to the resource requirements in terms of bandwidth us-

age and processing overhead. The resource requirements increase proportionally with the

37

number of RSVP sessions. Each session requires the generation, transmission, reception

and processing of PATH and RESV messages for each refresh period. Supporting a large

number of sessions, and the corresponding volume of refresh messages, presents a scaling

problem. Specifically, the bandwidth usage, as expected, grows linearly with respect to the

number of sessions. Depending on implementation, the processing overhead is, at best,

linear with respect to the total number of sessions, as shown in [69].

One way to improve the reliability of RSVP signaling is to decrease the refresh period

on all network nodes. This increases the probability that state will be installed in the face

of message loss, but at the cost of increasing refresh message volume and associated pro-

cessing requirements and aggravates the scaling problem. On the other hand, a simple way

to reduce the effect of scaling problem in RSVP is to increase the refresh period on all

network nodes. However, this increases the time it takes to synchronize reservation state.

In the rest of the chapter, we present a simple RSVP extension, called staged refresh

timer, that provides a mechanism to deliver RSVP messages faster and more reliably, and

reduce the number of refreshes among network nodes, contributing to protocol scalabil-

ity. We will also briefly describe two other mechanisms, message bundling and summary

refresh, that can further reduce the processing cost of refresh messages.

3.1.3 Terminology

We use the following terms during our description of the operation.

Sending and receiving nodes: A sending node is a router or host that generates RSVP

messages. A receiving node is defined as the RSVP router or host that is one hop away

from a sending node. In a shared-media or non-broadcast multiple access (NBMA) network

such as an ATM subnet, a sending node may have multiple receiving nodes. In some cases,

not all routers between sending and receiving nodes implement RSVP. We refer to these

networks as non-RSVP clouds.

Trigger and refresh message: In RSVP, control traffic can be categorized into two types:

trigger and refresh messages. Trigger messages are generated by an RSVP host or a router

38

due to state changes. Such state changes include the initiation of a new state, a route

change that altered the reservation paths, or a reservation modification by a downstream

router. PATH, RESV, PATHTEAR and RESVTEAR serve as RSVP trigger messages.

Refresh messages, on the other hand, contain replicated state information generated by a

router to maintain state. As indicated in the introduction, RSVP periodically refreshes state

for robustness. For instance, if the RSVP process on a router crashes and resets, it loses

all RSVP state information. However, since its neighbor routers send copies of RSVP state

information periodically, the router can recover the lost states within one refresh interval.

A refresh message can be either a PATH or RESV message.

3.2 RSVP Staged Refresh Timer Extension

A common practice in supporting message delivery reliability is to use some type of feed-

back or acknowledgement mechanism between senders and receivers. However, using

feedback between RSVP end-users, as has been proposed in [79], will not work unless

we significantly change the original protocol. This is because RSVP soft states are man-

aged hop-by-hop, and no network entities other than the node that sent the original refresh

message can retransmit a refresh message. In other words, end users have no control over

the refresh message delivery process in the network. They cannot accelerate delivery by

simply retransmitting RSVP messages. Hence, we conclude that the only way to accom-

plish reliable RSVP message delivery is to rely on some hop-by-hop feedback mechanism.

As mentioned in Section 3.1.1, in case of network failure, RSVP local repair procedure

allows the routers to quickly identify and rescue the affected reservations. This implies that

once reservation states are installed, there is no reason for RSVP to frequently update router

reservation states. If the RSVP process is reasonably reliable, refresh messages are more

of a safety measure than actually needed for network operation and can thus be sent very

infrequently if at all. By doing so, we can greatly reduce the traffic and processing impact

of RSVP messages and make RSVP signaling at least as efficient as circuit-switched setup

protocols. However, this requires that trigger messages are delivered reliably.

In this section, we will describe a reliable trigger message delivery mechanism based

39

on the above observation.

3.2.1 Outline of Operation

We propose the following feedback mechanism for RSVP trigger message delivery: When

sending an RSVP trigger message, a node inserts a new echo-request flag into the RSVP

common header of the message. Upon receipt, a receiving node acknowledges the arrival of

the message by sending back an echo-reply, which is a new RSVP message type. When the

sending node receives this echo-reply for a PATH or RESV message, it will automatically

scale back the refresh rate for these messages for the flow. If the trigger message was a flow

tear-down, no more tear-down messages are sent, just as in the current RSVP specification.

Until the echo reply is received, the sending node will retransmit the trigger message. The

interval between retransmissions is governed by a staged refresh timer. The staged refresh

timer starts at a small interval which increases exponentially until it reaches a threshold.

From that point on, the sending node will use a fixed timer to refresh PATH and RESV

messages and stop re-transmitting tear-down messages. This mechanism is designed so

that the message load is only slightly larger than in the current specification even if a node

does not support this staged refresh timer.

The proposed mechanism requires several minor modifications to the current version of

RSVP: a new bit is defined in the flag field of the RSVP common header, a new message,

ACK, and a new object MESSAGE ID, is defined for echo-request and echo-reply [80].

3.2.2 Time Parameters

The new extension makes the use of the following time parameters:

Fast refresh interval �� : �� is the initial retransmission interval for trigger messages.

After sending the message for the first time, the sending node will schedule a re-

transmission after �� seconds. The value of �� could be as small as the round trip

time (RTT) between a sending and a receiving node, if known. Unless a node knows

that all receiving nodes support echo-replies, a slightly larger value of, for example,

1 second is suggested.

40

Slow refresh interval ��: The sending node retransmits with this interval after it has de-

termined that all of its receiving nodes1 support the RSVP echo-reply. To manage the

number of unnecessary refreshes in a stable network, �� can be set to a large value.

The value of �� can be set for each egress interface. We choose 15 minutes as the

default value.

Increment value �: � governs the speed with which the sender increases the refresh in-

terval. The ratio of two successive refresh intervals is �� � ��. We arbitrarily set

� to 0.30, which is also the same value as the Slew.Max parameter that has been

defined in RSVP to increase the retransmission and timeout interval for long-lived

flows using local repairs.

Fixed refresh interval ��: A node retransmits the trigger message with the interval �� �

����� until the refresh interval reaches the fixed refresh interval�� or an echo reply

has been received. If no reply has been received, the node continues to retransmit

refreshes every�� seconds. We choose a value for �� of 30 seconds, the same value

as the refresh interval in the current RSVP specification.

3.2.3 Staged Refresh Timer Algorithm

After a sending node transmits a trigger message, it will immediately schedule a retrans-

mission after �� seconds. If it receives echo-replies, the sending node will change the

refresh interval to ��. Otherwise, it will retransmit the message after �� � ���� seconds.

The staged retransmission will continue until either echo-replies are received, or the refresh

interval has been increased to ��.

The refresh interval for each refresh cycle �, ��, can be described as:

�� �

�������
������

�� � ��� �� if no reply and � � �

�� if no reply and � � �

�� after echo reply

1In case of multicast, in a RSVP session, there could be multiple receiving nodes for a sending node.

41

where

� �
�� ��

��

���� � ��
�

� is the number of retransmission before the interval reaches the fixed refresh interval

��.

The implementation of staged refresh is quite simple. The router algorithm operates on

two sets of parameters. A set of “global” timing variables consists of �� , ��, �� and �.

Each reservation state, �, needs to maintain the following attributes:

��refresh-timer the state refresh timer;

��cleanup-timer the state expiration timer;

��type reservation state type: either active or tear-Down.

��refresh-timer governs when to send a refresh message. ��cleanup-timer is reset to zero

upon receiving of a refresh message. Figure 3-1 shows the router’s algorithm at sending

nodes. We only show the procedures that are relevant to RSVP timer management. As

shown in the figure, if the value of �� �� ���� exceeds �� after � tries, we will switch the

refresh timer to ��.

In a network that has many RSVP reservations, routers may have to use a large number

of timers to support the staged refresh timer algorithm. This can be a problem for some

router operating systems, since conventional timers consume a great deal of processing

power. To overcome this problem, we can implement various hashed or hierarchical timing

wheels, such as the one being described in [81], to manipulate a large number of soft-state

timers with a handful of real OS timers.

In an implementation, the staged refresh timer mechanism can be based on several

timing wheels, one for each ��. At message processing time, each reservation state is

inserted into one of the timing wheels. Each timing wheel is driven by a periodic timer

provided by the router’s OS.

Periodic process synchronization is generally considered to be harmful [82]. To avoid

the synchronization due to RSVP periodic refreshes, all the timers need to be randomized

during the implementation.

42

1: on receiving a trigger message:
create the corresponding state �;
if the message is a tear-down message

��type � Tear-Down;
remove �’s reserved resource;

else
��type � Active;

��refresh-timer ��� ;
forward the trigger message toward the destination.

2: on receiving an echo-reply for �:
if ��type � Tear-Down

delete �.
else

��refresh-timer � ��;

3: on expiration of ��refresh-timer:
if ��refresh-timer � ��

if �� � ���refresh-timer� 	 �� � ��
��refresh-timer � ��;

else
��refresh-timer � ���refresh-timer� 	 �� � ��;

construct the corresponding trigger message for �;
retransmit the trigger message;

else if ��refresh-timer � �� and ��type � Tear-Down
delete �;

else
construct the corresponding refresh message for �;
send out the refresh message;

Figure 3-1: Staged refresh timer at a sending node - router algorithm

Figure 3-2 compares various refresh mechanisms. The figure shows that the number of

refreshes is greatly reduced if both sending and receiving node support the new extension.

If the receiving nodes do not reply to a trigger message, the sending node generates sev-

eral refresh messages until the refresh interval converges to the fixed refresh interval ��.

While incurring additional overhead, these retransmission increase the likelihood that the

43

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140

time (sec)

re
fr

es
h

 r
at

e
(1

/s
ec

)

Staged refresh (no reply)

Fixed Refresh

Refresh with reply

Figure 3-2: Comparison of RSVP refresh rates for different mechanisms: ��� � � s��� �
�� min��� � �� s�� � ����

reservation state will be established even in a lossy network. In the figure, the sending node

transmits � � � messages before reaching the refresh interval ��. With a larger value of

�, �� could be decreased to accelerate state establishment.

3.2.4 Protocol Design Considerations

Backward Compatibility Backward compatibility is one of the main objectives in our

design. One cannot assume that both sending and receiving RSVP nodes will support the

extension simultaneously. To achieve this goal, we have designed the protocol extension

in such a way that much of the message manipulation and processing are done at sending

nodes, while making no assumptions about the capability of receiving nodes.

In the current RSVP specification, sending nodes refresh the soft states with fixed

timers. In our design, sending nodes rely on echo request/reply mechanism to “learn”

about the status of receiving nodes. If a sending node does not receive echo replies from

44

the receiving nodes after several tries, it will assume the receiving nodes do not support the

new extension, and switch its refresh interval to a fixed value. The RSVP operation is not

affected at the receiving nodes.

Computing Cleanup Timeout Values Each RSVP PATH and RESV message carries a

refresh interval in its TIME VALUES object. Receiver nodes use the refresh interval to

compute the cleanup timeout interval that governs the lifetime of reservation state that has

not been refreshed. Generally, the cleanup timeout interval is a small multiple of the refresh

interval. As suggested in the RSVP specification, we set the cleanup timeout value to be 3

refresh intervals by default.

In the staged refresh timer design, a sending node initially places the slow refresh timer,

��, in the PATH or RESV message. For the receiving nodes that do not support the new

extension, the sending node will insert �� in the refresh messages after the actual refresh

interval has been increased to��. If the receiving nodes do support the new extension, they

will set the cleanup timeout interval based on ��.

Figure 3-3 summarizes the algorithm that processes messages on receiving nodes. Note

that the receiving nodes do not need any of the staged refresh timer parameters. The nodes

simply send an echo-reply back to the sending node after receiving a trigger message.

Handling of Tear-Down Messages RSVP uses PATHTEAR and RESVTEAR messages

to tear down path and reservation states, respectively. According to the current specifi-

cation, sending nodes only generate one tear-down message per flow. If the message is

accidentally dropped along the way, the reserved resource will not be released until the

cleanup timer expires. However, receiving duplicate tear-down messages at a receiving

node should not impact the operation of RSVP in a proper implementation.

In our RSVP extension, we have altered the processing rules for tear-down messages at

the sending node. Instead of deleting the state after a tear-down message is sent, a sending

node will release all resource allocated to the state, and mark the state as closing. The

state information is saved for message retransmission. The entire state information will

be removed when echo-replies are received, or when the sending node realizes that the

45

1: on receiving a trigger message carrying refresh value �:
find/create the corresponding state �;
if the message is a tear-down message

free �’s reserved resource;
delete �;

else
��cleanup-timer � � 	�;

if support the staged refresh extension
reply an echo-reply back to the sending node.

2: on receiving a refresh message for � carrying refresh value �:
��cleanup-timer � � 	�;

3: on expiration of ��cleanup-timer:
free �’s reserved resource;
delete �.

Figure 3-3: Staged refresh timer at a receiving node - router algorithm

receiving nodes do not support the extension.

Operation in an NBMA Environment For a multicast RSVP session in a non-broadcast

multiple access (NBMA) network (such as ATM), a sending node may not know the total

number of receiving nodes for a PATH or PATHTEAR message at an egress interface.

Therefore, a sending node cannot simply switch to the longer refresh timer �� based on

having received echo-replies.

For example, as shown in Figure 3-4, if the receiving node R3 does not support the new

RSVP extension, the sending node S should not change to the longer refresh interval ��,

even though it has received echo-replies from R1 and R2.

In this case, a sending node has two alternatives:

� It can query a local database such as the ARP or MARS server [83, 84] to find out

the exact number of next-hop receivers. It then switches to a longer refresh interval

after receiving echo-replies from all receiving nodes.

46

S

R3

R2

R1

Path

PathAck

PathAck

Path

Path

Path

Figure 3-4: Example: PATH messages in an NBMA network.

� Since PATH messages are mainly used for traffic advertisement purposes, the sending

node may not need to use staged refresh timers for PATH messages. In an NBMA

network, the staged refresh time mechanism would only make sense for the message

delivery of RESV, RESVTEAR and PATHTEAR messages.

In case of PATHTEAR message, a sending node always knows all the receiving nodes

that have made reservations during the RESV message processing time.

As shown in Figure 3-5, R1, R2 and R3 are the receiving nodes to S. Initially, the

sender S had the reservation state information for receiving node R1 and R2. Since R3 did

not make any reservation, S would not know the existence of R3 from its RSVP database.

After sending the first PATHTEAR message, S will retransmit the message until it has

received echo replies from R1 and R2, and then stop generating PATHTEAR messages.

3.3 Evaluation

47

S

R3

R2

R1

PathTear

PathTearAck

PathTearAck

PathTear

PathTear

PathTear

Reserved Link

Non-reserved Link

Figure 3-5: PATHTEAR message in an NBMA network

60 s 60 min
Fixed refresh 300 18,000
Slewed refresh 300 1,950
Staged refresh (no reply) 900 18,600
Staged refresh (with reply) 300 900

Figure 3-6: Protocol overhead (bytes sent) for setting up a new reservation session in the
first 60 seconds and 60 minutes for different RSVP timer mechanisms: ��� � � s��� �
�� min��� � �� s�� � ����

Reduced Protocol Overhead When RSVP trigger messages have been acknowledged

by echo-replies, the soft state refresh frequency is reduced. Figure 3-6 shows the protocol

overhead for a single RSVP flow, using the same parameters as before. The RSVP message

size is 150 bytes, which is the size of a regular RESV message. We also compare this to the

mechanism described in [23, p. 57], which simply increases the refresh interval by a slew

factor (here, 0.3). As we have discussed previously, increasing or decreasing the refresh

interval can have undesirable reliability and scalability effects to RSVP. If the receiving

48

node supports the staged timer extension, the number of bytes to be transmitted in an hour

is only 900 bytes. Even if the receiving node does not support the new extension, the

amount of data being transmitted over an hour is nearly the same compared with the fixed

refresh timer case.

For a link that requires to manage thousands of RSVP flows, protocol overhead reduc-

tion is clearly an advantage over the fixed refresh timer.

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180

time (sec)

L
o

ss
 P

ro
b

 (
lo

g
10

)

Staged Refresh

Fixed Refresh

Figure 3-7: Comparison of message loss probability as a function of time for fixed and
staged refresh timers.

Reduced Message Loss Probability Adding feedback mechanism in RSVP message de-

livery reduces the message loss probability. Figure 3.3 shows the cumulative loss probabil-

ity for both fixed and staged refresh mechanism. We assume the message loss probability

for a single message is 20% [77]. In the example, four refreshes are sent within the first 30

seconds if a staged refresh timer is used, compared with only one refresh with the fixed re-

fresh timer. The probability that no reservation is established after half a minute is reduced

to the neighborhood of � 	 ���� compared with 4% with the current fixed timer. For a loss

49

rate of 2%, the failure probabilities are � 	 ���	 and 	 	 ����, respectively.

3.4 Related Work

There have been several other proposals [80, 85, 86] in recent years on how to improve

scalability and reliability in soft-state-driven protocols.

The mechanisms introduced in [85, 86] require both sending and receiving nodes to

operate a set of new refresh reduction algorithms simultaneously. Since RSVP (in the form

of MPLS) has been deployed in the backbone networks, such as UUnet, AT&T, and Level-

3, both proposals present a backward compatibility problem and may cause deployment

difficulties.

Summary refresh and message bundling [80] are two simple and backward compatible

RSVP extensions that can reduce refresh message processing overhead on routers.

3.4.1 Summary Refresh

The idea of summary refresh is the following: RSVP refresh messages have the same for-

mat as RSVP trigger messages. Given the messages can be quite large, it is a waste of link

bandwidth and processing power to retransmit the same identical information at each re-

fresh cycle. Summary refresh is to simply assign an identification number to each RSVP re-

fresh message at reservation setup time. At each refresh cycle, the sending node sends those

identification numbers in one datagram. However, if the reservations have been modified,

or the routers have been rebooted, the identification numbers will have to be re-assigned.

3.5 Message Bundling

Message bundling is to pack several RSVP messages between two neighboring nodes into

a single IP datagram. The goal is to reduce the total number of RSVP messages that routers

have to process. This solution is particularly useful to relive the processing burden on

routers that are running a UNIX operating system, since the socket interface has always

50

been a processing bottleneck. Although BSD, a popular version of UNIX, has been re-

designed over the years to improve virtual memory and I/O system interface [87], process-

ing overhead between kernel and user space through sockets remains significant.

To demonstrate the problem, we ran a simple test on an Intel Celeron 500 MHz PC

running FreeBSD 3.4. This PC was connected to two other PC’s through 10 Mb/s Ethernet

interfaces; we confirmed that it could route traffic between the interfaces at media speed.

Our goal is to measure the message processing time in both kernel and user space. RSVP

PATH messages are generally encapsulated with the IP Router Alert option [88, 89]. Since

the processing time should be the same for all IP option types, and we want to have the

flexibility to evaluate the performance variation base on packet size, we used the ping -R

command to generate IP record route option packets. We used a modified FreeBSD kernel

that can intercept IP option packets from the wire and direct them to a user space handler

quickly through raw sockets [90]. In user space, we implemented a system function call,

ipodump, to reinject IP option packets back into the network immediately after intercepting

them. Two simple timing checks were added in the kernel, one at the beginning of the IP

input, the other at the end of IP output routine. Using this, we can measure the processing

delay at the socket interface.

The results of our measurements are shown in Figure 3.5. The processing delay does

not depend significantly on the packet size. Out of the 16 sets of data we collected, the delay

for processing 1-byte ICMP packets with IP record route option was 116.4�sec, compared

with 132.6�s for 1400-byte packets, i.e., only a 12% increase. We believe this is due to the

efficient memory management in BSD.

However, the average packet processing time in user space, including reading from and

writing to sockets, was 46.28 �s. In comparison, an intercepted packet spent 124.64 �s on

average traversing kernel and user space. That is, the BSD socket interface contributed as

much as 78.36�s or 62.87% of the process!

The test results thus imply the following: for BSD-based routers, increasing message

size does not impact the performance very much, but reducing the number of messages on

the wire can greatly reduce the processing overhead.

51

0

20

40

60

80

100

120

140

160

1 100 300 500 700 900 1100 1300

Packet Size (in bytes)

T
im

e
(i

n
 u

se
c)

Total Kernel I/O

Total socket
read/write

Write to socket

Read from
socket

Figure 3-8: Comparing kernel and user processing overhead

3.6 Discussion

The RSVP message delivery mechanism requires some degree of reliability guarantee to

make RSVP useful for applications. One way of improving reliability is to reserve some

minimal bandwidth for RSVP messages to protect them from congestion losses, as sug-

gested in the RSVP specification. However, this may require additional functionality at

both sending and receiving nodes and does not help if RSVP messages have to traverse

non-RSVP clouds. It is also not clear how this can be achieved in a backward-compatible

manner. Most importantly, since there is no way of knowing the exact bandwidth that is

required to carry RSVP control traffic, allocating a specific level of link bandwidth may not

prevent RSVP message dropping.

We have presented a mechanism called staged refresh timer that enhances the current

RSVP message delivery and is completely backward compatible. Staged refresh timers are

easy to add to RSVP-capable routers and host implementations and save both processing

52

and bandwidth overhead. The staged refresh timer mechanism is an example of state man-

agement that falls somewhere between “classical” handshake-based reliability as found in

B-ISDN (Q.931) signaling, for example, and purely timer-based soft-state protocols such

as the original RSVP proposal [22], PIM [91], RTP [24], SRM [92], IGMP [93] and so

forth.

Since only neighboring routers are involved in the reliability mechanism described here,

the routers can easily estimate round-trip times, thus further tightening the retransmission

interval, if desired.

Staged refresh timer, message bundling and summary refresh have been standardized

by IETF and documented in RFC2961. They have been implemented on Juniper routers,

and deployed in some of the large backbone networks. It was estimated that, in a stable

network environment, the combination of all three mechanisms can reduce the total RSVP

processing overhead by as much as factor of 12.

53

Chapter 4

The Hierarchical Reservation Model

In Chapter 2, we concluded that the scalability problem in resource reservation may not

be due to memory constraints or per-flow queuing at the data forwarding layer, but rather

depend on the total number of reservation flows that routers have to maintain, and the total

number of reservations that network providers have to manage.

While the techniques described in Chapter 3 improve signaling scalability and control

message delivery, it is unlikely that we can use a single signaling protocol for all the users

throughout the Internet, considering there could be millions of reserved sessions from end-

users and VPN connections spanning multiple networks.

In this chapter, we define a new resource reservation architecture, the hierarchical reser-

vation model, that defines how and where the reservations should be used by end-users and

network providers to satisfy the functional and performance requirements of a wide variety

of services and applications.

Before go on to discuss the new architecture, we need to first understand the scope of

the scalability problem. Namely,

� What is the upper bound of the number of reservations in today’s Internet?

� What is the upper bound of the number of reservations that routers can handle?

� Are the existing signaling mechanisms adequate for the job?

54

4.1 Reservation Scalability Revisited

4.1.1 The State Management Problem

In most reservation signaling protocols known today, including RSVP and ST-II [94], each

reservation is uniquely defined as the combination of a source and a destination. Generally,

a source or a destination can be represented by an IP address, or a transport-layer port num-

ber, or the protocol type, or the combination of all three. Network routers must maintain

both source and destination for each flow during its duration.

H1

H2

H4

H3

H1

H2

H4

H3

a) A reservation initiated from H1
after 2 hops. All nodes have the
reservation.

b) The reservation initiated from
H1 after 4 hops. Persistent
looping.

Figure 4-1: Reservation looping problem in multicast: ��� ��� �� and �	 belong to the
same multicast group �, and don’t keep track of reservation source information.

The reason behind maintaining both source and destination at routers is to prevent per-

sistent looping caused by multicast. For example, in a 4-node network shown in Figure 4-1,

all nodes belong to the same multicast group �. �� sends an RSVP reservation request

(RESV) message to the group. If the routers do not maintain the reservation source infor-

mation, each router forwards reservation request in both directions, resulting in the loop

55

shown in Figure 4-1-(b). Even after �� stops refreshing its reservation, the loop persists

because each router in the loop has a child that refreshes the reservation. The loop is only

broken when any member of the group initiates a tear-down message to explicitly remove

the reservation.

To correct the problem, routers have to store both source and destination for each reser-

vation. Upon receiving a reservation request, any router can identify the sender tree that the

message is following. It can avoid looping by simply obeying the rule that a reservation

state that is received through a particular interface must never be forwarded out the same

interface. In Figure 4-1-(a), when �	 receives a reservation request (��, �) from ��

and��, respectively, it will not forward the reservation message back toward�� and��,

respectively, thus no loop can be formed.

Routers do not need to store the source information when multicast routing uses a sin-

gle, shared tree for all senders, in which case, all receivers share the same loop-free branch

to each sender. Core Base Tree (CBT) [95] is such a multicast routing protocol, where all

multicast senders share the same routing tree to the receivers. On the other hand, since

PIM [91] allows multicast senders to be on both shared (RP) trees as well as shortest path

(SPT) trees, reservations may still run into looping condition when using SPT trees.

Another exception is sender-initiated reservation protocols, where reservation messages

are forwarded on exactly the same path as IP data packets. There should be no reservation

loops except perhaps for transient routing loops. When there is a transient multicast routing

loop, at routers, the routing protocols can terminate the loops eventually, and notify the

reservation module to fix all affected reservations. But the notifications have to rely on

source and destination information to identify each reservation.

In conclusion, many of the today’s reservation protocols inherently have the problem

of maintaining a large number of states in the routers, which can potentially escalate to the

reservation state “explosion” situation that we will describe below.

56

4.1.2 Reservation Granularity

Since resource reservation is not yet widely used, we have to extrapolate the likely volume

of reservation state from other observations. Figure 2-6 has shown the network growth

rate in the last 7 years. It’s here to re-emphasis the network growth trend. As of January

2002, there were more than 100,000,000 end-users, more than 100,000 networks (adver-

tised through BGP routing protocol) in the Internet backbone, and more than 10,000 AS’s

(Autonomous Systems1). Assume we use RSVP to setup reservations in the Internet. Be-

cause of the state overhead problem of RSVP, the upper bound for the number of reserva-

tions Internet-wide can be very large.

From the figure, we can see that future network growth poses an even more serious

problem: the number of end-users, networks and carriers is increasing at a rate between

60% to 80% on average every 12 months in the past five years. This growth pattern is

comparable to the Moore’s Law, which a well-known metric to describe the technological

growth in hardware. The Moore’s Law predicts that hardware (including clock rates and

memory sizes) doubles every 18 months, and a growth exceeding this implies costs will

grow rapidly. To support the fast growing Internet size, network providers must gradually

start to upgrade or replace the routers and the switches inside the network. To accommodate

routing table explosion, and the processing overhead in inter-domain routing communica-

tion, the entire routing architecture needs to be re-evaluated. At the same time, to efficiently

support a large number of reservations in the network, we need to overcome the state man-

agement problem introduced by conventional signaling protocols.

To understand the maximum number of reservations that routers have to handle, we

have collected a 90-second traffic trace [96] from the MAE-West network access point

(NAP). We categorized about 3 million IP packet headers from June 1, 1999, according

to their transport-layer port, IP address, IP network prefix and BGP Autonomous System

(AS) number. Table 4.1 shows the results; for example, if we use RSVP, the total number

of reservations can range from 20,857 if we reserve source-destination AS pairs, or up to

1This gives a rough estimation on the total number of carriers in the Internet, though some of the large
carriers may own multiple AS numbers.

57

Granularity flow discriminators flows
Application source address, port 143,243

dest. address, port, proto. 208,559
5-tuple 339,245

IP Host source address 56,935
dest. address 40,538
source-dest. pairs 131,009

Network source network 13,917
dest. network 20,887
source-dest. pairs 79,786

AS source AS 2,244
dest. AS 2,891
source-dest. pairs 20,857

Table 4.1: Flows and aggregations based on a 90 s packet trace from MAE-West

339,245 if every flow identified by a unique 5-tuple2 gets its own reservation.

From the table, we observe that there are about 21,000 unique source-destination AS

pairs which a backbone router should be able to handle. However, this number is artifi-

cially low due to the small 90-second window. Over the span of a month (May 1999),

MAE-West saw 4,908 unique source AS’s, 5,001 unique destination AS’s and 7,900,362

unique AS pairs, out of the 25 million possible combinations3. The measurement result is

consistent with Bates’s statistics [3]. The table also indicates that the number of source and

destination AS’s and networks is relatively small. Bates’ statistics [3] show that there were

approximately 5,000 autonomous systems and fewer than 60,000 network prefixes in the

Internet in June 1999.

In conclusion, if we set up reservations based on either source or destination AS’s or

network prefixes, we can readily keep the reservation count at levels sustainable by today’s

routers and providers.

25-tuple is the combination of source and destination addresses and port numbers, and the protocol type
3The AS information was collected on June 10, 1999 and analyzed by Sean McCreary of

NLANR/CAIDA.

58

4.1.3 What to Reserve?

It has been argued that since network link bandwidth is finite, therefore it is unlikely that a

link would see thousands of reservations.

This is supported by our observation on the MAE-West link. We have collected eight

packet header traces from MAE West. The traces were collected three hours apart on June

1, 1999. Each trace comprises 90 seconds of all traffic at the NAP and contains about

33 million packet entries. We collected the number of bytes for each pair of source and

destination route prefix, and for each destination route prefix separately. We sorted the data

into five categories: fewer than 50 B/s, 50–500 B/s, 500–2000 B/s, 2000–8000 B/s, and

greater than 8000 B/s. Figure 4-2 plots the distribution of flows by bandwidth.

0

10000

20000

30000

40000

50000

60000

70000

< 50 b/s 50 - 500 (b/s) 500 - 2000 (b/s) 2000 - 8000 (b/s) > 8000 b/s

N
u

m
b

er
 o

f
C

o
n

n
ec

ti
o

n
s

Source-Destination Network Pairs

Destination Networks

Figure 4-2: Distribution of connection by bandwidth.

One interesting observation from the trace is the number of source-destination pairs

and destination-only “flows”. In Figure 4-2, the number of destination-only flows is sig-

nificantly less than the number of source-destination pairs. We have extracted the data and

presented the ratio in Figure 4-3. For small flows (i.e., average bandwidth less than 50

59

0

1

2

3

4

5

6

7

< 50 (b/s) 50 - 500 (b/s) 500 - 2000 (b/s) 2000 - 8000 (b/s) > 8000 (b/s)

R
at

io

Figure 4-3: Source-destination-pair to destination-only ratio with standard deviation

B/s), there are more than four times as many source-destination-pair flows compared to

the flows based on the destination prefix alone. Once again, we see evidence that if we

can work around the potential state“explosion” problem in reservation protocols, and use a

destination-based signaling mechanism, we can reduce the number of flows at routers.

Most of packets belong to the small-flow category: 63.5% for source-destination pair,

and 46.2% for destination-only. Only 3621 (3.5%) of the source-destination pairs and 1296

(10.9%) of the destinations have an average bit rate over 2000 b/s. Interestingly, there are

more above-8000 b/s destination-only flows (719) than source-destination flows (516). We

suspect that these destinations may be the large Web servers.

The measurement seems to imply that if reservations are made only for high-volume

traffic sessions, then such flows are rare enough that reservation protocol scalability is not

an issue.

However, this argument may not be true in the long run. With the deployment of IP

telephony, the number of real-time interactive traffic flows is likely to increase. At the

same time, network bandwidth will likely rapidly increase due to the deployment of optical

60

switches into the Internet backbone. Both factors may result in a large number of bandwidth

reservations in the network.

More importantly, to provide service differentiation and VPN features to customers,

the network providers have been using reservation signaling protocols [97] to set up MPLS

LSP (Label Switched Path) tunnels. MPLS LSP’s are very similar to ATM VP’s. Each LSP

connects two network nodes and the connection in turn carries datagram traffic. Users can

establish a fast data path crossing the network with a single LSP. Since each LSP may or

may not be associated with QoS parameters, such as link bandwidth, it is quite possible to

have a huge number of LSP’s on any given backbone link.

Another issue is user behavior: different users may put completely different require-

ments on reservations. For example, for IP telephony end-users, their reservations are

likely to be short (measured in minutes), however, they demand fast call and reservation

setup (measured in seconds). On the other hand, the inter-provider reservations can have

very long duration (days or even months, depending on the business arrangement nego-

tiated by the lawyers). Typically, fast reservation setup is not among the high priority

requirements for the providers. Instead, once established, the reservations must always be

available even when the network topology has changed.

In conclusion, we believe that signaling protocols must be able to carry control infor-

mation for QoS reservations as well as for MPLS LSP setup. Managing large number

reservation states in the network poses scaling problems.

4.2 The Hierarchical Reservation Model

As the Internet grows, both in size and in the diversity of service requirements, providing

adequate reservation capability that can accommodate both of these factors becomes in-

creasingly crucial. We propose a scalable hierarchical reservation model consisting of two

major components: inter-domain reservation and application-layer reservation.

The inter-domain reservation component pre-computes and installs reservations that are

shared by a significant number of end-users and networks at the routing domain level. Only

service providers are authorized to establish and maintain these reservations. Inter-domain

61

reservation signaling must rely on techniques such as aggregation and service abstraction

to satisfy storage, bandwidth, processing and management constraints.

The application-layer component provides on-demand processing and installation of

application-specific reservations that are initiated by the end-users. The potentially large

number of different application-driven reservations, combined with the dynamic nature of

these reservations (i.e., frequent joins and departures), make them too costly to support at

provider level. Thus, we need to rely on simple and lightweight signaling mechanisms to

setup the reservations at the application level.

AS-5

(Private Network)

AS-4

NAP

LAN

AS-3

(Transit Backbone)
Private Peering

Private Peering

ApplicationApplication--layer reservationlayer reservation

InterInter--domain reservationdomain reservation

AS-2

AS-1

R1R1

R2R2

R3R3

R4R4

LL

Figure 4-4: The Hierarchical Reservation Model

Figure 4-4 is an illustration of the hierarchical reservation model.

4.2.1 Inter-domain Reservation

From border routers, providers establish inter-domain reservations at NAPs, and POPs and

on private peering links. The reservations can span multiple domains. Reservations are

62

based on the bilateral (or multilateral) agreements between every two neighboring domains.

There are many benefits in providing domain-level resource reservation. For security pur-

poses, it hides parts of the actual provider’s physical topology. Since inter-domain reser-

vations combine each domain’s resource information into a single entity, they can reduce

the storage and maintenance overhead at routers. Another method to reduce the number of

flows is by applying domain-level reservation aggregation. For example, in the figure, the

border router R3 at AS-3 aggregates two incoming reservations from AS-1 and AS-2 going

to AS-4. At AS-4, the routers need only to support a single aggregated reservation flow.

The reservation details of AS-1 and AS-2 are thus hidden.

The ability to aggregate and subsequently abstract reservation requests is essential to

the scaling of the model. This is especially true with respect to the inter-domain reser-

vation component, since it must be capable of providing reservations to all or almost all

reachable destinations. As recommended previously, aggregation based on either source or

destination can keep the total number of reservations at a manageable level.

A natural choice for delegating a domain is to adapt the routing domains or Autonomous

Systems as been defined and used in BGP. It is chosen for the following reasons:

� We need to preserve each routing domain’s independence and autonomy, which is

crucial for the deployment of resource reservation in the Internet.

� For good scaling, we need to have as little global coordination as possible. Each

routing domain can operate relatively independently of each other [98].

� Resource reservation signaling relies on the underlying routing protocols to select

paths. At the same time, reservation mechanisms need to be immune from the effects

of route instability. Provided that BGP has been well engineered to deal with route

looping, flapping and convergence, it is desirable to tightly interface the inter-domain

reservation process with BGP routing.

As our inter-domain reservation component, we propose to create reserved “trunks”

connecting multiple domains, but allow each domain to apply its own favorite method

to manage internal transit traffic. We believe this is a feasible and reasonable approach.

63

Recent Internet traffic engineering studies [99, 100, 101] have been centered around the

architectures and mechanisms to manage intra-domain traffic. Several providers, including

UUnet, Level-3 and AT&T, have been in the process of deploying routers and tools to

regulate internal traffic. However, there have not been much activity on how to bring these

well-engineered provider networks together to achieve predictable inter-domain services.

Support for inter-domain reservation should be flexible. Specifically, the model should

allow for a domain to participate in multiple reservations. For example, in Figure 4-4, AS-2

needs to setup up a reservation with AS-4, while it needs to transfer another group of user’s

traffic through a private peering arrangement to AS-5. AS-2 can initiate two reservations,

to AS-4 and AS-5, from two different border routers. Both flows will go through the AS-3

network. While the example describes the case where a domain’s traffic enters another

domain from two different locations, there may be other cases where the traffic from one

domain is sent to multiple neighboring domains at the same time (for traffic balancing

purposes).

Providers need to install transit policies and route selection policies on border routers

to regulate incoming traffic. To process these policies, border routers need to interface with

BGP and traffic engineering modules. For example, in Figure 4-4, initially, a transit policy

entry at router R3 is the following: only allow packets from AS-1 to be transmitted to AS-4

with maximum guaranteed bandwidth B. Upon receiving the policy entry, R3 interfaces

with BGP and finds out that the exit border router to AS-4 is R4, and traffic from AS-1

must come from R14. It then interfaces with the traffic engineering module to set up a

reservation L with bandwidth� to R4. Finally, R3 updates its forwarding table to direct all

the routes that are advertised from (AS-1, R1) to use reservation L.

In Chapter 7, we present a scalable inter-domain reservation protocol, BGRP (Border

Gateway Reservation Protocol), that uses BGP to select the reservation path, and applies

flow aggregation along a sink tree to reduce the total number of reservations.

4BGP ORIGIN, AS-PATH and NEXT-HOP attributes

64

4.2.2 Improving Scalability of Application-Layer Reservation

First, we need to put the necessity for using application-layer reservations in perspective.

In all likelihood, only real-time streaming applications need to reserve network resources.

Such applications include inter-active networking games, video teleconferencing and IP

telephony. Within many well-engineered and well-provisioned networks, there is probably

no need for using reservations at all. Our focus here is to provide reservation capability in

networks that are occasionally congested.

By using an inter-domain reservation component, we have alleviated the pressure to

improve scalability in application-layer reservation protocols, since a large percentage of

inter-domain traffic will be aggregated and forwarded via the inter-domain reservation

trunks. However, the use of inter-domain reservation does not address another major scal-

ing problem associated with application-layer signaling: that of providing a large number

of short-lived (in minutes) reservations in a timely fashion.

To improve the scaling property in application-layer reservations, we need to under-

stand the criteria for fast reservation establishment, reservation processing capacity and the

coordination between users and routers to recover from admission control failures. In the

next chapter, we will describe these issues in detail. It is shown that signaling reservations

in one pass from traffic sender’s direction is the most efficient method. By using techniques

such as reservation retry, and roll-back, we can recover from reservation failures quickly.

Then in Chapter 6, we illustrate an application-layer reservation protocol for real-time

streams. The new protocol is very lightweight, allowing to create up to 10,000 reservations

per second in routers.

65

Chapter 5

Designing Scalable Signaling Protocols

In this chapter, we discuss a number of design choices in reservation signaling that can ef-

fect the protocol scalability. To have a good grasp on the issue, we first need to understand:

why is implementing RSVP hard?

Initially, RSVP was perceived as a lightweight protocol, in comparison, for example,

with ATM signaling protocols such as Q.2931 [102]. However, as implementations are

weighing in at over 30,000 lines of code [62, 63], it seems appropriate to review its design

features that contribute to the complexity:

Receiver orientation: In RSVP, receivers make reservations, based on information pro-

vided by senders. This allows individual receivers within a single multicast group

to request different levels of service guarantees, including none. This approach has

the advantage of providing the flexibility to accommodate different reservation re-

quirements from receivers in a heterogeneous multicast environment. However, this

creates a great deal of processing complexity at routers.

For example, to support multicast, each RSVP session consists of one sender state,

and multiple potentially distinct receiver states. RSVP needs to maintain each state

individually via periodic refresh. The state management complexity only becomes

worse when we deal with shared reservations with multicast, which requires multiple

sender states mapping to multiple receiver states (i.e., many-to-many mapping) for

each RSVP session. In addition, we need to consider the dynamic nature of multicast

66

group members. Since the implementation has to take into the considerations of

frequent receiver joins and departures from a multicast group, the routers need to

compute and merge reservations and propagate the changes to upstream routers in a

timely fashion.

All of this causes excessive processing overhead, not to mention the need for large

amount of storage memory, at routers. For many applications such as regular voice

phone calls, receivers will simply request whatever traffic bandwidth the sender has

indicated. Thus, it makes the need for receiver-orientated reservation questionable.

Two-pass reservation: Setting up an RSVP reservation takes at least two messages, PATH

and RESV. PATH is responsible for interfacing with the underlying routing protocols

to “pin-down” the reservation path, whereas RESV makes the actual reservation.

This separation of path-finding and reservation messages imposes additional pro-

cessing and protocol complexity. Experience has shown that state management is

greatly simplified by requiring only one message (in either direction) to establish

state, rather than going through several intermediate states.

Blockade state: RSVP uses blockade states to handle admission control failure. During

RSVP RESV message processing, if a router cannot accommodate a reservation, it

will notify the receiver about the failure. At the same time, the router stores a copy

of the failed reservation request, and retries at the next refresh interval. To prevent

these retries from blocking other reservation requests, the failed reservations must

be managed separately from the rest of the reservation states. The failed reservation

requests are referred to as blockade states. If a retry is successful, the router needs to

notify the receivers by sending a confirmation message, and remove the reservation

from the blockade state pool. As we will show later in this chapter, RSVP blockade

states cannot recover from failure conditions quickly, and end-users may experience

long reservation delays and frequent reservation rejections.

67

5.1 Design Choices

5.1.1 Reservation Model: One-pass vs. Two-pass

There are two basic approaches to reservation establishment in the network, one-pass and

two-pass. A typical two-pass reservation model is the original Tenet architecture [103], in

which the receiver sends a reservation request toward the source. Each network node along

the way makes the reservation. Upon arriving at the source, the source sends another relax

message back toward to the receiver, and has the option to modify the previous reservation

at each node.

ST-II [94] is another two-pass reservation protocol. A sender originates a Connect

message to a set of receivers. Each intermediate node determines the next hop subnets,

and makes reservations on the links going to these next hops. Upon receiving a Connect

indication, a receiver must send back either an Accept or a Refuse message to the sender.

In the case of an Accept, the receiver may further reduce the resource request by updating

the returned flow specifications.

In comparison, one-pass reservation protocols can make reservations at network nodes

in a single pass. In case of a reservation failure, the failing nodes can always notify the

reservation initiator. The one-pass approach has several attractive features. The most im-

portant one is that it simplifies the reservation process, since it does not go through several

intermediate states to establish a reservation state at routers. However, the trade-off for us-

ing one-pass signaling is that the reservations are defined and initiated by one party (sender

or receiver), and the other party may not have control over the level of reservation that it

desires.

Originally RSVP was designed as a one-pass reservation protocol according to [73],

where an end user (a receiver) delivers a reservation request sequentially to the admission

control module in each network node along the data path, thereby making reservations

along the way in a single pass. Unfortunately, since Internet routes are asymmetrical, the

reservation receivers cannot possibly know the path that reserved data traverses. As a

result, RSVP requests the senders to first initiate the reservation process by sending some

messages (PATH) to pin down the forwarding data path before the actual reservation.

68

5.1.2 Path Pinning

Path pinning can only start from reservation sender’s direction, since most routing protocols

(practically all unicast routing protocols) are destination-based, and the Internet routing

does not guarantee symmetrical data path, (i.e., routing path from to � is most likely

different from the path from � to). The main reason for such behavior is due to the

“hot-potato” inter-domain routing policies installed at borders routers by the providers.

The motivation here is to use the least network resources to carry other people’s traffic.

Therefore, there is no way for users to discover traffic forwarding routes from receiver’s

direction.

The reason for initiating reservations from receiver’s direction (such as in RSVP) is

to allow receiver diversity. But, at least for bandwidth diversity, reservations are an inap-

propriate means to distinguish classes of receivers. Bandwidth diversity could only be ac-

complished by “thinning” flows, i.e., dropping packets, as flows reach parts of the network

endowed with less bandwidth. However, random packet dropping will quickly degrade

most audio and video encodings due to their use of prediction across packet boundaries.

Other mechanisms, such as layered multicast [104], were found to be superior to support

diverse receiver populations. Unfortunately, in the absence of intelligent packet filters at

the routers, receiver diversity is not likely to be useful.

Another argument for choosing receiver-based reservation is to support shared reser-

vation, where multiple users create and use one reservation in the network. However, the

important assumption of shared reservation is to have multiple data senders share one reser-

vation on each link. This can be accomplished by either sender-based or receiver-based

signaling protocols.

This leads us to conclude the following: the only way to support one-pass reservation

protocols in today’s Internet is to combine path pinning and the reservation process, and

allow senders initiate reservations.

A possible one-pass reservation model could work as follows: Sender � initiates a

reservation by sending a flowspec to all receivers � (assuming multicast). The message

that carries the flowspec propagates through the network toward the receivers following the

69

routing path. Each router along the way attempts to perform a resource reservation upon

receiving the flowspec. If there is an admission error, the router caches the flowspecs for

future reservation retries, tags a failure indication to the flowspec message and passes the

flowspec to the next router.

This is the basic protocol design for YESSIR, a lightweight reservation protocol that

we will further elaborate in chapter 6.

5.1.3 Partial Reservation and Reservation Blocking

We define partial reservations as follows: For a reserving flow, !���, let � �"�� "
� � � � � "��

be the set of network links at the flow traverses, and� � ���� �
� � � � � ���� # � $ be the

set of the network links that have made reservations for the flow.

if � �

!��� is fully reserved.

else

!��� is partially reserved.

RSVP can result in partial reservations: A reservation request that fails admission con-

trol creates blockade state and proceeds no further. The corresponding reservation is left

in place in nodes downstream (towards the receivers) of the failure point. Upon receiving

an admission control failure notification, the receivers detect that the reservation has been

blocked, and have the option to either withdraw the previous request by sending an explicit

tear-down message upstream, or sending a modified reservation request.

Generally, the reason for a reservation failure is the lack of sufficient resources, i.e.,

bandwidth or buffer space, to accommodate the reservation at the time of the request.

Reservations can also fail because of route flapping, packet loss or router software fail-

ure. However, these failures are not relevant in the context of our discussion here.

Here we need to be careful with our assumption on the occurrence of resource shortage

and subsequent reservation blocking. As emphasized in Chapter 2, resource reservation is

not a tool to compensate for resource inadequacies caused by over-subscription, and sloppy

70

network design. Applying resource reservation in an over-subscribed network can only

cause service degradation for everyone, and aggravating congestion conditions. Rather,

resource reservations are only useful for protecting flows on links that are congested oc-

casionally and for short time periods. Hence, we argue that in a reasonably well-managed

network with a large number of data flows, reservations start and terminate at a high rate,

causing the resource shortage likely to be a temporary one. This suggests keeping the

partial reservations instead of retrying the reservation from scratch at a later time.

The same rationale argues against the way that RSVP is handling partial reservations

via blockade states. Just because a reservation has failed on one link along a reservation

path does not mean the rest of the links will fail, too. A preferred reservation approach

would be that if a reservation request is denied, the reservation request still advances to

the next hop. For the same network, it will create more reserved links than RSVP does.

H1 R1 R2 R3 H2

Request
Failure

Request

ErrorError

(a) Partial reservation in RSVP.

H1 R1 R2 R3 H2

Request
Failure Request

(b) A new approach on partial reservation.

Request
Request
Failure

Figure 5-1: Partial reservation comparison. The bold lines represents the links that can
successfully make a reservation.

Figure 5-1 illustrates a comparison between RSVP and the new approach. With the new

approach, each request tries to make reservations on as many links on its path as possible. It

helps obtaining more resources for the requesting flow and potentially speeds convergence

71

to a fully-reserved path. As shown in the figure, there is an admission failure on link R2-

R3. In RSVP, a blockade state is created at R2, and the reservation process is terminated.

In the new approach, the reservation request is forwarded to the next router regardless of

admission control failures, as a result, more links (R1-R2 and R3-H2) have completed

reservations despite temporary resource shortage at both H1 and R2. Section 5.3.2 will

show simulation results to further illustrate this point.

5.2 Fast Reservation Setup

5.2.1 Reservation Retry and Resource Grabbing

Partial reservations do not provide the service quality that end users have originally re-

quested. Hence, it is desirable for routers to “fill in” the missing reservations as soon as

possible, since the tolerance for session set up delay is limited to a few seconds for many

applications. We call the process of attempting to complete the reservations along the path

reservation retry.

RSVP provides one form on reservation retry, where it combines the retry with soft-

state refresh. Since the routers periodically send flow states to the neighbors, the routers

can retry the reservations at each refresh cycle. However, a refresh cycle can be quite long.

For example, the default refresh timer is 30 seconds for RSVP. This may be too long in

applications such as Internet telephony where human users are waiting for the results and

session life times are only a few minutes. Also, in Chapter 3 and [85], there have been

recommendations to dynamically adjust the refresh frequency based on network conditions

to improve the reliability in soft-state messaging. Hence, retrying failed reservations only

at soft-state refresh intervals may not be good enough.

We here introduce a more aggressive method for partial reservation retries. We define

a reservation pending queue, �, which is structured as a FIFO (First-In-First-Out) chain:

��head pointing to the first arriving entry

��tail pointing to the last arriving entry

72

For each reservation flow, ! , it has the following attributes:

!�resource the amount of desired resource

!�prev points to the previous flow ahead in the queue

!�next points to the next flow

prev
next

resource
…

prev
next

resource
…

prev
next

resource
…

prev
next

resource
…

Null

Null

f1f2f3f4

Q.headQ.tail

Figure 5-2: Reservation Pending Queue Structure

Figure 5-2 shows the relationship between � and reservation flows.

Assume that a flow !� needs to reserve !��resource resources, while the reservable link

resource is �. There exists another flow !� with reservation !��resource on the link. The

algorithm is shown in Figure 5-3.

At reservation time, if there are not enough resources available, the request is queued

in �. As soon as extra resource become available (in this case, another flow !� has termi-

nated), the router dequeues the request from � and retries failed reservations. We refer to

this scheme as resource grabbing and will demonstrate its effectiveness in Section 5.3.2.

Note that partial reservations and fragmentation (see below) are only likely to occur

73

1: on receiving the reservation request for !�:
if !��resource � �

� update the reservation;
� � � � !��resource;
reserve !��resource on the link;

else
� queue the request;
enqueue !� to �;

return

2: when !� is deleted or timed out:
� � � + !��resource
� search through the queue
if � flow !� in � such that !��resource � �

dequeue !� from �;
� � � - !��resource;
reserve !��resource on the link;

return

3: �enqueue flow ! to a FIFO queue � �:
if ��tail = NULL

��head � ! ;
��tail � ! ;
!�prev � NULL;
!�next � NULL;

else
��tail�back � ! ;
!�prev ���tail;
��tail � ! ;
!�next � NULL;

4: �dequeue flow ! from a FIFO queue � �:
if !�prev = NULL

��head � !�next;
if !�next = NULL

��tail � !�prev;
else

!�prev�next � !�next;
!�next�prev � !�prev;

Figure 5-3: Reservation retry algorithm and supplemental procedures

74

in heavily loaded networks or under overload conditions. However, this is exactly when

reservation is needed at all – best effort service works fine in an under-utilized network.

5.2.2 Fragmentation Recovery

Partial reservation can lead to reservation fragmentation, where a large number of flows

all have partial QoS, but all with unacceptable quality. An analogy to this is the deadlock

problem in operating systems, where multiple processes try to access the same set of re-

sources, and are all waiting for others to release theirs first. Since no process is willing to

release the resource, a deadlock occurs. In Section 5.3.3, we will demonstrate the effect of

reservation fragmentation.

Note, however, that the analogy is not complete. An operating system task can make

no progress as long as it is missing one resource, while a data flow may decide to “risk”

the QoS degradation at a small number of routers, in the hope that the admission control

mechanism is conservative and that there is enough best-effort bandwidth available.

There are a number of studies [105, 106, 107, 108] over the years on deadlock recovery.

To grasp a better understanding of the problem, we propose the following over-simplified

methods for partial reservation recovery:

Preemption: A flow with high priority can take resources away from lower-priority flows

holding these resources.

Rollback: All flows withdraw their partial reservations, and re-request at some random

time later.

Suspend hopeless flows: Flows that have consecutively failed their end-to-end reservation

attempts too many times are simply ignored by routers, leaving resources for other

flows.

The first two solutions require cooperation from end users, and thus more messaging

between routers and end users. Plus, they do not prevent “impolite” users from persistently

asking for reservations and obtaining as many network resources as they can. For example,

one method to enable preemption is to have end users monitoring reservation conditions

75

inside the network. If there is a failure, the end user has the option to increase the priority

level of the flow, and re-initiates the reservation process. We plan to investigate end-user

reservation preemption and rollback in the future.

In the rest of the chapter, we study the performance of the third option, where routers

suspend the reservation retries on a flow if it has failed too many times. Figure 5-4 presents

the algorithm that allows routers to limit the number of retries. It is based on the resource

grabbing algorithm in Figure 5-3. We define a threshold, � , as the maximum number of

retries that a flow can exercise during its entire duration at a single router. Each reserva-

tion flow, ! , needs to maintain a retry count !�count in addition to the reservation amount

!�resource.

1: on receiving the reservation request for !�:
if !��resource � �

� update the reservation;
� � � � !��resource;
reserve !��resource on the link;

else
� queue the request;
enqueue !� to �;
!��count � !��count � �;

return

2: when !� is deleted or timed out:
� � � + !��resource
� search through the queue
if � flow !� in � such that !��resource � � and !��count � �

dequeue !� from �;
� � � - !��resource;
reserve !��resource on the link;

return

Figure 5-4: Modified reservation retry algorithm that uses a threshold to control fragmen-
tation recovery.

By adjusting the value of � on routers during congestion, the fragmentation effect can

76

be reduced. Here, we only limit the retry attempts during the resource grabbing process;

flows can continue to retry failed reservations every refresh cycle.

5.3 Simulation

5.3.1 Simulation Methodology

100M

100M 100M 100M

100M 100M 100M

10M10M 10M 10M
0 1 2 3 4 6

7 8 9

11 12 13

10

5
100M

14

100M

100M

Test flow

Background
traffic

Figure 5-5: The network topology used in the reservation retry simulation.

To evaluate the design ideas described in Section 5.1, we used the ns simulator and its

RSVP module, and extended it to support partial reservation functionality required for our

experiments.

Figure 5-5 shows a 15-node simulation network topology. Nodes 1, 2, 3, 4 and 5

are backbone nodes, and the remainder are end systems. All backbone links have 10 Mb/s

bandwidth and 20 ms propagation delay; all access network links have 100 Mb/s bandwidth

and a propagation delay of 10 ms. Network links are reliable. We assume that each link

has a high-priority queue reserved for reservation messages so that they are never lost. Up

to 50% of the link bandwidth is reservable, and the rest of the bandwidth is shared by

77

best-effort and reservation traffic.

In the simulations that follow, network nodes 7, 8, 9 and 10 generate best-effort data

flows as well as reserved data flows to nodes 11, 12, 13 and 14, respectively. All data

packets are 125 bytes long. The best-effort data flows are modeled as exponential on/off

traffic source, with on-time 1 s, off-time 0.5 s, a burst rate of 500 kb/s and an exponentially

distributed flow duration with a mean of 150 s. The reserved flows are all CBR traffic with

rate � of 100 kb/s and a token bucket size � of 5,000 bytes. The reason for choosing

CBR is to simulate the reservations used for voice streams. We can create various network

congestion conditions by adjusting the number of best-effort and reservation flows.

We assess the effectiveness of different reservation algorithms by monitoring a CBR

flow from node 0 to node 6 traversing several congested links. In each simulation experi-

ment, node 0 starts transmitting a 100 kb/s flow at time 0 to node 6. 250 s later, node 0 then

tries to reserve resources for the flow. The reservation session lasts 300 s. We monitor this

test flow at node 6 by capturing the data rate received. When the end-to-end reservation

has been completed, we see a fixed rate of 100 kb/s (that is, a flat line on the traffic trace

diagrams).

Data for the first 50 seconds in each simulation are discarded to obtain steady-state

results. Each simulation has been run several times with different random seeds.

5.3.2 Partial Reservation

In a first experiment, labeled “regular load” in the figures, we created a mildly congested

network with 27 best-effort flows and 85 reservation sessions in the background. The back-

ground best-effort traffic is about 1.35 times more than the link capacity at each hop. Since

the total number of reservation sessions exceeds what the backbone routers can handle, we

expect to see many reservation rejections, where rejected flows wait and retry.

All reservation protocols tested are soft-state based with a 30-second average refresh

interval. To avoid synchronization, refresh intervals are randomly varied between 21 and

39 s, as recommended in RSVP.

Figure 5-6 shows the packet rate received at node 6 in a 600 s simulation. All nodes in

78

0

20

40

60

80

100

120

0 100 200 300 400 500 600

R
at

e
(k

bp
s)

Time (sec)

rsvp

Figure 5-6: Regular load: RSVP reservation: reservation completed after 150 s and 5 tries.

the network use RSVP for reservation. A rejected flow can only retry for the reservation at

the next refresh cycle. The test flow takes about 150 seconds and five tries to complete the

reservation.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

R
at

e
(k

bp
s)

Time (sec)

Partial Resv (fixed refresh)

Figure 5-7: Regular load: one-pass reservation without grabbing; reservation completed
after 77 s and 3 tries.

We then ran the same identical testing scenario with an one-pass reservation mechanism

79

that uses soft-state refresh to retry the failed reservations. As shown in Figure 5-7, the

reservation completes after 77 seconds and 3 tries.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

R
at

e
(k

bp
s)

Time (sec)

Partial Resv (with resource grabbing)

Figure 5-8: Regular load: one-pass reservation with resource grabbing; reservation com-
pleted after 12 s and 19 tries.

Figure 5-8 shows a scenario where all the nodes use one-pass soft-state reservation and,

in particular, the resource grabbing mechanism that we have described in Section 5.2.1.

The testing flow reservation takes only 12 seconds to complete, but retries 19 times.

We then collected reservation failure and success data from all the nodes. Figure 5-9

shows how the flow had completed the reservation in the three testing scenarios above.

Using RSVP, the flow received reservations from node 5 and 6 during its first reser-

vation attempt, but was rejected at node 4. At the next refresh cycle, the flow made the

reservation on node 4, but was rejected from its immediate upstream node, node 3. It took

two refresh cycles for the flow to eventually get a reservation from node 3. During the fifth

refresh cycle, the flow made reservation on the link from node 2 and 1, and thus completed

the reservation.

Even though the RSVP flows do not have to start reservations from scratch after each

reject, due to blockade states, it takes a long time for the flow to make its way toward the

sender, often one hop per refresh interval. In comparison, the one-pass reservation scheme

can perform much better. At the reservation initiation time, the request message passes

80

0

1

2

3

4

5

6

7

200 250 300 350 400 450

N
od

e
N

um
be

r

Time (sec)

RSVP

Partial Resv (fixed refresh)

Partial Resv (fast grabbing)

Figure 5-9: Regular load: Reservation sequence for RSVP, one-pass reservation with re-
fresh, and one-pass reservation with refresh plus resource grabbing. The ordinate shows
the node number in the simulation network of Figure 5-5. The figure shows the amount of
time it would take to setup a successful reservation.

through all the nodes on the reservation path, and tries to make a reservation at each node.

As shown in the figure, the flow made the reservations on nodes 2, 4, 5 and 6 during its first

reservation attempt. It took two more refresh cycles to complete the reservation.

In conclusion, the reservation scheme armed with resource grabbing mechanism per-

formed the best. It completed the reservation in 12 seconds, and retried reservations 19

times in total on all 6 nodes during this period.

5.3.3 Fragmentation Recovery Performance

To evaluate the reservation retry performance, we increased the number of background

reservation flows to 120, that is to request 2.4 times more resource than what the network

can provide. We experiment with both RSVP and the one-pass reservation scheme in this

highly congested network. We also apply the threshold algorithm defined in Figure 5-4 on

all network nodes when run the one-pass reservation experiments.

Table 5.1 collects the total number of reservation retries from all network nodes, and

the statistics on setting up an end-to-end reservation from node 1 to 6.

81

Description # of retries Test flow
on all nodes between Node-0 and Node-6

One-pass Reservation, � �� 28,314 no reservation made in 184 tries
One-pass Reservation, � = 10 8,534 no reservation made in 46 tries
One-pass Reservation, � = 8 7,137 reservation completed after 232 s and 32 tries.
One-pass Reservation, � = 3 4,382 reservation completed after 172 s and 14 tries
One-pass Reservation, � = 1 2,685 reservation completed after 19 s and 1 retry
One-pass Reservation, � = 0 2,588 reservation completed after 43 s and 3 tries
RSVP, fixed refresh 3,4091 no reservation made in 10 tries

Table 5.1: Number of retries in the network, measured for a 550 s simulation duration.

From simulation, we observed that RSVP could not make the end-to-end reservation.

This is probably due to its ineffectiveness during reservation retry. On the other hand,

the one-pass reservation with very aggressive retry process (high �) failed to make end-

to-end reservation as well. An explanation is that, with an aggressive retry algorithm, all

reservation flows in the network try to take as many resources as possible. As a result, few

flows get the full reservation.

With a proper threshold value, the user flow can successfully make the reservation in

a highly congested network. In the simulation, the best scenario is the one with � = 1.

We suspect that with lower threshold number, the flows are less aggressive to retry for

the link resource, and therefore allow other flows to complete their reservations. This

conclusion seems to be supported by tests using different � . We also conclude that in

using the one-pass reservation with retry, there is a trade-off between the ability to obtain

resources quickly, and the likelihood of causing reservation deadlocks.

RSVP is also less aggressive in grabbing resource with its blockade state algorithm,

then why does it perform so poorly? From our collected data, out of 3,409 reservation re-

tries, there were only 739 successful flows in the 550-second simulation interval. Since the

blockade states make partial reservations only on the nodes that are downstream from the

failure node, RSVP flows thus receive less resources from the network, and thus perform

poorly.

1We have also monitored the total number of new RESV messages being received at the end nodes, which
is 739. This is the same as the total number of successful RSVP reservations.

82

5.4 Discussion

We have investigated two important design issues in a reservation signaling protocol design:

reservation retry and one-pass reservation.

Through simulation, we have compared the reservation performance achieved from

RSVP and an one-pass reservation scheme. RSVP uses a more conservative hop-by-hop

reservation retry mechanism, thus it may take a long time to achieve reservation conver-

gence in resource-constrained networks. On the other hand, a better alternative is to retry

reservations on multiple links in parallel. We also discovered that routers need to control

the reservation retry process of the failed flows. One such mechanism is to limit the number

of reservation retries on failed flows.

In dealing with partial reservation recovery, we studied a method of suspending failed

flows. Though the study has shown some promising simulation results, a far more in-

teresting work will be to understand how to avoid reservation deadlock conditions in the

network.

83

Chapter 6

YESSIR: An Application-Layer

Reservation Protocol

6.1 Introduction

In this chapter, we incorporate the protocol design ideas studied in Chapter 5 to develop a

lightweight resource reservation protocol, YESSIR (YEt another Sender Session Internet

Reservation1). It is an in-band, sender-based, one-pass protocol based on RTP that offers

significantly lower code and run-time complexity than RSVP.

YESSIR is motivated by the observation that a large fraction of the applications that

require guaranteed quality-of-service are continuous media applications and that a substan-

tial fraction of these either use or will use the Real-Time Transport protocol (RTP) [24]

to deliver their data. YESSIR and RSVP can operate side-by-side in the same network,

without affecting the certainty of guarantees offered to applications.

In the remainder of this chapter we describe several relevant protocols (section 6.2),

enumerate the specific design objectives for light-weight reservation signaling (section 6.3),

and describe how YESSIR is designed to realize these requirements (section 6.4 and 6.5).

In Section 6.6, we present the implementation results.

1The name reflects the proper attitude of a resource reservation protocol in a well-designed network.

84

6.2 Relevant Protocols and Features

6.2.1 RTP

RTP has been designed to provide end-to-end delivery services for data with real-time char-

acteristics. Although protocol-independent, applications normally run RTP on top of UDP

to make the use of its multiplexing and checksum services. It has been widely implemented

on multimedia systems across all operating systems and is part of the ITU H.323 recom-

mendation [109] for conferencing and Internet telephony. Examples include vic [110], vat

[111], rat [112] and NeVoT [113] for teleconferencing over the MBONE, NetMeeting from

Microsoft and conferencing tools from Netscape.

Although RTP was not intended as a resource reservation protocol, resource reservation

can benefit from the following RTP features:

In-band signaling: RTP defines two types of packets: RTP for data transport and RTCP

for control. Each RTP session consists of one RTP data stream and one corresponding

RTCP stream, originated by one or more participants. When carried over UDP, data

and control packets use adjacent port numbers, so that a router or firewall can easily

map from a control stream to the corresponding data stream.

Periodic sender/receiver notification: Senders and receivers periodically send RTCP pack-

ets containing reports to the multicast group. Data senders distribute sender reports

(SR’s) that indicate, inter alia, the number of bytes and packets transmitted since

the last report and information allowing the estimation of round-trip times. Data re-

ceivers include receiver reports (RR’s) that indicate packet loss and delay statistics,

among others. By evaluating these reports, all participating members have knowl-

edge of traffic characteristics, network congestion and session membership. Routers

can deduce the resource requirements of a session from these reports, as will be dis-

cussed below.

The period between reports has a minimum of five seconds and scales with the num-

ber of participants, keeping the RTCP session control overhead limited to no more

85

than 5% of the data bandwidth. Senders are allocated at least 25% of the session

control bandwidth.

Embedded in applications: RTP is typically implemented as part of the application. As

will be shown in Section 6.4.1, even an RTP application that runs the current version

of RTCP can be used to initiate resource requests. No kernel modifications beyond

the support of IP router alert options are needed.

6.2.2 IP Router Alert Option

The IP router alert option [88, 89] alerts transit routers to more closely examine the contents

of an IP packet. In other words, routers can intercept packets not addressed to them directly,

with little performance impact. For example, RSVP PATH messages are carried in IP

packets that include the router alert option. Thus, even though RSVP PATH messages

are addressed to end systems, PATH messages are intercepted and processed by all transit

routers. We make use of router alert options to mark RTCP sender report for YESSIR

processing.

Since existing UNIX kernels cannot easily deliver IP packets containing IP options to

applications, we have defined and implemented a new protocol family called PF IPOPTIONfor

the FreeBSD kernel. More details are described in [90].

6.3 Design Objectives

YESSIR is designed to offer an alternative approach to resource reservation in the Internet,

using RTCP sender reports to reserve resources in the network. We have several design

objectives in mind when designing this protocol:

One-pass resource reservation: As described in Chapter 5, the one-pass reservation model

is more efficient than a two-pass model. Due to the constraints in IP routing, the only

way to support one-pass reservation is to have the sender initiates reservations. In

addition, we argue that many applications cannot make full use of the benefits of

86

receiver-initiated reservations. Sender-initiated reservation is also a better fit for pol-

icy and billing, as the number of senders making reservations is likely to be much

smaller than the number of receivers in multicast scenarios. In many existing sys-

tems, such as cable television, the cost of “resource reservation” is bundled with the

cost of content, simplifying billing. (Also, a provider of pay-per-view services would

likely want to avoid the case where subscribers pay, fail to reserve resources and then

ask for their money back since the quality was unacceptable.) In the absence of an

Internet-wide authentication and cross-provider billing service, it is far easier for the

relatively small number of large-scale content providers, residing at known network

addresses, to arrange for payment with major backbone providers than individual

subscribers.

Allow partial reservations: The function of resource reservations is to protect existing

streams against disruption by other streams that arrive later.

In “classical” reservation systems, reservations are either made or denied end-to-end.

Depending on the system, the requestor can always either ask again, at some cost to

the network if done too often (“redialing”). Some systems also allow to specify a

range of resource requests to increase the likelihood of success, however, this can

cause low-bandwidth regions to experience high packet losses despite reservations.

As motivated in Chapter 5, partial reservation has the advantage of expediting the

reservation process by obtaining resources on as many links as possible for a partic-

ular flow. On links without reservation, traffic is carried on a best-effort basis and the

resource reservation request continues downstream towards the receivers. Applying

different resource grabbing techniques, a flow can acquire a reservation on a link

when another flow terminates, without having to retry at the application layer. The

user can decide whether to put up with a partially successful reservation and hope

that more links will be added as the session continues or cancel the session. For a

live presentation, where inserting an end-to-end reservation means missing the event,

a user may well decide that the prospect of improving reservation fortunes may be

better than not listening at all or foregoing all resource reservations.

87

Provide different reservation styles: Reservation protocols should support both individ-

ual and shared reservation styles. Individual reservations are made separately for

each sender, whereas shared reservations allocate resources that can be used by all

senders in an RTP session.

Individual reservations are called for when all senders are active simultaneously, e.g.,

for distribution of participant video in a conference, while shared reservations are

appropriate where several senders alternate, e.g., for audio in a conference. (Shared

reservations also avoid the problem that a new speaker may not be able to acquire a

reservation; they can re-use the existing reservation of the previous speaker.)

We need to design simplified versions of the fixed filter and wildcard filter reser-

vations in RSVP. Note that the shared reservation styles, one of the distinguishing

features of RSVP, does not depend on receiver orientation. We can handle the shared

reservation style from the sender’s direction, while RSVP supports shared reservation

(shared-explicit and wildcard-filter styles) from the receiver’s direction.

Robustness and soft-state: Similar to RSVP and PIM [91], routers maintain reservation

states as soft state, i.e., reservations disappear by themselves if not refreshed period-

ically. This avoids orphan reservations and can be adaptive to routing changes. As

in RSVP, we can design an explicit teardown mechanism using RTCP BYE pack-

ets to avoid holding reservations for a number of soft-state refresh intervals after the

requesting application has terminated.

In-band signaling: Rather than defining another signaling protocol, reservation messages

can be transported by RTCP. Given that RTP’s data and control packets are tightly

coupled, updating packet classifiers and firewall filters can be greatly simplified.

Interoperability: Reservation messages are piggybacked in RTCP, but the operation of

existing RTP functions at end systems is not affected at all. Reservation protocols

need to interface with router’s traffic control module to accomplish QoS functionality,

but it cannot be constrained to any specific QoS technique.

Provide link resource advertising function: The purpose of making link-level resource

88

reservation is to meet end-to-end application requirements. To that end, YESSIR

needs to be able to query and carry collected network resource information to the

end systems.

6.4 YESSIR Protocol

IP
(with router-alert option)

UDP

RTCP

YESSIR
RSVP

(raw mode)
RSVP

Network Interface

Integrated Service Models

Figure 6-1: Protocol relationships.

YESSIR reservation messages consist of RTCP sender-report messages, possibly en-

hanced by additional YESSIR-specific data, carried in IP packets tagged with router-alert

options. The placement and relationships to other protocols are shown in Figure 6-1.

Reservation requests generated by senders are intercepted and processed by those routers

that support the router-alert IP option. Routers that do not support the option or YESSIR

forward the RTCP message unaltered to the next hop. End systems ignore the router alert

option. Thus, YESSIR can be deployed incrementally and without affecting the behavior

of end systems.

89

6.4.1 Outline of Operation

The YESSIR protocol works as the following: Senders periodically multicast RTCP sender

reports (SR’s) to all members of the multicast group (or the other party, if unicast). The

sender reports contain transmission and reception statistics and timing information. Reser-

vation requestors may insert explicit reservation information into SR’s, however, YESSIR

can also operate without any additional information beyond what is already contained in

RTCP sender reports (see Section 6.4.2). When an RTCP SR is received by a router, the

router will attempt to make a resource reservation according to the information specified in

the message.

If a reservation request cannot be granted at a router, the RTCP SR packet will continue

to be forwarded to the next hops. The router has the option of inserting reservation failure

information into the SR. As a part of RTCP receiver reports (RR), the receivers will provide

failure information to the senders. Based on RRs received, senders can either drop the

session, or lower the reservation request and transmitted bandwidth.

If a reservation request is accepted by a router, the corresponding RTP data stream

information is added into the packet classifier, and the router’s scheduler is updated to

support the new stream.

Instead of basing reservations on explicit flowspecs, YESSIR can operate in a measurement-

based mode. One type of measurement-based reservation is to make use of the fact that

RTCP SR’s contain a byte count and a timestamp. If the first RTCP packet for a session

does not contain a flowspec, the router simply records the timestamp and byte count, but

does not make a reservation. If a second packet for the same session comes along, the router

computes the difference in time stamps and byte counts and thus computes an estimated

rate. It then establishes reservations for this measured bandwidth, updated as new RTCP

packets arrive. Compared to other measurement-based admission controls [114, 115, 116],

this frees the router from the burden to count packets and estimate rates. We will describe

measurement-based reservation below in more detail.

Reservation states in each router are maintained as soft-state. The reservation is auto-

matically removed if no RTCP SR is received within several consecutive refresh intervals.

90

To reduce the processing burden at routers, instead of having routers to initiate refresh

messages, RTP senders periodically generate RTCP SR’s with IP router-alert option to re-

fresh reservations. Compared with the hop-by-hop refresh mechanism that has been used

in RSVP, the end-to-end refresh mechanism in YESSIR reduces routers’ processing cost

(as shown in Section 6.6.4).

In addition, an RTCP BYE message, sent when one or more traffic sources are no longer

active, releases the YESSIR state record and any resource reservations.

6.4.2 Flow Specification

YESSIR message:
 - reservation command: active/passive
 - reservation style, refresh interval
 - reservation flow specification
 - link resource collection
 - reservation failure report

IP Header with Router-Alert Option

UDP Header

RTCP message:

Sender Report:
 - sender information
 - detailed report for each source

Profile-specific extensions

Figure 6-2: YESSIR Message Structure with Explicit Flowspec.

YESSIR operates in two modes: explicit and measurement-based. Explicit mode re-

quires the users to piggyback explicit reservation information in RTCP reports (SR or RR).

We have defined an optional reservation extension for RTCP, as shown in Figure 6-2. The

YESSIR extension consists of reservation style, refresh interval, and the necessary infor-

mation as to whether to admit the flow and what resources to set aside. In addition, we

91

defined a network monitoring fragment in the YESSIR extension. If it is present in a re-

quest, every router along the path needs to insert the network resource information of the

reserved link in the message. This component is equivalent of the RSVP ADSPEC object

[31] for the purpose of supporting “One Pass With Advertising” (OPWA) [73]. Routers

where reservation requests fail indicate the reason for failure in the reservation error frag-

ment. The fragment is used to collect error information that will allow end systems and

network administrators to diagnose reservation failure inside the network.

In measurement-based mode, routers gather flow specification from the data packets

directly, and thus free end-users from articulating reservation requirement details. There

are several methods to gather reservation data:

� RTCP SR (Sender-Report Message),

� RTP PT (Payload-Type field), and

� IP Header DSCP (DiffServ Code Point).

The first method estimates the average user data rate by reading the timestamp and the

byte-count in RTCP SR’s. A standard RTCP SR message format is shown in Figure 6-

3. The NTP timestamp uses the timestamp format of the Network Time Protocol (NTP),

which is in seconds relative to zero hour UTC (Coordinated Universal Time) on 1 January

1900 [117]. It indicates the wallclock time when a RTCP SR was sent. The sender’s octet

count is the total number of payload bytes transmitted in RTP data packets by the sender

since starting transmission up until the time this SR packet was generated.

The advantage in this method is that senders do not have to do anything other than

periodically send regular RTCP SR’s with IP Router Alert option, and routers can adjust

reservation levels dynamically. However, it has several problems. First, the actual reser-

vation does not take place until the arrival of the second RTCP SR. For the duration of

first two RTCP SR’s, which normally lasts 5 seconds, there won’t be any reservation for

user flows. Secondly, the estimated data rate represents the resource usage in the duration

of two previous RTCP SR’s. Hence, for bursty streams, this method may result in either

under-reserving or over-reserving network resources.

92

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|V=2|P| RC | PT=SR=200 | length | header
+-+
| SSRC of sender |
+=+
| NTP timestamp, most significant word | sender
+-+ info
| NTP timestamp, least significant word |
+-+
| RTP timestamp |
+-+
| sender's packet count |
+-+
| sender's octet count |
+=+
| SSRC_1 (SSRC of first source) | report
+-+ block
| fraction lost | cumulative number of packets lost | 1
-+
| extended highest sequence number received |
+-+
| interarrival jitter |
+-+
| last SR (LSR) |
+-+
| delay since last SR (DLSR) |
+=+
| SSRC_2 (SSRC of second source) | report
+-+ block
: ... : 2
+=+
| profile-specific extensions |
+-+

Figure 6-3: RTCP Sender-Report Format. Copied from RFC1889, pp. 23.

Another measurement method simply has the end system mark an RTP data packet

every so often with an IP router alert option. Each RTP packet contains a payload type

indication, which indicates the media encoding (such as G.711-encoded voice). For many

low bit rate codecs, the payload type is associated with a fixed rate (e.g., 64 kb/s for G.711),

so that the router can make reservations based on that information alone. This mode has

the advantage of trivial header parsing and fixed refresh intervals. (It also incurs the danger

of increased packet delay variation and packet reordering since some RTP packets would

93

traverse a routers “slow path”, while most would not.) According to the RTP specifica-

tions [24, 118], separate ranges of the payload type values have been set aside for audio

and video, so that a router can assign RTP flows at different granularity: by session, by

payload type value or by media class. To reduce the number of queues, a router may sim-

ply assign all voice traffic to a single high-priority queue, for example and just track the

multicast destination and accumulated bandwidth for each session. However, this method

does not work for dynamic RTP payload types, in which case, the sender may change the

RTP data payload type in the duration of the session.

Similar to the RTP PT format, the IP DSCP (DiffServ Code Point) format allows routers

to use the IP DSCP information [119, 120, 121] in RTP data packets to map them to the

appropriate scheduler queue. This allows the router to keep track of the bandwidth allocated

for each DSCP value, preventing over-commitment, yet avoids having to look up per-flow

state for each packet. To prevent abuse by end applications, routers rather than end systems

would be expected to set the DSCP value at each hop.

We had considered of supporting IntServ flowspecs in YESSIR. However, after more

careful evaluation, we realized that the IntServ models are strictly based on the assumption

that per-flow reservations must be established at every hop inside the network. In a partial

reservation approach, such as YESSIR, it allows reservations to be made on some of the

network links initially. It also allows end users to transmit data traffic at any time, i.e.,

before, during and after reservation process, over the potentially partially reserved network

links. Hence, we conclude that YESSIR would not operate well in an IntServ-enabled

networking environment.

6.4.3 Error Handling and Killer Reservation

In YESSIR, a router does not generate error messages to the senders, nor does it try to

automatically correct problems with error messages such as using RESVERR messages to

create blockade states in an attempt to recover from killer reservations in RSVP. Instead,

it has the option to insert error information into the RTCP SR message. It is up to the

receivers to inform the senders about reservation failures via RTCP receiver reports. RTCP

94

SR’s containing YESSIR reservation requests are always forwarded, even if unsuccessful.

We chose this approach for several reasons:

1. For high-bandwidth links, such as gigabit Ethernet, there is no reason to reserve re-

sources for small data streams. In this case, a router should ignore YESSIR messages,

and forward the requests downstream.

2. Managing resource over shared-media network such as Ethernet and Token-Ring

networks is difficult. In this case, a router can insert a “reservation-undoable” flag in

the error fragment of the RTCP SR message and forward it downstream.

3. This behavior is simple to implement. As shown in several RSVP implementations

[67], the support for error message handling and associated blockade states is costly

in terms of protocol processing, timer management and extra state storage.

4. Most importantly, as elaborated in Chapter 5, if network resources are not available

during the first reservation attempt, there is always a possibility that reservations can

be made when other reservations have terminated or during soft-state refresh times.

There are many methods that routers can apply to recover from initial reservation

failures. Hence, we believe that it is not appropriate to remove the reservation states

and generate error messages when there is an admission control failure, nevertheless,

the end users may need to be notified.

To illustrate our last point, we present an example here. In a heterogeneous network,

a reservation request may fail for any number of reasons at a router. Unfortunately, such

failures may also affect requests from other senders. Figure 6-4 demonstrates one of the

killer reservation (or reservation fragmentation) effects. Two requests 	� and 	� (where

	� � 	�) arrive at router Rt1. If	� arrives first and is accepted at Rt1, but rejected at Rt2,

it could cause a smaller reservation 	� to be rejected at Rt1 since the resource has been

taken by 	�. As a result, neither request will enjoy any end-to-end QoS guarantee.

RSVP and ATM each solve this problem differently. If an ATM reservation cannot

be accepted by a switch, that switch sends back a resource release message towards the

sender to tear down the reserved resource at upstream nodes. RSVP generates RESVERR

95

S1

S2

Rt1

R1

Rt2

Q2

Q2

Q1
Q1

Off-line
queries

R2Q2

Q1

RR to S1

RR to S2

Figure 6-4: Problems due to resource contention

messages and creates a blockade state to allow smaller reservation requests to go through

while blocking large requests. Unfortunately, blockade states are difficult to manage and

incur high implementation complexity.

In YESSIR, partial reservations for both 	� and 	� will be made. However, senders

receive an indication that the reservation was only partially successful and can then change

or drop the reservation, clearing the way for other reservations to succeed.

6.4.4 Reservation Styles

YESSIR defines two reservation styles, individual and shared. In individual reservations,

every sender in a RTP session has a resource reservation of its own. As shown in Figure 6-5

(a), router Rt1 receives reservation requests from both senders S1 and S2. After making

a reservation, there are two separate reservations on links between Rt1 to Rt2 and Rt3.

Depending on the amount of resources requested, RTP data streams from S1 and S2 may

have different levels of reservation.

96

S1

S2

R1

R2

R3

Rt1 Rt2

Rt3

S1

S2

R1

R2

R3

Rt1 Rt2

Rt3

(a) Distinct Reservation style:
Reservations for S1are shown as
in solid line; S2, in dotted line.

(b) Shared Reservation style:
At Rt1, after flow merging
between reservation for S1
(solid line) and S2 (dotted line),
a single reservation (thicker line)
is made to Rt2 and Rt3.

Figure 6-5: Different reservation styles (S1 and S2 are senders, R1, R2 and R3 are receivers
in a single multicast RTP session; Rt1, Rt2 and Rt3 are routers)

In a shared reservation, all senders within an RTP session share a single resource reser-

vation in the network. As illustrated in Figure 6-5 (b), the links Rt1-Rt2 and Rt1-Rt3 have

a single shared reservation. The amount of resources reserved on the link is the least upper

bound (LUB) of the individual flow requests from S1 and S2. For example, if S1 and S2 re-

quest 10 kb/s and 15 kb/s of bandwidth, respectively, the shared bandwidth for link Rt1-Rt2

will be 15 kb/s. If there is a reservation failure, the reservation rejection information and

the merged flow specification will be piggybacked in the RTCP sender report. Receivers

will feed back the failure information and rejected reservation request to all participating

members, including the senders. The senders can use these reports from receivers to adjust

their requests. Flow merging issues will be addressed further in Section 6.5.1.

97

6.4.5 Other Considerations

Network Resource Advertising

In order to satisfy end-to-end service requirements, we adapted the OPWA (One-Pass With

Advertising) scheme proposed by Shenker and Breslau [73] and described by Wroclawski

[31] for YESSIR. Here is how it works in the context of YESSIR: each reservation request

message carries a network monitoring fragment that consists of fields for hop counts, prop-

agation delay, aggregated bandwidth and delay bounds. As SR messages traverse routers,

this fragment will be updated at every hop. The receivers, upon reception of the SRs, will

send the collected path resource information back to the senders in RTCP receiver reports.

The senders can refer the path resource information to adjust their reservation levels by

sending new requests.

Dynamic Reservation

An RTP session may not require a reservation for its whole duration. If reservations cost

money, an application may well decide to only reserve network resources if best effort ser-

vice proves unsatisfactory2. RTP-based applications supporting YESSIR can easily oper-

ate in this “reserve-when-needed” mode, as YESSIR reservation requests are coupled with

RTCP messages. RTCP receiver reports have been designed to monitor traffic statistics.

Senders can monitor receiver reports and only include a reservation request if a sufficiently

large fraction of receivers indicate reception problems.

Network Security

RTCP and RTP data are tightly coupled. Thus, at a firewall, when a rule for a particular

RTP data stream is defined, it will be automatically applied to the corresponding RTCP

messages. Similarly, if a rule has been define to accept certain RTCP messages, the asso-

ciated RTP data will be accepted as well. Supporting reservations across firewall filters is

therefore greatly simplified.

2It obviously runs the risk that reservations will fail when the network is sufficiently busy to drop best-
effort traffic.

98

Currently, YESSIR relies on security mechanisms at the IP layer [122] to provide au-

thentication. If necessary, it would be easy to add an authentication facility to either RTCP

or the YESSIR elements.

6.5 Description of YESSIR Algorithm

YESSIR on routers operate on two types of object. A “flow” object ! has the following

attributes:

!�source traffic sender

!�destination traffic receiver

!�ingress ingress interface identifier

!�cleanup-timer soft-state time-out timer

!�request-qos requested QoS

!�nhops a list of egress interfaces that require resource reservation

An “egress interface” object � has the following attributes:

��egress egress interface identifier

��running-qos operational QoS

Each YESSIR reservation flow can be uniquely identified by IP source and destina-

tion addresses and transport-layer port numbers3. Routers store source IP address and port

number in !�source, and destination IP address and port number in !�destination. For mul-

ticast, each “flow” may require to reserve resources on multiple egress interfaces, thereby,

!�nhops is a set of “egress interface” objects. To prevent looping, we keep track of both

ingress and egress interface identifiers 4.

Routers can determine a flow’s reservation type by simply checking if RTCP SR mes-

sages have an YESSIR extension attachment, as presented in Figure 6-2. If they do, routers

3All RTP/RTCP packets are running on top of UDP, that has a protocol number of 17 in the IP header.
4In BSD, this is the if-index. The router OS is responsible for making sure that the identifiers are unique

and fixed at all time, even in hot-pluggable condition.

99

must operate in the explicit reservation mode. Otherwise, routers operate in measurement-

based mode.

To operate in explicit reservation mode, routers need to abstract the following informa-

tion from RTCP message% :

%�source sender information (source IP address and port number)

%�destination receiver information (destination IP address and port number)

%�command Reserve or Tear-Down

%�style Distinct or Shared reservation

%�refresh-cycle soft-state refresh period

%�error error information

%�opwa One-Pass With Advertisement segment

%�qos requesting QoS

The reservation setup details can be seen in the pseudo-code in Figure 6-6.

For measurement-based reservation, routers use a pre-configurated refresh timer, �, to

manage soft-states. Figure 6-7 is the router algorithm for a measurement-based reserva-

tion, that interprets reservation level based on the timing and byte counters from RTCP SR

messages. It needs to read the following information from RTCP message% .

%�5-tuple from IP and UDP headers

%�timestamp from RTCP SR

%�total-bytes from RTCP SR

In addition, each flow object ! requires to manage two new attributes:

!�last-timestamp last received NTP timestamp

!�last-bytecount last received byte counts

To delete distinct reservation flows, routers use the same procedures, as shown in Fig-

ure 6-8. In the section below, we will see that deleting a shared reservation flow can be

somewhat more tricky.

100

1: on receiving RTCP SR message % , with YESSIR extension from interface �$:
if � flow ! such that !�source �%�source and !�destination �%�destination

if %�command = Tear-Down
remove reservation from ! ;
delete ! and exit;

else
create a new flow ! ;
!�source �%�source;
!�destination �%�destination;

!�ingress � �$;
!�cleanup-timer � �%�refresh-cycle;
!�request-qos �%�qos;
query routing and find egress interfaces for % ;
for each egress interface &'(, such that &'(�� �$

if � egress � � !�nhops, such that ��egress � &'(
if ��running-qos �� !�request-qos

update reservation on �;
else

create a new egress entry � for ! ;
��egress � &'(;
update reservation on �;

forward % downstream.

2: �update reservation on egress � �:
make/change reservation !�request-qos on interface ��egress;
if succeed

��running-qos � !�request-qos;
else

apply retry algorithms to ! ;
add failure code to%�error;

update packet classifier from !�ingress to ��egress;
update %�opwa.

Figure 6-6: YESSIR router algorithm - setting up a distinct explicit reservation

For clarity, we have omitted the details in message redundancy checking and reserva-

tion processing. In particular, in the measurement-based reservation, we need to consider

the IP and UDP header overhead in the bandwidth approximation. The algorithms for

101

1: on receiving RTCP SR message % , without YESSIR extension from interface �$:
if � flow ! such that !�source �%�source and !�destination �%�destination

compute bandwidth usage from% for ! ;
else

create a new flow ! ;
!�source �%�source;
!�destination �%�destination;
!�request-qos � NULL;

!�ingress � �$;
!�cleanup-timer � ��;
!�last-timestamp �%�timestamp;
!�last-bytecount �%�total-bytes;
if !�request-qos � NULL

forward % downstream and exit;
query routing and find egress interfaces for % ;
for each egress interface &'(, such that &'(�� �$

if � egress � � !�nhops, such that ��egress � &'(
if ��running-qos �� !�request-qos

update reservation on �;
else

create a new egress entry � for ! ;
��egress � &'(;
update reservation on �;

forward % downstream.

2: �compute bandwidth usage from message% for flow ! �:
new parameters: ������������

����� � �%�timestamp� !�last-timestamp�;
������ � �%�total-bytes� !�last-bytecount�;
!�request-qos � �������)������.

3: �update reservation on egress � �:
make/change reservation !�request-qos on interface ��egress;
if succeed

��running-qos � !�request-qos;
else

apply retry algorithms to ! ;
update packet classifier from !�ingress to ��egress;

Figure 6-7: YESSIR router algorithm - for setting up a distinct measurement-based reser-
vation

102

1: on receiving RTCP BYE message% :
if � flow ! such that !�source �%�source and !�destination �%�destination

remove reservation from ! ;
delete ! and exit;

update %�opwa.
forward % downstream.

2: on expiration of !�cleanup-timer:
remove reservation from ! ;
delete ! .

3: �remove reservation from flow ! �:
for each egress � � !�nhops

release resource ��running-qos;
remove packet classifier;
delete � from ! ;

apply retry algorithms if necessary.

Figure 6-8: YESSIR router algorithm - for terminating a distinct reservation flow.

measurement-based reservations using RTP PT and IP DSCP are similar (actually, simpler)

to the one outlined in Figure 6-7.

When there is already a reservation 	 in place for a particular user flow, if the user

requests a larger reservation	� � 	, and the resulting modified reservation fails by admis-

sion control at routers, the previous reservation	must remain and cannot be denied. Here,

we assume that there is no admission control failure in packet classifier, i.e., the routers also

have enough hardware/software classifier entries to accommodate per-flow reservations.

As we can see from the algorithms, there are several key differences in explicit and

measurement-based reservation processing. In explicit reservations, routers can insert ad-

mission control failure, and network link information to the RTCP SR’s, so that the end-

users can detect the network link capacities, locate resource hot spots, and adjust reser-

vation level dynamically. On the other hand, in measurement-based reservations, since

routers derive resource requirements from user data packets directly, end-users hence have

103

no control over reservation level. But end-users are free from entering reservation details.

Routers can switch between explicit and measurement-based mode at run-time. How-

ever, since it takes two consecutive RTCP SR messages to compute the bandwidth to be

reserved, when routers are changing from the explicit mode to the measurement-based

mode, the on-going reservations cannot be interrupted.

The routing interface depends in the flexibility and modularity of routing protocol im-

plementation. We need to be careful that the reservation process simply sits on top of the

routing process to setup reservation path, and does not alter the routing decision process.

However, whenever there is a route change, routing process has the option to immediately

inform the reservation process, so that proper adjustments can be applied in a timely fash-

ion. When there is no routing upcall mechanism available, the reservation process can

always rely on soft-state to gradually discover new routes.

Routers can apply various retry algorithms, including roll-back, fast retry and preempt,

to get resources after an initial admission control failure. Details in those algorithms are in

Chapter 5.

6.5.1 Flow Merging and Shared Reservation

In YESSIR, flow merging only takes place for shared reservations for routers that operate in

the explicit-reservation mode. As discussed earlier, the merged flowspec is the least upper

bound (LUB) value of the flowspecs from all participating senders. Here, we propose a

best-effort approach to flow merging: when there is already a reservation in place, this

reservation remains if a larger reservation request from another sender cannot be granted.

As a result, all senders will have some fraction of their bandwidth reserved, though they

may have different reservation requirements.

Figure 6-9 shows an example. S1 and S2 are the initial senders of a shared-reservation

RTP session. The merged flowspec	� is reserved inside the network, where	� � LUB�	�� 	��.

Later, a new sender S3 joins the RTP session and requests 	� worth of resources. Router

Rt2 tries to reserve the merged flowspec 	�� � LUB�	�� 	��. Assume the reservation

is successful and the new request 	�� is relayed to router Rt3. If Rt3 cannot reserve 	��,

104

S1

S2

Rt1 Rt3Rt2 R

S3
RR to S3

Q1

Q2

Q’ Q’ Q’

Q3

Q’ = LUB(Q1, Q2)

Q’’ = LUB(Q’, Q3)

Q’’ Q’’

Figure 6-9: Flow merging for shared reservation.

it should continue to use the previous reservation 	�. Sender S3 will be informed about

the last workable reservation 	� from receiver R via RTCP and will ultimately decide if it

wishes to continue to participate in the session or whether it can lower its sending rate.

To support shared reservations, routers need to introduce a new “group” object * to

maintain all the individual flows that share the same reservation. The object contains a

list of “flow” objects (! ’s), as described in the previous section, in *�member. By defini-

tion, shared reservation is to have multiple flows that originate from different senders but

go to the same destination using the same resource reservation. Therefore, the “group”

object needs also to keep track of session, shared reservation level, and egress interface

information.

*�member a list of flows within the same session that share the same resource

*�destination traffic receiver (unicast or multicast)

*�shared-qos shared reservation amount

*�nhops a list of egress interface that require reservation

105

The YESSIR extension for RTCP SR contains a shared reservation indicator so that

routers can handle the flows using a different set of algorithms. Figure 6-10 and 6-11 are

the router’s algorithms to process shared reservations.

Compared to distinct reservation, processing shared reservations is a simple addition.

The most challenging part is at reservation removal, where it requires to manage group

members and shared resource with care.

6.5.2 Updating the Packet Classifier

As shown in Figure 6-12, when a YESSIR message is received, the YESSIR process queries

the traffic control database for resource availability. If the resource is sufficient at the egress

interface(s), the process updates the database and the scheduler.

According to the RTP profile [24], RTP data uses an even port number and the corre-

sponding RTCP stream uses the next higher (odd) port number. Thus, during the parsing

of RTCP messages, RTP data packet information including the IP source and destination

addresses, port numbers and protocol type can be learned automatically.

After the router successfully sets up the scheduler, it inserts RTCP’s IP source and

destination address, protocol type (presumably, UDP), and the corresponding RTP data

port numbers into the flow table. When RTP data packets are received, the packet classifier

filters on the IP and UDP headers and forwards the packets to the scheduler.

6.6 YESSIR Implementation and Results

As a lightweight signaling protocol, YESSIR is designed to provide resource reservation to

real-time flows that use RTP. It operates in two operating modes, explicit, and measurement-

based, and supports both distinct and shared reservation styles.

To reserve network resource for RTP data streams, YESSIR needs to insert IP Router-

Alert option in RTCP Sender Report messages. Unfortunately, not all the routers support

the IP Router-Alert option.

In Internet protocol development, message parsing is not really the focus, rather, state

management and task management are the key considerations. YESSIR is no exception.

106

1: on receiving RTCP SR % , for shared reservation from interface �$:
find/create group *, such that *�destination �%�destination;
if � flow ! such that !�source �%�source and !�destination �%�destination

if %�command = Tear-Down
remove reservation from ! ;
delete ! and exit;

else
create a new flow ! ;
!�source �%�source;
!�destination �%�destination;

!�ingress � �$;
!�cleanup-timer � �%�refresh-cycle;
!�request-qos �%�qos;
�shared-qos � ��shared-qos� LUB �!�request-qos�;
add ! to *�member;
query routing and find egress interfaces for % ;
for each egress interface &'(, such that &'(�� �$

if � egress � � *�nhops, such that ��egress � &'(
if ��running-qos �� *�shared-qos

update reservation on �;
else

create a new egress entry � for *;
��egress � &'(;
update reservation on �;

forward % downstream.

2: �update reservation on egress � �:
make/change reservation *�shared-qos on ��egress;
if succeed

��running-qos � *�shared-qos;
else

apply retry algorithms to ! ;
add failure code to%�error;

update packet classifier from !�ingress to ��egress;
update %�opwa.

Figure 6-10: YESSIR router algorithm - for setting up a shared reservation

107

1: on receiving RTCP BYE message% :
find group *, such that *�destination �%�destination;
if � flow ! such that !�source �%�source and !�destination �%�destination

remove reservation from ! ;
delete ! .

update %�opwa;
forward % downstream.

2: on expiration of !�cleanup-timer:
find group *, such that *�destination � !�destination;
remove reservation from ! ;
delete ! .

3: �remove reservation from flow ! �:
remove ! from *�member;
remove packet classifier;
if *�member � �+""

for each egress � � *�nhops
release resource ��running-qos;
delete � from *;

remove *;
else

for each flow !� � *�member
�shared-qos � ��shared-qos� LUB �!��request-qos�;

for each egress � � *�nhops
update reservation on �;

apply retry algorithms if needed;

Figure 6-11: YESSIR router algorithm - for terminating a shared reservation

As we can see from the previous section, the YESSIR processing algorithm is very straight-

forward, and can setup reservations in a single path. However managing flow, interfaces

and group entries efficiently can be challenging.

In this section, we first describe the implementation of the IP Router-Alert option in a

FreeBSD system, and the method we used to manage reservation flows. We have imple-

mented a version of YESSIR on FreeBSD, and implemented both YESSIR and RSVP on

IBM 2210 router platform. We will show the performance results in the rest of the section.

108

Classifier Scheduler

Flow Table

Reservation
Setup Agent

Traffic
Control
Database

IP Forwarder Transmitter at Egress

RTP Data

Reservation
Control Engine

Figure 6-12: A router model for reservation support.

Figure 6-13 is an outline of YESSIR reservation sequence. We will use its terminology in

our performance benchmarking.

6.6.1 BSD Kernel Extension

Current UNIX system have no clean mechanism to intercept IP option packets, including

router alerts, through the socket interface. Thus, we designed and developed a new socket

family, PF IPOPTION, on FreeBSD . To receive IP packets with option type, type, a user

needs to open a raw socket:

socket (PF_IPOPTION, SO_RAW, type);

For example, the routers can capture RTCP (YESSIR) messages with IP Router Alert

option as the following:

109

Is the message correct?

Flow lookup

Route lookup

Admission Control

Make reservation

Forward message

Tag the message

Create new state

Queue the request

Drop the message

N

N

N

N

Y

Y

Y

Y

Input

Output

Figure 6-13: YESSIR reservation processing flowchart at routers.

int sock, on = 1;

sock = socket (PF_IPOPTION, SO_RAW, IPOPT_RA);

setsocketopt (sock, IPOPT_OP, IP_RECVRTCP, &on, sizeof(on));

The user process can receive a YESSIR message as the following:

struct iovec iov; /* provide data buffer info */

struct cmsghdr *cmsg; /* pointer to control message */

char *packet = (char *)malloc(MAX_PKT_SIZE);

char *ctrl = (char *)malloc(MAXCTRLSIZE);

...

iov.iov_base = (char *)packet;

iov.iov_len = MAX_PKT_SIZE;

110

msg.msg_iov = &iov;

msg.msg_control = ctrl;

msg.msg_controllen = MAXCTRLSIZE;

...

len = recvmsg(sock, &msg, 0);

for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL;

cmsg = CMSG_NXTHDR(&msg, cmsg)) {

if (cmsg->cmsg_type == IP_RECVIF)

if_index = CMSG_IFINDEX(cmsg);

...

}

rtcp_read(packet, len, if_index); /* process RTCP message */

...

To improve packet processing performance, we programmed the kernel to process the

IP option packets as soon as possible, as shown in Figure 6-14. To improve the socket I/O

performance, we allocate one PCB (Protocol Control Block) chain for each IP option type,

as oppose to the traditional approach, that is, to use a single PCB chain to keep track of all

socket calls [123].

6.6.2 Reservation State Management

We used hash tables to manage the reservation states in our implementation. The motivation

behind using hashing comes from the observation that any RTP session in the network can

be uniquely identified by its IP source address, SA, and destination address, DA, and its

UDP source port, SP, and destination port, DP. In our implementation, the hash key for an

RTP flow !� is a simple summation, �� = � � +� � + ��� +���. Our goal was to support

up to 1,000 flows efficiently, so we selected the hash table size, % , to be a prime number,

1,537, to reduce the chance of hash collisions [124]. To solve the potential hash collision

problem, we put all the flow entries that hash to the same slot in a linked list.

111

TCP Input UDP Input ICMP, RSVP
Input

IP Protocol Type Switch

IP Option Type Switch

RA, LSRR, ...
Input

Receive
IP option
packets

Process

FreeBSD Kernel

PF_INET
STRAEM
Sockets

PF_INET
DGRAM
Sockets

PF_INET
RAW

Sockets

PF_IPOPTION
RAW

Sockets

Route Lookup

Transmit
packets

local
packets

if routing

Figure 6-14: Relationship of IPOPTION processing to rest of FreeBSD kernel. The shaded
box is where the IP option packets to be processed. The implementation supports all defined
IP options. RA is the Router-Alert option, and LSRR is the Loose Source Routing Record
option.

Our hash function is

,���� � �� mod% .

Figure 6-15 illustrates the reservation state handling in our implementation. There are

three tables: hash index table, free entry bucket and flow entries. When a reservation

request for flow !� is received, we perform the hash function to find a hash slot, �, in

the hash index table. After getting a flow entry from the free entry bucket, we copy the

reservation data into the entry, and insert it into the linked list that is hanging off the hash

slot, �.

A collision occurs if a new flow !� arrives and hashes to the same slot as !�. We simply

insert the new entry into �’s list behind the flow entry for !�. Obviously, too many collisions

112

1
2

i

k

M

j

Hash Index Table

Free Entry Bucket

Background Refill

Collision

Flows i, j

Flow Entries

Figure 6-15: An example of reservation state management in our implementation.

will cause poor performance. (More sophisticated dynamic hashing schemes can limit the

depth of the linked list.)

To improve memory usage and simplify debugging, we have designed a free entry

bucket (FEB) table. At system initiation time, we pre-allocate a small number of entries

into the FEB. During flow processing, if the number of free entries is less than a threshold

number, we will allocate another chunk of entries into the FEB. If there are too many free

entries, the process will free the extra entries.

The hash table and memory management take about 1,400 lines of C code to implement.

6.6.3 FreeBSD Implementation

We have implemented YESSIR on FreeBSD version 3.5. The latest version of the YESSIR

implementation requires about 6,000 lines of C.

We tested and measured the implementation on a 700 MHz Pentium PC with several

Ethernet interfaces. We have modified a RTP software testing package, rtptools [125], to

113

generate RTCP messages with IP Router Alert option from end users.

Number of flows flow creation time
in the router (�s)

50 6.4 � 1.35
100 6.3 � 1.25
200 6.3 � 0.95
500 6.2 � 1.32
800 6.4 � 0.97

1,000 6.1 � 0.99
2,000 7.3 � 1.25
5,000 7.1 � 1.20
8,000 8.1 � 0.99

10,000 8.0 � 1.56

Table 6.1: Hash table performance with collision resolution by chaining. The hash table
size is 1537.

We first examined the efficiency of the QoS state management with hashing. Provided

that the hash table size is 1,537, we expect that the flow entry searching and creation time

would be more or less the same when there are less than 1,000 flows in the system. As the

number of the flows increases, more hash collisions will occur.

To verify this, we generated 10,675 new reservation flows from multiple sources. On the

router, we had recorded the flow entry creation time on each flow. To ensure measurement

accuracy, we shut off the refresh timers during the test. The results are shown in Table 6.1.

As expected, the processing time is constant if the number of flows is below 1,000 and

gradually rises above that threshold.

We measured the time for processing a YESSIR reservation message. The measurement

was taken both at user space and in the kernel. During the measurement, we generated

YESSIR messages used for measurement-based reservation. As shown in Table 6.2, the

overall processing time in the user space is about 46�s. However, the time between when

the packet is received from the device driver until it is sent to the device driver in the kernel

is 98�s, which is approximately half the processing time the packet spent in the kernel.

114

Description Processing time
(in �s)

Message integrity checks 6.6 � 0.52
Flow lookup/creation 6.5 � 0.53

Route lookup 27.1 � 1.29
Admission control 6.1 � 0.57

(call for reservation)

Kernel I/O 97.8 � 8.24

Table 6.2: Timing for single measurement-based YESSIR flow on a 700 MHz Pentium.

6.6.4 YESSIR and RSVP Performance Comparison

We have implemented both RSVP and YESSIR on the IBM Common Router Architecture

software platform. Both implementations have similar data structures and coding style, and

share the same set of data processing routines. We measured the various costs associated

with RSVP and YESSIR on a router. The measured router was the IBM 2210 Nways

Multiprotocol Router, which is based on a Motorola 68040 processor with a bus speed of

32 MHz. Processing times were measured by reading clock ticks from the timer register of

the processor that has a timing resolution of 31.25 ns per tick. We divided the times into

categories so that we can have somewhat loose objective comparison between RSVP and

YESSIR.

The underlying routing protocol used in our experiment is OSPF, and it updates the rout-

ing table in case of route changes. A route query operation is a straight forward route-table

look-up. All RSVP flows are set up as controlled-load, fixed-filter style, and encapsulated

in IP with the router-alert option. YESSIR messages use the RTP PT (Payload-Type) for-

mat, the individual reservation style, and are encapsulated in RTCP, UDP and IP with the

router-alert option. Since the packet classifier and scheduler are implemented differently

depending on the physical network interface, but are the same for RSVP and YESSIR, we

chose to bypass them in our tests. Data collected here only reflects the RSVP and YESSIR

control path behavior.

Tables 6.3 and 6.4 present the protocol processing overheads of setting a new RSVP or

YESSIR flow. Table 6.5 and 6.6 show the processing overhead of refreshing a flow.

115

Code Section Time (�s) % of Total

PATH Processing:
RSVP flow lookup/creation 410.51 � 7.51 37.1%
Route lookup 40.61 � 1.84 3.7%
Send PATH downstream 283.16 � 3.85 25.6%

RESV Processing:
RSVP flow look-up 11.03 � 0.43 1.0%
Admission Control 126.35 � 1.10 11.4%
Flow merging and forward RESV 234.14 � 3.27 21.2%

Single RSVP flow setup overhead 1,105.80� 9.47 100%

Table 6.3: Router processing overhead for a new RSVP flow.

Code Section Time (�s) % of Total

Flow lookup/creation 41.40 � 1.24 11.6%
Route lookup 38.43 � 2.00 10.8%
Admission Control 23.33 � 0.38 6.5%
Send message downstream 253.53 � 0.74 71.1%

Single YESSIR flow setup overhead 356.68 � 2.84 100%

Table 6.4: Router processing overhead for a new YESSIR flow.

From the measurement shown in Tables 6.3 and 6.4, we observe that a router can set up

a new reservation flow with YESSIR three timers faster than if it uses RSVP. On soft-state

refresh, the YESSIR processing overhead is nearly 50% less than that of RSVP.

Comparing all these times, we see that the overhead of constructing and sending a mes-

sage is about 250 �sec. This includes getting a new buffer 5, copying data and scheduling

5Alternatively, we can simply modify the received packet instead of getting a new buffer. However, RSVP
and YESSIR are designed to support multicast flows, where multiple buffers may be required to forward a

116

Code Section Time (�s)

On receive:
PATH lookup 30.39 � 0.76
Route lookup 37.94 � 1.99
RESV lookup 11.01 � 0.35
Admission Control 44.05 � 1.39

Timer routine:
Send PATH Refresh 262.02 � 10.20
Send RESV Refresh 239.06 � 3.44

Single RSVP flow refresh overhead 624.46 � 12.26

Table 6.5: Router processing overhead for RSVP refresh message.

Code Section Time (�s)

On Receive:
YESSIR flow lookup 19.31 � 0.69
Route lookup 39.93 � 0.38
Admission COntrol 24.49 � 0.31
Forward YESSIR downstream 252.56 � 2.00

Timer routine:
YESSIR flow checking 8.03 � 0.73

Single YESSIR flow refresh overhead 344.32 � 1.88

Table 6.6: Processing overhead for YESSIR refresh message.

for transmission. RSVP requires to send two messages to setup a flow, while YESSIR takes

only one message.

The packet transmitting overhead becomes more critical during soft-state refresh. YESSIR

single packet at a router.

117

relies on end-to-end soft-state refresh, that is, end users periodically transmit RTCP SR’s

with IP-alert option to maintain the flows inside the network. As a result, a YESSIR refresh

message takes about 344 �s to process. RSVP uses hop-by-hop soft-state refresh mecha-

nism. A RSVP router in the network is required to get buffers, construct refresh messages

and send them both upstream and downstream. As shown in Table 6.5, refreshing a RSVP

flow takes about 624 �s. Even worse, transmitting RSVP refresh messages takes place at

timer interrupt level, which locks up the memory bus during the processing, thus stalling

the packet forwarding loop. If a router maintains a large number of RSVP flows, its packet

forward performance can be seriously degraded due to long timer interrupts. YESSIR, on

the other hand, uses the timer to check the flow lifetime only, and therefore takes far less

time in each timer interrupt (approximately 8 �s).

The times reported above suggest accessing packet memory at router can be expensive.

Creating a new flow entry and updating reservation information require extensive message

parsing and copying. Given that YESSIR’s PT flowspec is far more smaller (one word in the

message) than RSVP’s IntServ-format Sender-Tspec and Flowspec objects, we observed

that the cost for creating a new YESSIR entry is nearly ten times less than that for RSVP,

and the cost for updating reservation data in YESSIR is five times less than that for RSVP.

The above data was collected on an edge router platform, where heavy control message

processing can directly impact packet forwarding. However, this is not the case for some

of the large routers, where data packets and control messages are processed on separate

hardware. On the other hand, as shown in studies such as [20], large amounts of control

messages can indeed effect the performance of large routers in WAN. Hence, it is important

in reduce the complexity and the frequency of network control messages in all networking

environments.

6.7 Related Work

Almesberger et al. [126] proposed a lightweight resource reservation solution, SDP. For a

traffic sender that wishes to make a reservation, it starts by sending data packets marked

with a request flag to the destination. The destination collects the traffic statistics, and

118

periodically feeds it back to the sender. The sender therefore can estimate the amount of

the reservation that the network can accommodate. It sends compliant packets marked with

a reserved flag. The network routers will always accept the packets that are marked with

reserved flag. In this solution, the routers rely on end-users to be network friendly, and not

to exceed their “reserved” rates. There have been several other proposals [127, 115, 116,

128] that are based on variations of measurement-based admission control.

Feher et al. [129] proposed a lightweight reservation mechanism called Boomerang,

where end users send reservation requests and refresh messages (in ICMP) to set up and

maintain reservations. The reservations are initiated from the sender’s direction. Instead of

storing reservation states to keep track of each flow, Boomerang relies on refresh messages

to keep reservations alive at routers. The objective is to reduce the router’s processing and

storage overhead.

6.8 Conclusion

Resource reservation is useful for supporting continuous-media services over the Internet.

The question is: at what cost?

RSVP was designed to support resource reservation in the Internet, however, it has

two significant problems: complexity and scalability. The former results in large message

processing overhead at end systems and routers. The latter implies that the sheer number

of reservation flows at a router can be too large.

YESSIR is designed to address the complexity problem. It provides a way to sim-

plify the reservation processing and therefore reduce associated overhead at routers. The

YESSIR approach has the following important features:

� It is sender-initiated, and supports one-pass reservation mechanism to simplify pro-

cessing at routers.

� To speed up flow establishment, YESSIR allows partial reservations and support

reservation retries.

� Both distinct and shared reservation styles can be supported efficiently in YESSIR.

119

� YESSIR takes advantage of the close relationship between RTP and RTCP packets

for easy packet classification and firewall support.

� It uses soft state mechanisms to reliably and responsively maintain reservation states.

From evaluating our implementation results6, we believe that with proper protocol de-

sign and implementation, routers can support a large number of user flows, while providing

admission control.

6The source and object code for the YESSIR FreeBSD implementation and PF IPOPTION socket family
is available at http://www.cs.columbia.edu/˜pingpan/software/.

120

Chapter 7

BGRP: An Inter-Domain Reservation

Protocol

7.1 Introduction

As discussed in Chapter 4, network providers have been using reservation signaling mech-

anisms, such as RSVP-TE [97], to setup intra-provider VPN’s and dynamically provision

network resource. Unfortunately, these signaling protocols have the potential reservation

state “explosion” problem.

We propose a hierarchical reservation model in Chapter 4 to solve the reservation state

scalability problem. End-user applications can trigger some lightweight signaling, such as

YESSIR, to request network resources. At the network-level, providers need to be able

to establish long-lasting, secure and robust reservations among each other. Application-

layer reservations can readily aggregate into these provider-level reservations at network

boundary.

In this chapter, we will propose a provider-level protocol, called the Border Gateway

Reservation Protocol (BGRP), that has two significant scaling properties: first, BGRP over-

head scales linearly with the size of the Internet. BGRP is designed to work with a small

number of reservation entities: the overhead of the BGRP protocol is proportional to the

number of Internet domains (i.e.Autonomous Systems (AS)).

The chapter is organized as follows. In Section 7.2.1, we outline the design objectives

121

for inter-domain reservation signaling. Section 7.3 describes our design choices that can

achieve the desirable aggregation gains in today’s Internet environment. We present the

protocol in Section 7.4, and propose several performance enhancements in Section 7.5. The

scaling benefits of BGRP are evaluated in Section 7.6. We summarize our investigation in

Section 7.8.

7.2 Requirements and Network Environment

7.2.1 Requirements and Assumptions

BGRP is based on the following assumptions and requirements:

Message processing: The cost of processing reservation messages depends on the com-

plexity of handling each message and the frequency of reservation messages. Instead

of setting up reservations across domains as application flows arrive, we rely on pre-

computed reservations made in advance. This also implies that each reservation will

last for relatively long period of time (typically hours or days).

Intra-domain vs. inter-domain reservation: It is desirable that each domain can manage

its own network resources and enforce its own internal traffic engineering policies.

This implies that a domain only reveals simple delivery commitments to its peer-

ing domains in terms of bilateral agreements. The inter-domain reservation then

uses these delivery commitments to establish a reservation path through multiple do-

mains. Each domain sets up transit reservation flows using its preferred intra-domain

reservation mechanism.

Security: Regional ISP’s subscribe to transit services from large backbone providers. Not

only do the backbone providers have to guarantee adequate network resources to

accommodate the user traffic demands from the regional ISP’s, they also must protect

customer’s identity and traffic usage data. When two backbone providers establish

the private peering, they must be sure that the peering information will not leak to the

public. In the design of a inter-domain reservation protocol, it is critical to hide the

122

end-user’s identity, reservation demands and resource usage during the reservation

setup.

State maintenance overhead: Routers need to maintain and store both reservation control

state and packet forwarding state. To reduce the former, we need to be able to aggre-

gate reservations. To reduce the latter, we rely on Diff-Serv [59] to eliminate per-flow

queuing and processing, so that the number of queues is likely to be no larger than a

few dozen. We need to be aware here that when setting up MPLS LSP’s, reservation

states may not be associated to the actual link resource (such as bandwidth), rather

we need to manage upstream and downstream MPLS labels.

Bandwidth overhead: The bandwidth consumed by setting up reservations should be

small compared to the link bandwidth, both in steady state and with routing tran-

sients. This bandwidth overhead is typically proportional to the number of flows

kept in routers, and thus minimizing the state storage overhead helps here.

Routing interface: Reservation protocols rely on routing information to set up reserva-

tions following the data forwarding path, and must not interfere with route aggre-

gation and effect routing protocol scaling properties. During route changes, routing

protocols have the option to inform reservation protocols, which in turn will fix the

effected flows. Otherwise, reservation protocols that employ soft-state to manage

flows can periodically query the routing table to determine if the flow routing paths

have changed.

7.2.2 Network Environment

Internet backbone consists of a number of domains, each of which has at least one border

router (BR). From BGP, each BR learns about the other BR’s within its own domain, and

the directly connected BR’s in the adjacent domains. Through out-of-band means, the BR’s

know of bilateral (or multi-lateral) agreements with the peering domains.

Typically, the bilateral agreement specifies the inter-carrier policy information such

as route filtering and route preference [130]. In the future, we envision that the bilateral

123

agreement may also include policies for QoS guarantees between peering domains. It is

worth noting here that the bilateral agreement applies only between two adjacent domains,

and network users may not have the knowledge or the certainty which downstream domains

their traffic will traverse.

As being advocated in the IETF Traffic Engineering Working Group, the ISP’s use

RSVP-TE or CR-LDP to set up border-to-border (or edge-to-edge) intra-domain “virtual”

trunks between border routers. At each NAP or POP, the ISP’s set up similar “virtual”

trunks to interconnect with external domains. The goal here is to optimize the use of

network resource and traffic performance. Example of “virtual” trunks includes Frame

Relay, ATM, MPLS and DiffServ.

7.3 Design Choices

7.3.1 Two-Pass Reservation Model

In Chapter 5, we have compared one-pass and two-pass reservation models. The one-way

model is more efficient since it combines the path pinning with the reservation process.

However, in inter-domain reservation signaling, an one-way model may not work well due

to the following reason: when a requestor starts to set up an inter-domain reservation, it

does not know the reservation’s destination domain information at initiation time. In fact,

to satisfy bilateral and security requirements, any provider along the reservation path can

terminate the reservation.

For example, we need to setup a reservation between provider and provider �, pass-

ing through provider � and �. Assume that provider � is not allowed to distribute ’s

reservation requests and routing information beyond its network. When initiates a re-

quest toward �, � can intercept the message upon reception and complete the reservation

between to�. Based on other mechanisms,� can setup another reservation to�. Even-

tually,� can link two distinct reservations together. In this case, though there is a reserva-

tion between and �, may not be aware of the existence of the second reservation, nor

the “real” destination of its reservation.

124

One may argue that QoS routing protocols would be sufficient for finding the path.

Routers can first query QoS routing and then setup the reservations with an one-pass pro-

tocol. In an inter-domain environment, however, we believe that the reservation path de-

pends as much on ISP policy as on resource availability. Since each ISP only advertises

its resource allocation policy to its immediately adjacent peers in the form of bilateral

agreements, a resource user may have to actively probe the network to determine the edge-

to-edge routing path for its reservation.

Hence, we believe that in the inter-domain environment, a two-pass reservation model

is a preferred choice, and reservation requestors need to go through a path discovery path

before the actual reservation.

7.3.2 Sink Tree Approach

As discussed in Chapter 4, the root for the � -square problem is that routers have to main-

tain both source and destination information to prevent persistent looping caused by mul-

ticasting. In today’s backbone, however, most of the traffic is unicast traffic. Plus, we

can “tweak” multicast routing protocols to force packets to be sent on sender shared trees.

Hence, we can relax the requirement of keeping both source and destination on routers.

By observing the MAE-West NAP traces in Chapter 4, we have derived the following:

if we set up reservations based on either source or destination AS’s or network prefixes,

we can readily keep the reservation count at a sustainable level (in the range of less than

10,000).

Whether a simple hop-count metric is used or more sophisticated metrics are employed,

most unicast routing algorithms determine shortest paths. In networks where the shortest

paths are unique, the principle of optimality guarantees that the shortest paths to any des-

tination form a tree; the shortest paths from any source are also guaranteed to form a tree.

If there are multiple shortest-length paths, however, the existence of trees depends on the

tie-breaking rules in the routing algorithm.

Today’s inter-domain routing protocol, BGP [14], establishes “virtual edges” by using

reachability as a definition for the existence of a link in the graph. In case of paths of equal

125

weight, current practice dictates that the border routers forward all packets over only one

path. This practice guarantees that routing always follow sink trees. Thus, if reservations

are made along routes chosen by the BGP routing algorithms, it is natural to aggregate

these reservations along the sink trees formed by routing.

This approach has a very desirable scaling property: the routers only need to remember

the reservation sinks. We can further improve the scalability by allowing only the BGP

border routers to participate in the reservation process.

7.3.3 How to Create Sink Trees?

There are many ways to establish reservation sink trees inside the backbone. One solution

is that reservation senders query a centralized database to get the precise routing path prior

to each reservation. A similar idea has been introduced in the RSVP TE extension [97], in

which case an Explict-Route Object (ERO) can be computed and queried by the reservation

senders before each request. However, this method may not be applicable in inter-domain

environments. First, it is not clear how the centralized database can be managed among

multiple providers. Further, it is doubtful that the centralized database can keep track of all

the network topology and resource changes from multiple provider networks, and compute

the “best” routes for the reservations.

Another solution is to allow the routing protocols, in this case, BGP, to set up sink-

trees at route advertising and RIB (Route-Information-Base) processing time. However,

this approach has scalability problems. Routing aggregation is designed to reduce the total

number of route entries that routers have to manage. By default, all border routers are re-

quired to aggregate routes whenever possible. As a result, BGP routing updates normally

do not travel many provider networks before they are aggregated. However, if reservation

requests are coupled with routing information, routers will have to stop the route aggrega-

tion in order to deliver reservation messages between reservation senders and receivers.

Here we propose a two-pass distributed reservation solution. The reservation senders

send query messages to the network. The queries will follow the data path and are delivered

across BGP hops. At each BGP hop, a routing path is selected based on the bilateral

126

agreement. However, the routers do not pin down the reservation path and do not store the

query data.

The reservation receivers keep track of all the queries, and construct sink-tree graphs

from the information. The receivers send reservation request messages upstream to set up

the actual reservations. At each border router, the router aggregates the reservations for

each sink tree.

7.4 The Border Gateway Reservation Protocol (BGRP)

The Border Gateway Reservation Protocol (BGRP) is an inter-Autonomous System reser-

vation protocol. It sets up aggregated reservations over multiple Autonomous Systems

(AS). The reservation originators and the terminators are at the BGP-speaking border

routers. Reservation aggregation is at the AS level. Only BGP-speaking routers in the

network participate in the reservation process.

All traffic destined for a particular AS can be aggregated in a sink-tree fashion. Since

backbone routers only maintain the sink tree information, the total number of reservations

at each router scales, in the worst case, linearly with the number of AS’s in the Internet.

BGRP runs over TCP and thus eliminates the need to implement fragmentation, retrans-

mission and sequencing. BGRP uses ”soft-state” to manage reservations, to protect against

events such as link failure.

BGRP is not involved in setting up and managing intra-domain reservations. We envi-

sion that the ISP’s may use the RSVP-Traffic Engineering (TE) extension, or other means

to manage internal network resources. BGRP only becomes useful when reservations need

to be established across multiple AS’s.

The current version of BGRP does not provide support for multicast traffic.

7.4.1 Terminology

As shown in Figure 7-1, each domain has an unique AS (autonomous system) number, and

can exchange user traffic with its peers. Each domain is under a single common adminis-

tration. A domain can be classified as either a stub domain or a transit domain. Any path

127

R1

S1

S2

R8

R7

R5

R6

R4R3

R2

h1, h2, h3

h1, h2, h3

Single-homed
Stub Domain

Multi-homed
Stub Domain

Transit Domain

h1, h2, h3

S3

H2

H1 H5

AS1AS1

AS2AS2
AS3AS3 AS4AS4

AS5AS5

AS6AS6Border Router (BR)

Figure 7-1: Example of Internet domains. There are two types of stub domains: single-
homed stub domains connect to the backbone at a single point, multi-homed stub domains
at several points.

through a stub domain will either originate or terminate at a router in that domain; transit

domains do not have this restriction.

A domain connects to a number of other domains via border routers (BR). We assume

all border routers use BGP4 for inter-domain routing. For simplicity, we only consider the

EBGP (External-BGP) border routers1 at present time. We define � � ���� �
� � � � � ���

as the set of border routers in transit domains, � � ���� �
� � � � � ��� as the set of border

routers in stub domains, and�� � �,�� ,
� � � � � ,�� as the set of end hosts in AS�. � � ���

comprises all hosts in the network. For simplicity, we only illustrate the cases where inter-

domain reservations originate and terminate at routers in �. In reality, a transit router ��

could also play the role of a source or sink router for end users in its domain. Moreover,

while in reality there are likely to be multiple routers in a domain between border routers,

they do not participate in our inter-domain reservation protocol and are thus not shown in

1When BGP is used to exchange routes that belong to different domains, it is called EBGP (External-
BGP), as oppose to IBGP (Internal-BGP) that manages routes within the same domain. IBGP uses route
reflectors [19] and confederations [17] to solve the internal route scaling problems. We will consider the
interface between BGRP and reflectors and confederations in future studies.

128

the figures.

We define the directional terms upstream and downstream with respect to the direction

of data flow. The traffic direction from source to destination is downstream; destination

to source, upstream. A reservation sender is an upstream border router that originates

reservation messages. A reservation receiver is a downstream border router that terminates

reservations.

BGRP operates only between border routers. We shall use the term hop to denote the

path between two “adjacent” BGP border routers participating in the reservation process.

Reservation aggregation occurs if multiple reservations coming from different sources

but going toward the same destination can be “added” together to create a single reserva-

tion.

a

b d

c

(S2, S3)

(S1)

(D)

B

2B 3B

Figure 7-2: BGRP example at a router: bandwidth reservation aggregation from sources
S1, S2 and S3 to destination D.

Figure 7-2 illustrates the concept of bandwidth reservation aggregation. (a), (b), (c)

and (d) are the interfaces at a router. Reservations from data source S1, S2 and S3 are all

going to destination D. In the example, each source needs � units of bandwidth. At (d), all

individual reservations are aggregated together. The amount of reservation at (d) is �� as

a result.

129

7.4.2 Outline of Protocol Operation

BGRP defines several messages: Probe, Graft, Error, Refresh, and Tear. Probe and

Graft messages specify reservation parameters such as bandwidth. Here we assume that

bandwidth is the only reserved resource and that bandwidth reservations are additive. In

practice, however, other resources such as buffers could be reserved.

Reservation sources initiate Probe messages to discover the reservation path and the

network resource availability. The Probe messages travel downstream and traverse BR’s

hop-by-hop until reaching the destination domain. Border routers rely on BGP routing in-

formation (BGP Next-Hop attributes) and bilateral agreements to forward Probe messages.

Probe messages must travel the path that is used for actual reservation.

Each Probe message consist of a desired resource amount and destination network in-

formation. Probe messages collect routing information along the reservation path, similar

to IP Record Route Option, but they do not install any reservation state or any routing state

in the routers. Each BGP router in the transit AS’s must insert the associated AS number

(and its own IP address) in the Probe messages. The BR’s send rejection messages (Error)

back to the sources if the destination is unreachable or a reservation loop is detected.

A BR at the destination domain may receive Probe messages from multiple reservation

sources. It uses the information carried in the Probe messages to construct an AS-level

graph from which a loop-free sink tree is formed.

Reservation sinks return Graft messages to set up the appropriate reservations inside

the network. The Graft message uses the previously collected routing information and tra-

verses exactly the reverse path that the Probe message took. Among other things, each

Graft message consists of a sink-tree ID. A sink-tree ID is a network-wide unique number

that is generated by the sink border router. For example, a sink-tree ID can be the combi-

nation of the reservation destination AS number and the host IP address of the border route

that terminates the original Probe message.

When processing a Graft message, each border router interfaces with intra-domain

traffic-engineering protocols (such as RSVP-TE) to set up transit reservations within its

domain. The transit BR’s aggregate the reservations going to the same reservation domain,

130

R1

S1

S2

R8

R7

R5

R6

R4R3

R2

h1, h2, h3

h1, h2, h3

h1, h2, h3

S3

H2

H1 H5

AS1AS1

AS2AS2

AS3AS3 AS4AS4

AS5AS5

AS6AS6

Figure 7-3: Example of a sink tree rooted at ��

and keep only one reservation entry for each sink tree. In case of admission control failure,

the BR’s inform the sink by sending Error messages.

Reservation sources and sinks transmit Probe and Graft messages only once during

the lifetime of a reservation. BGRP reservations are maintained as “soft state”. The border

routers (BR’s) must periodically exchange Refresh messages with their neighboring BR’s

to keep their reservations “alive”. If a BR does not hear an expected Refresh from a

neighboring BR, it assumes that the neighbor is no longer functional. The BR removes all

associated reservations. The BGRP protocol also includes Tear messages that BR’s may

send to remove reservations in neighboring BR’s more quickly. In case of route changes,

BGP notifies BGRP to re-adjust reservations. To reduce the effect of routing flapping, it

may require some dampening mechanism, such as the one being used in BGP [18].

7.4.3 Operation Illustration

Consider a network shown in Figure 7-3. �� in �� and �
 in �
 need to set up inter-

domain reservations to�� in ��.

131

Path Discovery

Initially, �� sends a Probe message containing the source ID ��, the destination ID ,�

(,� � ��), the bandwidth requirement �����, and an empty route record field.

In this example, �� launches a Probe at the behest of a particular host. In a VPN

application, however, �� could initiate a Probe message toward �� directly, in an effort to

set up a virtual “trunk” between two domains.

When the Probe message arrives at ��, the router consults the bilateral agreement be-

tween �� and �� and ��’s internal network resources. If �� can accept the requested

reservation,�� inserts its own IP address into the route record field and forwards the Probe

message downstream. Otherwise, �� sends an Error message back to ��. The selection of

the downstream border router depends on intra-domain traffic engineering constraints and

routing policy. In this example, �� forwards the message to ��, as determined from the

BGP Next-Hop path attribute. To prevent loops, each router checks whether the current

route record already contains the router’s own address.

Assume that��,�� and�� all accept the reservation. When the Probe message arrives

at ��, �� determines that the destination ID ,� belongs to ��, and thus terminates the

probing process. The final route record in the Probe message is ���� ��� ��� ���.

Reservation Aggregation

�� sends a Graft message back toward �� to set up the desired reservation along the path.

The Graft message is source-routed using information gathered in the route record of the

Probe message. The Graft message contains the bandwidth requirement �����, route

record ���� ��� ��� ���, and a sink-tree ID ". The sink-tree ID uniquely identifies a reser-

vation tree. There may be multiple reservation trees rooted at �� that shares the same

sink-tree ID. The Graft message traverses exactly the reverse route as listed in the route

record. Assume the reservations are successfully made at ��, ��, ��, �� and ��.

Suppose that �� receives another Probe that requests bandwidth ��
�� from �
 to

��. �� sends back a Graft message to �� containing bandwidth requirement ��
��, route

record ��
� ��� ��� ���, and the same sink-tree ID " used in the previous Graft message.

132

�� recognizes this as an increment to the existing sink tree " and increases the reserved

bandwidth between �� and �� to ����� � ��
��. Then �� forwards the Graft message

to ��, while using the intra-domain reservation protocols of �� to update the internal

reservation between �� and ��. The reserved bandwidth between �� and �� increases to

����� ���
��.

Similarly, router �� forwards the Graft message to �� while incrementing the reserva-

tion between them. When the Graft arrives at ��, that router creates a new reservation tree

branch to�
 with bandwidth��
��. The reservation finishes when the Graft arrives at �
.

If any router�� cannot set up the new reservation, it sends an Error message back to the

sink to inform it of the failure. Along the way, the Error message removes the reservation.

Reservation Management

BGRP reduces the number of reservation entries at routers. For example, in steady state,

router �� has the following state: sink-tree ID ", adjacent downstream border router ��,

bandwidth reserved to ��, ����� � ��
��, adjacent upstream border routers �� and �
,

and bandwidth reserved from each adjacent upstream border router, ����� from �� and

��
�� from �
. That is, though there are two reservations being made, �� keeps track of

only one reservation entry.

��, �
 and �� send Refresh messages to �� periodically. When �� does not receive

a Refresh message from one of them within a set period of time, it will free all associated

reservations to that neighbor.

7.4.4 Comparing BGRP with RSVP

The BGRP protocol differs from RSVP in three important ways: stateless probing, reser-

vation aggregation, and bundled refresh.

The RSVP PATH message installs routing state at intermediate routers, to guide the

RSVP RESV message back to the data sender. Routers must therefore keep both sender

and destination information. In a full-meshed network with � nodes, this requires ���
�

entries. BGRP’s Probe messages, however, install no state in routers. BGRP’s Graft

133

messages do store reservation information, but only���� entries, because this information

is per-sink, not per-source.

The second difference concerns the combining of reservations. RSVP can combine

reservations in two ways. First, RSVP allows multicast receivers to merge their reservations

for the same sender (or set of senders) into a single reservation whose size is roughly the

maximum of the individual reservations. Second, RSVP offers a shared reservation style,

where multiple senders take turns sharing a single reservation [71]. BGRP reservation

aggregation is different from both of these. BGRP aggregates reservations from different

senders to the same receiver by algebraically adding them together.

The final difference is that RSVP transmits PATH and RESV messages periodically to

refresh each individual reservation separately, while BGRP bundles all reservation mes-

sages into one periodic refresh2.

7.5 BGRP Enhancements

The basic BGRP protocol aggregates reservations into trees, thereby reducing the number

of reservations. Reducing the number of reservations obviously shrinks the memory needed

to store the control state information. It also reduces the overhead associated with Refresh

messages for all these pieces of control state; refresh costs include CPU processing and link

bandwidth. These savings take us much of the way toward our goal. However, BGRP sends

at least one Probe message and one Graft message between leaf and root for each new

inter-domain reservation. Since these messages consume processing CPU and bandwidth,

one would like to reducing the control message volume, and thereby add another dimension

of scalability to BGRP. This can be done by making the following enhancements to the

protocol.

2As pointed out in Chapter 3, similar enhancements have recently been proposed for RSVP itself [80].

134

7.5.1 Over-reservation, Quantization and Hysteresis

Leaf nodes (or reservation senders), in their Probe messages, can request more bandwidth

between themselves and the tree root than is currently required. One can think of this as

aggregated advance reservations on behalf of unknown parties. Nodes can also coarsely

quantize the requested bandwidth, for example, restrict it to multiples of some quantum	.

Hysteresis can also be employed; e.g., if the bandwidth requested by a leaf node has just

jumped from �	 to 		 because its bandwidth requirement has just exceeded �	, then that

leaf node should not reduce its request back to �	 until its bandwidth requirement drops

below some threshold - � �	.

These changes can dramatically reduce the volume of control messages, as we will

quantify in Section 7.6.3.

7.5.2 CIDR Labeling and Quiet Grafting

Suppose that the branches of a BGRP sink tree are labelled with the CIDR prefix3 associ-

ated with the tree root. Then a router on that sink tree will be able to recognize whenever a

Probe message that “belongs” to that tree arrives (i.e., the reservation destination belongs

to the same CIDR prefix). Also, suppose that this tree node can over-reserve bandwidth be-

tween itself and the tree root. These two modifications enable a new tree operation called

quiet grafting, whereby a new branch can be grafted onto an existing reservation sink tree

without any Probe or Graft messages being passed between the grafting node and the tree

root.

To demonstrate quiet grafting, let us construct the sink tree shown in Figure 7-3. Sup-

pose that initially �� requests 10 units of reserved bandwidth to �� in a Probe message.

Knowing that�� is a popular destination,�� inflates this request to 15 units as it processes

the passing Probe. When the Graft message returns from tree root ��, it reserves 15 units

at each BR-hop, until reaching ��. Node �� deflates the amount to 10 units and passes the

Graft back toward �� and ��. Now 10 units of bandwidth have been reserved from �� to

3CIDR (Classless Inter-Domain Routing) [15, 16] advertises each route prefix together with its mask and
does not depend on the classical Class A, B and C addressing. It allows the routers to aggregate the routes.

135

��, and 15 units have been reserved from �� to ��. In ��’s own internal bookkeeping for

these 15 units, �� considers 10 units as “belonging” to ��’s tree branch, and it considers 5

units as over-reserved. Now suppose �
 requests 3 units of reserved bandwidth to�� in its

Probe message. When this Probe reaches ��, �� recognizes that it is already placed on a

sink tree to �� and that there is sufficient excess bandwidth already reserved between ��

and �� to satisfy �
’s needs, so that �� can handle the new request directly itself, without

propagating the Probe further downstream. Therefore, �� terminates the Probe, adjusts

its internal bookkeeping to assign 3 of its 5 excess bandwidth units to this new tree branch,

and launches a Graft message back toward �
 and �
. This Graft establishes a 3-unit

reservation between leaf �
 and grafting node ��.

7.5.3 Self-Healing

When a route changes, BGRP has the option of moving the affected reservations to the new

route, without demolishing the entire reservation tree and re-creating the tree from scratch.

Assume that the reservation tree is labeled with the destination CIDR prefixes, as described

above. When a tree node detects a route change, it can initiate a new Probe toward the sink.

When this Probe reaches a downstream router on the stable part of the old reservation tree,

that router can respond with a Graft and thus repair the part of the reservation between the

two routers. We call this process self-healing.

7.5.4 Reservation Damping

Labovitz et al.[20, 131] have shown that, of three million BGP route changes each day, 99%

of the changes did not reflect real network topological changes. If routers make BGRP

reservation changes in response to every route change, there could be a high volume of

nearly worthless reservation messages in the network. On the other hand, if the routers

do not move a reservation, and the route change turns out to be legitimate and stable, then

the data will have lost its reservation. This is the trade-off in deciding when to adjust

reservations.

Here, we propose a damping function for BGRP. The goal of reservation damping is

136

to delay the initiation of the self-healing process until the changing routes have stabilized.

The delay depends on the probability of future instability of the route. Routes that change

frequently will be delayed longer. Similar to the staged refresh technique that we have

proposed in Chapter 3, we propose an exponential function . � ������ 	- for computing

the delay . between Probes sent due to route changes. � and - are the parameters to

adjust the damping, and $ is the number of route changes measured in a time interval.

7.6 Protocol Scaling Evaluation

7.6.1 Topological Distribution of Demand

n0 n1
nDn i

l0
l1 li

s0 s1
si

d1 di
dDd0

sD

Figure 7-4: Model for analyzing the topological distribution of demand

We use the simple model in Fig. 7-4 to compare the scaling properties of BGRP and

RSVP. The model depicts a progression of domains along an Internet path, with access

networks toward the left and right and backbone networks near the middle of the topology.

Traffic flows from left to right only. We define � as the maximum edge-to-edge distance,

measured as the number of AS. A “node” $� in the figure represents an inter-domain traffic

exchange point, which can be either a point of presence (POP) or a NAP. (In the real

137

network from which this model is abstracted, each node $� could actually contain many

routers and interconnect many AS.) A “link” /� in the figure represents an aggregation of

all the real links that transport traffic from domain � to domain � � �. The model also

includes a reverse-directed link from ��� to �, which is not shown in the figure. In addition

to the diameter �, our model is characterized by the quantities 0� and 1�: 0� is the number

of inter-domain reservation sources coming into $�, and 1� is the number of reservations

sinks reached through $�, not including those that $� reaches via /�.

In this model, the number of RSVP flows (i.e., source-destination pairs) on the uni-

directional link /� is given by

"RSVP
� �

��
���

0�
��

�����

1�

and the number of BGRP flows (i.e., one per destination) on /� is given by

"BGRP
� �

��
�����

1��

Node $� handles traffic in both directions, so the number of reservation flows traversing

$� is given by

� RSVP
� �

��
���

0�
��
���

1� �
��
���

0�
��

���

1� � 0�1�

for RSVP and

� BGRP
� �

��
���

1�

for BGRP.

We now study both RSVP and BGRP in different networking scenarios, computing the

number of flows and associated gains. We set� � �, which is the longest possible AS path

length in the Internet today [55]. We simulated models with a total of 100 source and sink

border routers. We assume that every source border router desires to set up a reservation to

every sink border router.

Case 1: Flat Topology: The number of reservation sources and sinks are identical at each

$�; i.e., 0� � 1� � �, for � � � � �.

Case 2: Hierarchical Topology: We set 0� � 1� � ��, for � � � � �, and 0� � 1� � �, for

138

all other �. This models a hierarchical network where stub domains only contribute

a small portion of the overall reservation flows, while most of the reservations are

present at a few core transit domains.

Case 3: Selected Source: We set all 0� to 1, and all 1� to 9. This reflects a network where

the number of data sources is small, but the number of sinks (data receivers) is large.

This is a typical scenario for web applications.

The results are shown in Fig. 7-5. Not surprisingly, BGRP maintains fewer reservations

than RSVP. Fig. 7-5(c) shows that the largest gain occurs in the center of the network.

Also, Fig. 7-5(b) shows that for RSVP, the number of reservations at a node depends on

the node’s topological location, whereas for BGRP, every node has the same number of

reservations.

7.6.2 Reservation Dynamics

We now consider the effect of reservation dynamics on our performance analysis. For both

RSVP and BGRP, we shall determine the control state overhead and the control message

overhead as functions of the arrival rate of individual flows, the mean lifetime of a flow, and

the protocol refresh interval. We assume that reservations are explicitly torn down when no

longer needed, and that the blocking rate for reservations is negligible for our purposes.

Recall that the “virtual hop” between two “adjacent” border routers is called a BR-hop.

We define the sequence of border routers visited by an end-to-end traffic flow as an edge-

to-edge BR-path. For RSVP, each edge-to-edge BR-path establishes its own reservation.

Let 2 be the total number of edge-to-edge BR-paths crossing a given border router ��. For

BGRP, these paths are aggregated into trees. Let - be the total number of sink trees formed

by the paths through ��. To keep this analysis simple, we assume that each sink tree at ��

is aggregating the same number ! � 2)- of edge-to-edge BR-paths.

Now let us model the end-to-end flows desiring reservations. Any number of end-to-

end reserved flows may be multiplexed onto a given edge-to-edge BR-path. We assume

that the end-to-end reserved flows for one path arrive in a Poisson stream of rate 3, and

that the flow reservation lifetimes are exponentially distributed with mean �)�. Then the

139

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8

N
um

be
r

of
 F

lo
w

s

Link Number, l

RSVP Flat Topology
RSVP Hierarchical Topology

RSVP Selected Source
BGRP Flat Topology

BGRP Hierarchical Topology
BGRP Selected Source

(a) Number of reservations per link

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 F

lo
w

s

Node number, n

RSVP Flat Topology
RSVP Hierarchical Topology

RSVP Selected Source
BGRP Flat and Hierarchical Topology

BGRP Selected Source

(b) Number of reservations per node

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9

G
ai

n

Node number, i

Flat Topology
Hierarchical Topology

Selected Source

(c) The gain,� RSVP
�)� BGRP

�

Figure 7-5: Worst case scaling comparison between RSVP and BGRP.

140

number of reserved end-to-end flows on one edge-to-edge BR-path is Poisson distributed

with mean � � 3)�, and the number of reserved end-to-end flows on any given sink tree is

Poisson distributed, with mean � 	 ! .

Let us determine the state counts of the protocols. In case of RSVP, the probability

that the edge-to-edge BR-path has a reservation, i.e., that at least one end-to-end flow is

reserved, is � � ��. Therefore, the number of reserved edge-to-edge BR-paths at �� is

binomially distributed with mean �� � ��� 	 2 . This is the average amount of RSVP

control state for ��. For large �, this approaches 2 , while for small �, this approaches 0.

Now let us determine the BGRP state count at ��. The probability that a given sink tree

has a reservation at ��, i.e., that at least one end-to-end flow on at least one edge-to-edge

BR-path on that tree has requested a reservation, is � � ���� . The number of reserved

trees on �� is thus binomially distributed with mean �� � ����� 	 - � �� � ������ � 	 - .

This is the average amount of BGRP control state for ��. For large �, this approaches - ,

while for small �, this approaches 0. We conclude that the state advantage of BGRP with

respect to RSVP is more pronounced when � is large, where this gain approaches 2)- .

Figure 7-6 shows the mean number of simultaneous reservations for BGRP and RSVP as

� ranges from 0.001 to 10; here we assume 2 � ���� ��� and - � �� ���. For instance,

when � � �, the gain is 63. When � � ��, the gain has essentially reached its maximum

value of 100.

Next we will compare the message rates for the two protocols. We will tally the con-

trol messages associated with reservations on one given unidirectional BR-hop. (Note that

some of these “associated” messages actually travel on the reverse BR-hop.) When a new

end-to-end flow for the given BR-hop is born, this counts as two messages in either proto-

col: PATH and RESV for RSVP, or Probe and Graft for BGRP. Removing the reservation

takes a single TEAR message, in either protocol. Since refresh is bidirectional, in both

protocols, we count the refreshing of one reservation on a given BR-hop as two units of

control message processing. (Refreshes for multiple reservations on the same BR-hop are

assumed to be processed separately, even though they may be transmitted in a bundle.) Let

� be the refresh rate. For RSVP, the average message rate for each edge-to-edge BR-path

on the given BR-hop is �3��� 	 ��� ���. Hence, the average RSVP message rate for the

141

10

100

1000

10000

100000

0.001 0.01 0.1 1 10
Path Load ρ

M
e

a
n

Si

m
ul

ta
ne

o
us

 R
e

se
rv

a
tio

ns RSVP

BGRP

Figure 7-6: The number of BGRP and RSVP reservations as functions of load �

BR-hop is ��3��� 	������� 	2 . For BGRP, the average message rate for one sink tree on

the given BR-hop is �3 	!��� 	������� �. Hence, the average BGRP message rate for the

BR-hop is ��3 	 ! ��� 	 ��� ���� �� 	- , which equals �3 	2 ��� 	- 	 ��� ������ �. If 3 is

much larger than �, then BGRP’s Probe, Graft and Tear activities dominate its Refreshes,

and RSVP’s initial PATH and RESV messages dominate their refreshed versions. In this

case, RSVP and BGRP have the same message rates. (Fortunately, the over-reservation

techniques that we proposed in Section7.5 can dramatically reduce BGRP’s message pro-

cessing overhead at this end of the spectrum; we will analyze these improvements shortly

in Sec. 7.6.3 below.) On the other hand, if � is much larger than 3, so that Refresh ac-

tivity dominates, and if � is large, then BGRP does better than RSVP by a factor of 2)- .

Figure 7-7 shows the average message rates per second, for BGRP and RSVP, as � ranges

from 0.0003 to 3.0 refreshes per second; here we assume 3 � ����� flows per second,

2 � ���� ���, - � �� ���, and � � ��. For instance, when � � ���� (i.e., when the refresh

interval is about 30 seconds), then the gain (i.e., the ratio of RSVP messages to BGRP

142

100

1000

10000

100000

1000000

0.0003 0.003 0.03 0.3 3

Refresh Rate (refreshes/sec)

M
e

ss
a

g
e

 R
a

te
 (

m
e

ss
a

g
e

/s
e

c
)

RSVP

BGRP

Figure 7-7: BGRP and RSVP message rates as functions of refresh rate �

messages) is 18. When � � ���, the gain is 95.8.

7.6.3 Over-reservation, Quantization and Hysteresis

We showed in Section 7.6.2 that BGRP has fewer messages to process than RSVP, provided

that most messages are Refreshes rather than Probes, Grafts, and Tears. In this section

we show how hysteresis can be used to curb the Probe, Graft and Tear activity. The

savings in message processing come at the cost of some wasted bandwidth, because the

aggregate reservation sometimes exceeds the sum of the component flow requests.

We shall model a single aggregate reservation on a single BR-hop. We assume that

the blocking rate for reservations is extremely low, negligible for the purpose of measuring

mean message rates. Any number of end-to-end flow reservations can be multiplexed into

this aggregate. Assume that these end-to-end reserved flows arrive in a Poisson stream

of rate 3, and that the flow reservation lifetimes are exponentially distributed with mean

�)�. Then the number of reserved end-to-end flows in our aggregate reservation is Poisson

143

2µ

λ

5µ

8µ

λ

λ

λ

λ

 3µ

 2,6 6,6

λ

 4µ

 3,6

λ

 5µ

 4,6

λ

 6µ

 5,6

 0, 0

λ

µ

 0,3

λ

2µ

 1,3

λ

3µ

 2,3 3,3

λ

 6µ

 5,9 9,9

λ

 7µ

 6,9

λ

 8µ

 7,9

λ

 9µ

 8,9

λ

9µ

 8,12 12,12

λ

10µ

 9,12

λ

11µ

10,12

λ

12µ

11,12

λ

Figure 7-8: State transition diagram for 	 � �.

distributed with mean � � 3)�.

Assume that each end-to-end flow requires one unit of bandwidth. We constrain the

aggregate reservation always to be a multiple of some quantum size 	 � �. Whenever

the aggregate reservation is �	 units, and this is just barely enough to satisfy the current

individual flows, and a new end-to-end flow reservation is requested, then the aggregate

reservation jumps to �� � ��	. This new quantum will only be relinquished when the sum

of the individual flow requests drops to �� � ��	 � �. The amount of bandwidth wasted

due to over-reservation by this technique is less than �	 units.

We can model this system as a two-dimensional Markov process with state ��� ��, where

� is the number of currently reserved end-to-end flows, and � is the current aggregate

reservation. Figure 7-8 shows the state transition diagram for 	 � �. The only valid states

are the following: state (0,0), which we will ignore because it is transient; states ���	�,

where � � � � 	; and states ��� � 	 	�, for � � �, where �� � �� 	 	 � � � � � � 	 	.

The state transition diagram has a structure that makes it straightforward to solve for the

144

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 5 10 20 50 100 200

Load ρ

M
es

sa
g

e
re

d
u

ct
io

n
 f

ac
to

r

Q=10

Q=8

Q=6

Q=4

Q=2

Figure 7-9: BGRP message reduction factor as function of 	 and �.

steady-state probabilities. Note that, for most values of �, there are two possible values

of �, i.e., two states. However, certain special values of � have only one possible � value,

i.e., one state. These special values of � are: � � �, for which � must equal 	, and

� � 	��� �	��� �	��� ���, for which the respective values of y must be �	� �	� 		� ���.

Therefore, at these special points, the joint probability distribution
��� �� matches the

marginal distribution of � by itself, which we already said is Poisson. It is straightforward

to determine the probabilities of all the other states in terms of these special states, thereby

completing the analysis. For all � � �:

��� 	� � ��

���� � ��	� ��� �	� �
�� 	 ������������

��� � �� 		 � ���

145

For �� � ��	� � � � � �	:

��� � 		� �
�� 	 �� 	

������
��� ��� 	 �� 		� ����

�� 	
����

��� ����� 		� ����

��� �� � ��	� �
�� 	 �� 	

����
��������� ��� 	 �� 		� ����

�� 	
����

��� ��� 	 �� 		� ����

The rate of BGRP control messages (Probes + Grafts + Tears) is:

�3 	 �� 	
��
���

�
����������

��� ��� 	 �� 		� ����

�

This compares very favorably to the message rate �3 without hysteresis. Figure 7-9 shows

the message rate reduction factor for various values of 	 and �. For example, if reserva-

tions are quantized in blocks of 10, and � � ���, then quantization and hysteresis reduce

the BGRP message rate by a factor of about 100. (The curves in Fig. 7-9, while roughly

decreasing, are not strictly monotonic. The ripples in the plots are due to the many “cor-

ners” in the state transition diagram of Fig. 7-8. For a given quantum size	, as � increases,

the bulk of the probability mass zigzags upward and to the right through the state space.

Since vertical state transitions produce protocol messages while horizontal transitions do

not, these zigs and zags around the corners can produce ripples in the messaging efficiency

plot.)

The analysis above dealt with a single aggregate reservation on a single BR-hop. It is

a good model for a system where the leaves of sink trees are the only BR-hops that can

initiate an over-reservation. However, if BR-hops anywhere on the tree can deliberately

over-reserve, and if the quiet grafting described in Section 7.5 is done, then additional

savings in message rate are possible.

Note that, in order for over-reservation to be helpful, the over-reserving router must

recognize the future traffic on whose behalf the over-registration was made, without having

to send a new Probe message. For the tree leaves that over-reserve, simple caching of

the destination network IDs associated with each tree would work. For more complex

situations, see the labeling discussion on quiet grafting in Section 7.5.

146

7.7 Related Work

Recently, several authors have addressed scalable resource reservation, using either a server-

based or a router-based approach.

In server-based approaches, each domain has a bandwidth broker (or agent) which is

responsible for selecting and setting up the aggregated reservation sessions. This approach

has the advantage of removing the message processing and storage burden from routers.

However, synchronizing reservation information among the bandwidth brokers and the

routers may be complex. No aggregation takes place, so that each broker still has to deal

with the requests of individual flows. Also, care has to be taken so that the broker does

not become a single point of failure for the domain. Variations of the server-based ap-

proach have been described by Blake et al. [59], Schelen and Pink [132], Berson et al.

[133], and Terzis et al. [134]. The latter proposal suggests a two-tier system where, within

each domain, hosts use intra-domain reservation protocols such as RSVP to set up reserved

flows. Inter-domain reservation protocols set up coarsely-measured reserved flows between

domains. However, the proposal leaves the actual mechanism undefined.

Awduche et al. [97], Guérin et al. [135] and Baker et al. [136] have proposed a router-

based approach by modifying RSVP to support scalable reservation. (Awduche’s LSP tun-

nels [97] are designed to support intra-domain traffic engineering, but may also be used to

set up trunks crossing multiple domains.) These proposals aggregate per-application reser-

vation requests into reservation “trunks” between pairs of domains, by modifying sender

template and session objects in RSVP to carry address and mask (“CIDR blocks”) or au-

tonomous system (AS) numbers instead of 5-tuples (sender IP address, sender port, receiver

IP address, receiver port, protocol). However, this implies that routers in the backbone may

have to maintain reservation state proportional to the square of the number of CIDR blocks

or autonomous systems in full-meshed backbone networks.

147

7.8 Conclusion

Resource reservation must operate in an efficient and scalable fashion, to accommodate

the rapid growth of the Internet. In this chapter, we presented an inter-domain reservation

protocol, called the Border Gateway Reservation Protocol (BGRP), in which reservations

are aggregated along sink trees.

Each provider’s domain may use its own method to manage network resources. BGRP

builds a sink tree for each of the stub domains. Each sink tree aggregates bandwidth reser-

vations from all data sources in the network. Since backbone routers maintain only the

sink tree information, the total number of reservations at each router scales linearly with

the number of Internet domains. BGRP maintains these aggregated reservations using “soft

state.”

BGRP scales well in terms of control state, message processing, and bandwidth. It

reduces control state by aggregating reservations; this reduces their number, and thereby

reduces the memory needed to store the control information.

Control message processing is the most important scalability issue. The cost of pro-

cessing reservation messages depends on the volume of requests for new reservations, the

volume of existing reservations requiring periodic refreshing, and the refresh frequency.

BGRP economizes on all of these components. First, when we allow routers to over-reserve

bandwidth with BGRP, then small reservations can join and leave the reservation sink tree

without disturbing the entire tree. This reduces the volume of reservation set-up messages.

Second, by aggregating reservations, BGRP reduces their number, and this proportionally

reduces the refresh processing burden. Third, BGRP needs less frequent refreshes than

does RSVP, for the following reason. RSVP control messages are unreliable and thus must

be repeated at about three times the state-timeout interval, while BGRP refresh messages

are transferred reliably hop-by-hop. The mechanisms described above reduce the number

of control messages. Not only does this reduce the burden on the routers to process these

messages, it also reduces the link bandwidth cost to transmit these messages.

148

Chapter 8

Summary and Future Work

We conclude this dissertation with a discussion of the merits of our various reservation

signaling proposals, a short list of outstanding problems in the area of Internet resource

management, and a summary of our main contributions.

8.1 Summary of the Proposals

In Chapter 2, we investigated the necessity of having resource reservation in the Internet,

and the scalability issues involved in reservation signaling design and implementation.

Chapter 3 described a new mechanism, staged refresh timer, to improve RSVP’s scal-

ability by reducing the soft-state refresh overhead, while enhancing the reliability in mes-

sage delivery. We have shown that the mechanism was very effective when adapted by all

network routers.

In Chapter 4 showed that with the current growth rate, the Internet cannot operate with

one signaling protocol to setup and manage all the reservations. In addition, most of ex-

isting protocols have the potentially state “explosion” problem when it comes to handle

reservation states. Thus, we proposed a hierarchical reservation model, where end-users

have the option to signal for reservations at the application layer, and the network providers

always interconnect each other with large and shared reservation trunks. At network border,

application-layer reservations are aggregated into the provider-layer reserved trunks.

In Chapter 6, we showed the design and implementation of a lightweight application-

149

layer reservation protocol, YESSIR, that supports real-time streaming applications that use

the RTP protocol. It has incorporated some of the features studied in Chapter 5 such as

partial reservation, fast resource retry and one-pass reservation model.

We have described the design and performance analysis of an inter-domain reservation

protocol, BGRP, in Chapter 7. BGRP interfaces with BGP to distribute and maintain control

states (such as QoS and MPLS label) throughout the Internet in a scalable fashion.

8.2 Our Main Contributions

The main contributions of this dissertation are the following:

� There is a strong need for resource reservation in the Internet, especially at network

interconnection links.

� The Internet reservation scalability problems can be solved with the hierarchical

reservation model, that consists of an application-layer reservation component and

a provider-level reservation component.

� With careful protocol design, we can develop very efficient application-layer reser-

vation protocols, that have the features such as fast to setup, fast to recover from

admission control failure and simple to process.

� By applying reservation aggregation can reduce the total number of reservations in

the Internet. At provider-level, sink-tree aggregation technique can reduce provider-

level reservations to ����, where � is the total number of AS’s.

150

Bibliography

[1] Internet Software Consortium, “Internet domain survey.” http://www.isc.org/ds/.

[2] Telstra Network, “Telstra internet network performance reports.”

http://www.telstra.net/ops/.

[3] T. Bates, “The CIDR report.” http://www.employees.org/˜tbates/cidr-report.html.

[4] A. Odlyzko, “The Internet and other networks: Utilization rates and their implica-

tions,” technical report, AT&T Labs, Florham Park, NJ, Feb. 2000.

[5] R. E. Kahn and V. G. Cerf, “What is the internet (and what makes it work),” tech.

rep., CNRI, MCI Worldcom, Dec. 1999.

[6] UUnet, “Our network.” http://www.uu.net/network/.

[7] EP.net, “Exchange point information.” http://www.ep.net/.

[8] W. B. Norton, “Internet service providers and peering,” in Proc. of NANOG 19,

(Albuquerque, New Mexico), June 2000.

[9] K. G. Coffman and A. M. Odlyzko, “The size and growth rate of the internet,” tech.

rep., AT&T Labs - Research, Florham Park, New Jersey, July 1998.

[10] G. Malkin, “RIP version 2,” RFC 2453, Internet Engineering Task Force, Nov. 1998.

[11] J. Moy, “OSPF version 2,” RFC 2178, Internet Engineering Task Force, July 1997.

151

[12] ISO (International Organization for Standardization), “Information processing sys-

tems - data communications - intermediate system to intermediate system intra-

domain routing protocol,” ISO Standard ISO 10589, International Organization for

Standardization, Geneva, Switzerland, 1992.

[13] D. Katz, “OSPF and IS-IS - a comparative anatomy,” in NANOG Spring Meeting,

(Albuquerque, New Mexico), June 2000.

[14] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” Internet Draft, Internet

Engineering Task Force, Nov. 2001. Work in progress.

[15] Y. Rekhter and T. Li, “An architecture for IP address allocation with CIDR,” RFC

1518, Internet Engineering Task Force, Sept. 1993.

[16] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing (CIDR): an

address assignment and aggregation strategy,” RFC 1519, Internet Engineering Task

Force, Sept. 1993.

[17] P. Traina, “Autonomous system confederations for BGP,” RFC 1965, Internet Engi-

neering Task Force, June 1996.

[18] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap damping,” RFC 2439,

Internet Engineering Task Force, Nov. 1998.

[19] T. Bates, R. Chandra, and E. Chen, “BGP route reflection - an alternative to full

mesh IBGP,” RFC 2796, Internet Engineering Task Force, Apr. 2000.

[20] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,” in SIG-

COMM Symposium on Communications Architectures and Protocols, (Cannes,

France), Sept. 1997.

[21] C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian, “An experimental study of de-

layed internet routing convergence,” in SIGCOMM Symposium on Communications

Architectures and Protocols, (Stockholm, Sweden), Aug. 2000.

152

[22] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: a new resource

ReSerVation protocol,” IEEE Network, vol. 7, pp. 8–18, Sept. 1993.

[23] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSer-

Vation protocol (RSVP) – version 1 functional specification,” RFC 2205, Internet

Engineering Task Force, Sept. 1997.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol

for real-time applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

[25] L. Zhang, S. Shenker, D. Clark, C. Huitema, S. Deering, and D. Ferrari, “Reser-

vations or no reservations,” in Proceedings of the Conference on Computer Com-

munications (IEEE Infocom), (Boston, Massachusetts), Apr. 1995. panel-discussion

slides.

[26] F. Baker, J. Crowcroft, R. Guerin, H. Schulzrinne, and L. Zhang, “Reservations

about reservations,” in Proc. of IFIP Fifth International Workshop on Quality of

Service (IWQOS ’97), (New York, NY), May 1997.

[27] H. Schulzrinne, “Guide to nevot 3.34.” http://www.cs.columbia.edu/˜hgs/nevot/.

[28] UCL Multimedia, “Robust audio tool (RAT).” http://www-

mice.cs.ucl.ac.uk/multimedia/software/rat/.

[29] UCB/LBNL, “vat – LBNL audio conferencing tool.” http://www-nrg.ee.lbl.gov/vat/.

[30] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture:

an overview,” RFC 1633, Internet Engineering Task Force, June 1994.

[31] J. Wroclawski, “The use of RSVP with IETF integrated services,” RFC 2210, Inter-

net Engineering Task Force, Sept. 1997.

[32] J. Wroclawski, “Specification of the controlled-load network element service,” RFC

2211, Internet Engineering Task Force, Sept. 1997.

[33] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of

service,” RFC 2212, Internet Engineering Task Force, Sept. 1997.

153

[34] S. Shenker, “Fundamental design issues for the future internet,” IEEE Journal on

Selected Areas in Communications, vol. 13, Sept. 1995.

[35] L. Breslau and S. Shenker, “Best-effort versus reservations: A simple comparative

analysis,” ACM Computer Communication Review, vol. 28, pp. 3–16, Sept. 1998.

[36] UUnet, “Latency statistics.” http://www.uu.net/network/latency/index.html.

[37] Sprint, “Sprint network latency statistics.” http://www.sprintbiz.com/internet solutions/SLAs.htm

[38] V. Paxson, “End-to-end internet packet dynamics,” in SIGCOMM Symposium on

Communications Architectures and Protocols, (Cannes, France), Sept. 1997.

[39] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics. PhD the-

sis, University of California at Berkeley, Berkeley, California, May 1997.

[40] International Telecommunication Union (ITU), “Transmission systems and media,

general recommendation on the transmission quality for an entire international tele-

phone connection; one-way transmission time,” Recommendation G.114, Telecom-

munication Standardization Sector of ITU, Geneva, Switzerland, Mar. 1993.

[41] International Telecommunication Union, “Dual rate speech coder for multimedia

communications transmitting at 5.3 and 6.3 kbit/s,” Recommendation G.723.1,

Telecommunication Standardization Sector of ITU, Geneva, Switzerland, Mar. 1996.

[42] SWITCH, “Switchlan traffic statistics.” http://www.switch.ch/lan/stat/.

[43] NORDUnet, “Nordunet network statistics.” http://www.nordu.net/stats/.

[44] ABOVE.net, “Above.net’s real-time network status.”

http://stats.sjc.above.net/traffic/.

[45] BBC Internet Services, “Internet link usage.”

http://support.bbc.co.uk/support/mrtg/internet/.

[46] A. Odlyzko, “The history of communications and its implications for the Internet,”

technical report, AT&T Labs, Florham Park, NJ, June 2000.

154

[47] Commission of European Communities, “Commission recommendation on leased

lines interconnection pricing in a liberalised telecommunications market,” tech. rep.,

Commission of European Communities, Nov. 1999.

[48] B. S. Arnaud, “CANARIE – CA*net 3 – the customer empowered networking rev-

olution,” in Proc. of First Australian Advanced and Innovative Internet Workshop,

(Adelaide, Australia), Mar. 2000.

[49] C. Stefano, “Rural connectivity: Economics,” in Second Advisory Committee Meet-

ing for National Coordination Office for Information Technology Research and De-

velopment, (Arlington, VA), June 1997.

[50] R. Frieden, “Does a hierarchical internet necessitate multilateral intervention?,” in

Proc. of 28th Research Conference on Communication, Information and Internet

Policy, (Alexandria, Virginia), Sept. 2000.

[51] B. Zhang, “Assessing the WTO agreements on China’s telecommunications regu-

latory reform and industrial liberalization,” in Proc. of 28th Research Conference

on Communication, Information and Internet Policy, (Alexandria, Virginia), Sept.

2000.

[52] K. G. Coffman and A. M. Odlyzko, “Internet growth: Is there a “Moore’s Law” for

data traffic?,” tech. rep., AT&T Labs - Research, Florham Park, New Jersey, July

2000.

[53] NLANR, “Assessing average hop count of a wide area internet packet.”

http://www.nlanr.net/NA/Learn/wingspan.html.

[54] V. Paxson, “End-to-end routing behavior in the internet,” IEEE/ACM Transactions

on Networking, vol. 5, pp. 601–615, Oct. 1997.

[55] NLANR, “NLANR AS path lengths.” http://moat.nlanr.net/ASPL/.

[56] BELNET, “Belnet: The belgian research network.”

http://www.belnet.be/main uk.html.

155

[57] DoIT Network Engineering, “Internet traffic flow size analysis.”

http://net.doit.wisc.edu/data/flow/size/.

[58] T. cker Chiueh, A. Neogi, and P. Stirpe, “Performance analysis of an RSVP-capable

router,” in Proc. of 4th Real-Time Technology and Applications Symposium, (Denver,

Colorado), June 1998.

[59] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture

for differentiated service,” RFC 2475, Internet Engineering Task Force, Dec. 1998.

[60] I. Stoica and H. Zhang, “Providing guaranteed service without per flow manage-

ment,” ACM Computer Communication Review, vol. 29, pp. 81–94, Oct. 1999.

[61] R. Guerin, L. Li, S. Nadas, P. Pan, and V. Peris, “The cost of QoS support in edge

devices: An experimental study,” in Proceedings of the Conference on Computer

Communications (IEEE Infocom), (New York), Mar. 1999.

[62] B. Braden, “ISI RSVP host implementation,” software release, ISI, Marina del Rey,

California, June 1997.

[63] P. Pan and R. Guerin, “IBM Research Center RSVP router implementation,” soft-

ware documentation, IBM T. J. Watson Laboratory, June 1997.

[64] LightReading, “The internet core router test,” in LightReading Test, Mar. 2001.

http://www.lightreading.com/testing/.

[65] P. P. Pan and H. Schulzrinne, “YESSIR: A simple reservation mechanism for the In-

ternet,” in Proc. International Workshop on Network and Operating System Support

for Digital Audio and Video (NOSSDAV), (Cambridge, England), pp. 141–151, July

1998. also IBM Research Technical Report TC20967.

[66] P. Pan and H. Schulzrinne, “Processing overhead studies in resource reservation pro-

tocols,” in 17th International Teletraffic Congress, (Salvador da Bahia, Brazil), Sept.

2001.

156

[67] G. Gaines and L. Salgarelli, “RSVP implementation survey,” tech. rep., Institute for

Information Technology of the National Research Council of Canada, July 1997.

[68] K. Cho, “Managing traffic with ALTQ,” in 1999 USENIX Annual Technical Confer-

ence, (Montery, California, USA), June 1999.

[69] M. Karsten, J. Schmitt, and R. Steinmetz, “Implementation and evaluation of the

KOM RSVP engine,” in Proceedings of the Conference on Computer Communica-

tions (IEEE Infocom), (Anchorage, Alaska), Apr. 2001.

[70] D. J. Mitzel, D. Estrin, S. Shenker, and L. Zhang, “An architectural comparison of

ST-II and RSVP,” in Proceedings of the Conference on Computer Communications

(IEEE Infocom), (Toronto, Canada), June 1994.

[71] D. J. Mitzel and S. Shenker, “Asymptotic resource consumption in multicast reserva-

tion styles,” in SIGCOMM Symposium on Communications Architectures and Pro-

tocols, (London, UK), pp. 226–233, Sept. 1994.

[72] A. Birman, V. Firoiu, R. Guérin, and D. Kandlur, “Provisioning of RSVP-based

services over a large ATM network,” Research Report RC 20250, IBM Research

Division, T. J. Watson Research Center, Yorktown Heights, New York, New York,

1995.

[73] S. Shenker and L. Breslau, “Two issues in reservation establishment,” in SIGCOMM

Symposium on Communications Architectures and Protocols, (Cambridge, Mas-

sachusetts), Sept. 1995.

[74] P. Pan and H. Schulzrinne, “Staged refresh timers for RSVP,” in Proceedings of

Global Internet, (Phoenix, Arizona), Nov. 1997. also IBM Research Technical Re-

port TC20966.

[75] R. A. Guerin, S. Kamat, and S. Herzog, “QoS path management with RSVP,” in

Proc. of Global Internet (Globecom), (Phoenix, Arizona), Nov. 1997.

157

[76] M. Karsten, J. Schmitt, L. Wolf, and R. Steinmetz, “An embedded charging approach

for RSVP,” in Proceedings of 6th IEEE/IFIP International Workshop on Quality of

Service, (Napa, California), pp. 91–100, IEEE/IFIP, May 18–20 1998.

[77] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in the MBone multi-

cast network,” in Proceedings of Global Internet, (London, England), Nov. 1996.

[78] S. Casner, H. Schulzrinne, et al., “Frequently asked questions (FAQ) on the multicast

backbone (mbone).” http://www.cs.columbia.edu/˜hgs/internet/mbone-faq.html.

[79] L. Mathy, D. Hutchison, and S. Simpson, “Modelling and improving flow estab-

lishment in RSVP,” in Proc. of Protocols for High Speed Networks (PfHSN), Aug.

1999.

[80] L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, and S. Molendini, “RSVP re-

fresh overhead reduction extensions,” RFC 2961, Internet Engineering Task Force,

Apr. 2001.

[81] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels: Efficient data

structures for implementing a timer facility,” IEEE/ACM Transactions on Network-

ing, vol. 5, pp. 824–834, Dec. 1997.

[82] S. Floyd and V. Jacobson, “The synchronization of periodic routing messages,”

IEEE/ACM Transactions on Networking, vol. 2, pp. 122–136, Apr. 1994.

[83] G. Armitage, “Support for multicast over UNI 3.0/3.1 based ATM networks,” RFC

2022, Internet Engineering Task Force, Nov. 1996.

[84] R. Talpade and M. Ammar, “Multicast server architectures for MARS-based ATM

multicasting,” RFC 2149, Internet Engineering Task Force, May 1997.

[85] P. Sharma, D. Estrin, S. Floyd, V. Jacobson, P. Sharma, D. Estrin, S. Floyd, and

V. Jacobson, “Scalable timers for soft state protocols,” in Proceedings of the Con-

ference on Computer Communications (IEEE Infocom), (Kobe, Japan), p. 222, Apr.

1997.

158

[86] S. Raman and S. McCanne, “A model, analysis, and protocol framework for soft

state-based communication,” in SIGCOMM Symposium on Communications Archi-

tectures and Protocols, (Cambridge, Massachusetts), August/September 1999.

[87] M. McKusick, B. K., M. Karels, and J. S. Quarterman, The Design and Implementa-

tion of the 4.4BSD UNIX Operating System. Massachusetts: Addison-Wesley Pub-

lishing Company, 1996.

[88] D. Katz, “IP router alert option,” RFC 2113, Internet Engineering Task Force, Feb.

1997.

[89] C. Partridge and A. Jackson, “IPv6 router alert option,” RFC 2711, Internet Engi-

neering Task Force, Oct. 1999.

[90] P. Pan and H. Schulzrinne, “PF IPOPTION: A kernel extension for IP option packet

processing,” Technical Memorandum 10009669-02TM, Bell Labs, Lucent Tech-

nologies, Murray Hill, NJ, June 2000.

[91] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei, “An architec-

ture for wide-area multicast routing,” in SIGCOMM Symposium on Communications

Architectures and Protocols, (London, UK), pp. 126–135, Sept. 1994.

[92] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “Reliable multi-

cast framework for light-weight sessions and application level framing,” in SIG-

COMM Symposium on Communications Architectures and Protocols, (Cambridge,

Massachusetts), Sept. 1995.

[93] W. Fenner, “Internet group management protocol, version 2,” RFC 2236, Internet

Engineering Task Force, Nov. 1997.

[94] L. Delgrossi, L. Berger, and Eds, “Internet stream protocol version 2 (ST2) protocol

specification - version ST2+,” RFC 1819, Internet Engineering Task Force, Aug.

1995.

159

[95] T. Ballardie, P. Francis, and J. Crowcroft, “Core based trees (CBT),” in SIGCOMM

Symposium on Communications Architectures and Protocols (D. P. Sidhu, ed.), (San

Francisco, California), pp. 85–95, ACM, Sept. 1993. also in Computer Communica-

tion Review 23 (4), Oct. 1992.

[96] NLANR, “NLANR network traffic packet header traces.”

http://moat.nlanr.net/Traces/.

[97] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP-TE:

extensions to RSVP for LSP tunnels,” RFC 3209, Internet Engineering Task Force,

Dec. 2001.

[98] L. Gao and J. Rexford, “Stable internet routing without global coordination,” in

Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of

Computer Systems, June 2000.

[99] T. Li, “MPLS and the evolving internet architecture,” IEEE Communications Maga-

zine, vol. 37, Dec. 1999.

[100] D. O. Awduche, “MPLS and traffic engineering in IP networks,” IEEE Communica-

tions Magazine, vol. 37, Dec. 1999.

[101] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True, “De-

riving traffic demands for operational IP networks: Methodology and experience,”

in SIGCOMM Symposium on Communications Architectures and Protocols, (Stock-

holm, Sweden), August/September 2000.

[102] ITU-T, “Recommendation Q.2931, B-ISDN. digital subscriber signalling sys-

tem no. 2 (DSS 2). user-network-interface (UNI) layer 3 specification for basic

call/connection control,” tech. rep., ITU Telecommunication Standardization Sec-

tor, Apr. 1993.

[103] A. Banerjea, D. Ferrari, B. A. Mah, and M. Moran, “The tenet real-time proto-

col suite: Design, implementation, and experiences,” Technical Report TR-94-059,

University of California at Berkeley, Berkeley, California, Nov. 1994.

160

[104] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered multicast,”

in SIGCOMM Symposium on Communications Architectures and Protocols, (Palo

Alto, California), pp. 117–130, Aug. 1996.

[105] P. M. Merlin and P. J. Schweitzer, “Deadlock avoidance in store-and-forward net-

works - I: store-and-forward deadlock,” IEEE Transactions on Communications,

vol. COM-28, pp. 345–354, 1980.

[106] P. M. Merlin and P. J. Schweitzer, “Deadlock avoidance in store-and-forward net-

works - other deadlock types,” IEEE Transactions on Communications, vol. COM-

28, pp. 355–360, 1980.

[107] I. S. Gopal, “Prevention of store-and-forward deadlock in computer networks,” IEEE

Transactions on Communications, vol. C-33, no. 12, pp. 1258–1264, 1985.

[108] I. Cidon, J. M. Jaffe, and M. Sidi, “Distributed store-and-forward deadlock detection

and resolution algorithms,” IEEE Transactions on Communications, vol. COM-35,

no. 11, pp. 1139–1145, 1987.

[109] International Telecommunication Union, “Visual telephone systems and equipment

for local area networks which provide a non-guaranteed quality of service,” Rec-

ommendation H.323, Telecommunication Standardization Sector of ITU, Geneva,

Switzerland, May 1996.

[110] S. McCanne and V. Jacobson, “vic: A flexible framework for packet video,” in Proc.

of ACM Multimedia ’95, Nov. 1995.

[111] V. Jacobson, “Multimedia conferencing on the Internet,” in SIGCOMM Symposium

on Communications Architectures and Protocols, (London, England), Aug. 1994.

Tutorial slides.

[112] I. Kouvelas, V. Hardman, and A. Watson, “Lip synchronisation for use over the

Internet: Analysis and implementation,” in Proceedings of the IEEE Conference on

Global Communications (GLOBECOM), (London, England), Nov. 1996.

161

[113] H. Schulzrinne, “Voice communication across the Internet: A network voice termi-

nal,” Technical Report TR 92-50, Dept. of Computer Science, University of Mas-

sachusetts, Amherst, Massachusetts, July 1992.

[114] S. Jamin, A measurement-based admission control algorithm for integrated services

packet networks. PhD thesis, Dept. of Computer Science, University of Southern

California, Los Angeles, California, Aug. 1996.

[115] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang, “Endpoint admission

control: Architectural issues and performance,” in SIGCOMM Symposium on Com-

munications Architectures and Protocols, (Stockholm, Sweden), Aug. 2000.

[116] V. Elek, G. Karlsson, and R. Ronngren, “Admission control based on end-to-end

measurements,” in Proceedings of the Conference on Computer Communications

(IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[117] D. L. Mills, “Network time protocol (version 3) specification, implementation,” RFC

1305, Internet Engineering Task Force, Mar. 1992.

[118] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,”

RFC 1890, Internet Engineering Task Force, Jan. 1996.

[119] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differentiated ser-

vices field (DS field) in the IPv4 and IPv6 headers,” RFC 2474, Internet Engineering

Task Force, Dec. 1998.

[120] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding PHB

group,” RFC 2597, Internet Engineering Task Force, June 1999.

[121] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding PHB,” RFC 2598,

Internet Engineering Task Force, June 1999.

[122] S. Kent and R. Atkinson, “Security architecture for the internet protocol,” RFC 2401,

Internet Engineering Task Force, Nov. 1998.

162

[123] W. R. Stevens, TCP/IP illustrated: the implementation, vol. 2. Reading, Mas-

sachusetts: Addison-Wesley, 1994.

[124] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. New

York: McGraw-Hill, 1990.

[125] H. Schulzrinne and Columbia University IRT Lab, “rtptools: Tools for RTP.”

http://www.cs.columbia.edu/IRT/software/rtptools/.

[126] W. Almesberger, J.-Y. L. Boudec, and T. Ferrari, “Scalable resource reservation for

the Internet,” in Proc. of IEEE Conference Protocols for Multimedia Systems – Mul-

timedia Networking (PROMS-MmNet), (Santiago, Chile), Nov. 1997. Technical Re-

port 97/234, DI-EPFL, Lausanne, Switzerland.

[127] S. Jamin, S. J. Shenker, and P. B. Danzig, “Comparison of measurement-based ad-

mission control algorithms for controlled-load service,” in Proceedings of the Con-

ference on Computer Communications (IEEE Infocom), (Kobe, Japan), Apr. 1997.

[128] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion notification

(ECN) to IP,” RFC 2481, Internet Engineering Task Force, Jan. 1999.

[129] G. Feher, K. Nemeth, M. Maliosz, I. Cselenyi, J. Bergkvist, D. Ahlard, and T. En-

gborg, “Boomerang - a simple protocol for resource reservation in ip networks,” in

IEEE Workshop on QoS Support for Real-Time Internet Applications, (Vancouver,

Canada), June 1999.

[130] Sprint, “Sprintlink policies.” http://www.sprintlink.net/policies.htm.

[131] C. Labovitz, G. Malan, and F. Jahanian, “Origins of internet routing instability,”

in Proceedings of the Conference on Computer Communications (IEEE Infocom),

(New York), Mar. 1999.

[132] O. Schelen and S. Pink, “Aggregating resource reservation over multiple routing

domains,” in Proc. of Fifth IFIP International Workshop on Quality of Service

(IwQOS), (Cambridge, England), June 1998.

163

164

[133] S. Berson and S. Vincent, “Aggregation of internet integrated services state,” in

IWQOS, 1998.

[134] A. Terzis, L. Wang, J. Ogawa, and L. Zhang, “A two-tier resource management

model for the internet,” in Proceedings of Global Internet, Dec. 1999.

[135] R. Guerin, S. Herzog, and S. Blake, “Aggregating RSVP-based QoS requests,” Tech-

nical Report, University of Pennsylvania, Nov. 1997.

[136] F. Baker, C. Iturralde, F. L. Faucheur, and B. Davie, “Aggregation of RSVP for IPv4

and IPv6 reservations,” RFC 3175, Internet Engineering Task Force, Sept. 2001.

