

A Snapshot on MPLS Reliability Features

Ping Pan March, 2002

Outline

Introduction

Fast Reroute

Graceful Restart

Summary

- Tunnels
 - Drop a packet in, and out it comes at the other end
- Explicit (aka source) routing
- Label stack
 - * e.g., 2-label stack: "outer" label defines the tunnel; "inner" label demultiplexes
- Layer 2 independence
 Just like IP

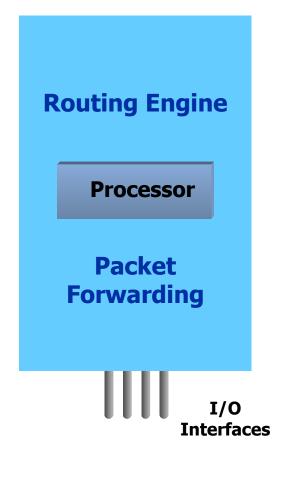
Transfer Non-IP (or private addressed IP) packets over the backbones e.g.:

- Layer 3 VPN (BGP/MPLS VPN)
- Layer 2 VPN (draft-kompella-ppvpn-vpn)
- Virtual Private LAN Service (VPLS)
- This is potentially a huge market!
- Map user traffic according to your plan.
 - Guarantee bandwidth to user "flows"
 - More efficient use of network resources

• What if my MPLS tunnels break...

Hold on...

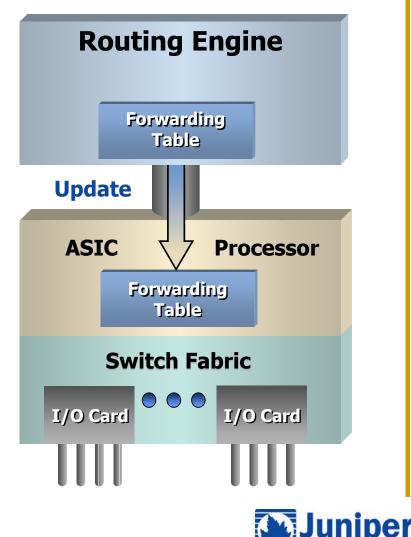
* Let's first take a look at router's internal structure.


Juniper Networks, Inc. Copyright © 2002

Legacy Router Architecture

Data plane and control plane are together.

If either data or control plane fails, the entire router will get effected, which, in turn, can disrupt the data traffic.



New-generation Router Architecture

The separation of data and control planes

Either data or control processor failure will not effect the entire router.

Legacy routers:

Control and data plane live and die together! New-generation routers:

Control and data plane can be managed separately.

Observation:

* For various reasons (e.g., software upgrade, control software crash), the control plane needs to be restarted more frequent than the data plane.

• What if my MPLS tunnels break...

- * Link outage:
 - Solution: reroute at data plane
- * Control plane up/down, e.g.:
 - Solution: sustain the data plane, while recovering the control plane

The bottom line: we need to have <u>high</u> <u>availability</u> at data plane for MPLS tunnels!

- Redundant Hardware and Software
 - * ... but what if it's the adjacent links and nodes are in trouble?
- Backup Tunnels from ingress
 - … but this may not be fast enough.
- Fast Reroute
 - * At data forwarding level, redirect user traffic on the fly.
- Graceful Restart
 - At control plane, recover the control information on the "down" nodes without disturbing data traffic.

Outline

Introduction

Graceful Restart

Summary

Reroute around link or node failure... fast

* ~10s of msec reroute time

- Reroute paths immediately available
 - Make-Before-Break

Crank back to the node closest to the failure, not ingress router

Local repair is the key.

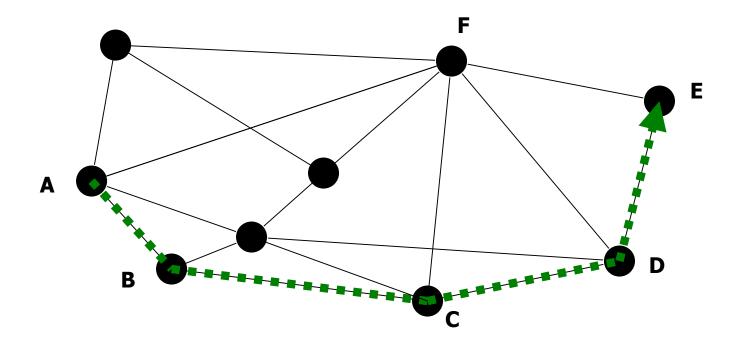
Short term solution for traffic protection

The ingress should re-compute alternative routes eventually.

Fast Reroute (signaling protocol)

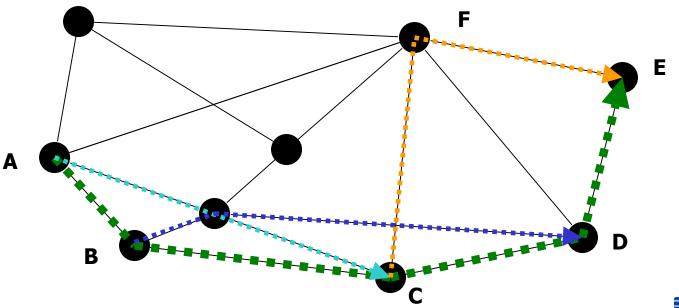
History:

- Juniper and Cisco both have working solutions.
- Due to customer demand, we merged our ideas:
 - draft-ietf-mpls-rsvp-lsp-fastreroute-00.txt


RSVP Protocol Extensions:

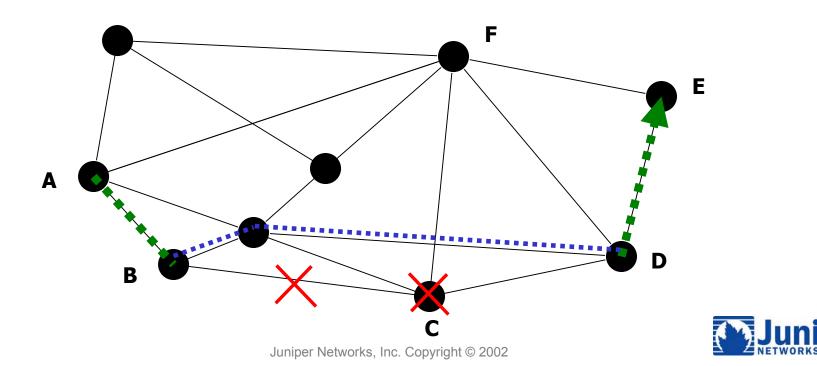
- One-to-one backup
 - Backup each LSP separately.
 - More flexible
 - Simple to configure
- Many-to-one backup
 - Backup a bunch of LSPs with one LSP
 - Less states with label stacking
 - Requires configuring backup LSPs
- Use common set of RSVP mechanisms

A LSP from A to E

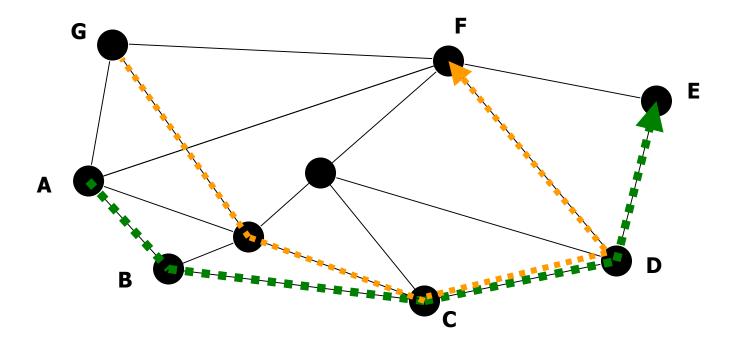


Enable fast reroute on ingress

- * A creates detour around B
- * B creates detour around C
- * C creates detour around D
- No additional configuration required on B, C, D, etc...

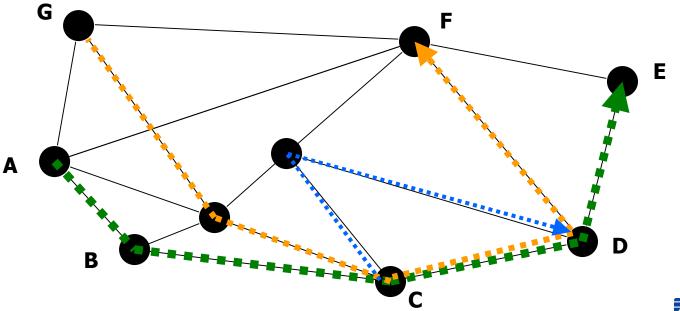


Juniper Networks, Inc. Copyright $\ensuremath{\textcircled{O}}$ 2002


Node C or/and link B-C fail:

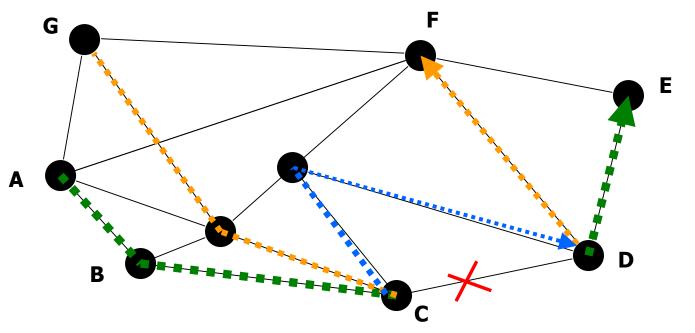
- * B immediately detours around C
- * B signals to A that failure occurred

Two User LSPs going over link C-D.


Juniper Networks, Inc. Copyright © 2002

Many-to-one backup: example

Enable link-protection


- Each LSP that uses link protection has to be identified as such at the ingress (via configuration)
- Requires configuration for every link that has to be protected
- ***** C creates a LSP that will bypass C-D.

- Link C-D fails
 - C reroutes user traffic with label-stacking ("outer" label + "inner-1" or "inner-2" labels)
 - * C signals to A and G that failure occurred

Fast Reroute Issues

Network Operation:

- Having too many configuration parameters complicates the usage
 - One-to-one backup: only ingress routers initiate fast reroute.
 - Many-to-one backup: both ingress and transit routers need to configure.

Performance:

- * On Juniper routers, for both one-to-one and many-to-one backups, the data-plane reroute time after the detection of a failure:
 - An OC12 link is protected via an OC48 link.
 - 100 packet sources, 20,000 pps, load balancing.
 - ♦ ~0 for 1 LSP
 - ♦ ~40 msec for 10 LSP's

Outline

Introduction

Fast Reroute

Graceful Restart

Summary

Graceful Restart

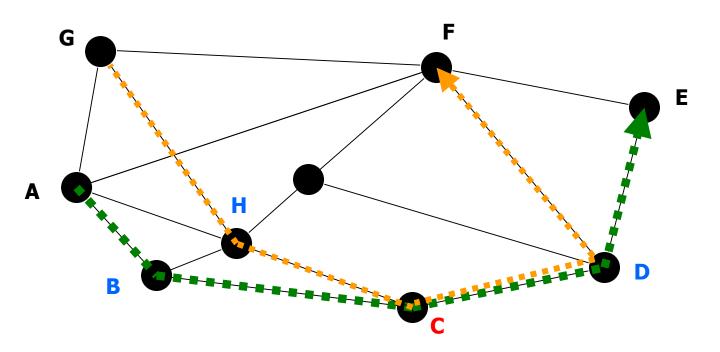
A generic solution to

- * BGP
- * ISIS
- * OSPF
- * LDP
- * RSVP-TE
- *** Various MPLS VPN solutions**

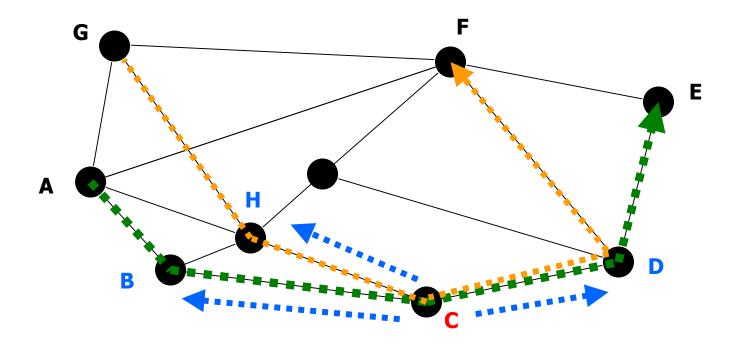
RSVP-TE graceful restart:

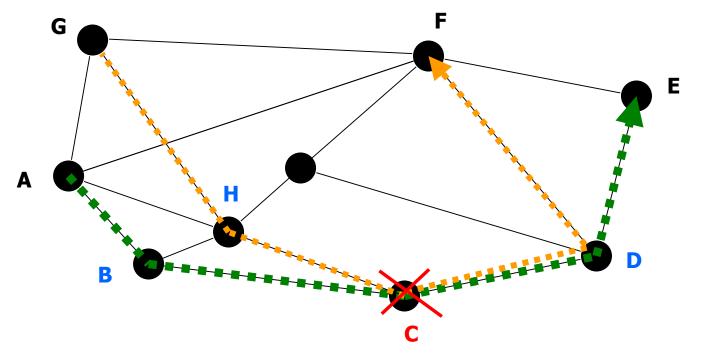
draft-ietf-mpls-generalized-rsvp-te

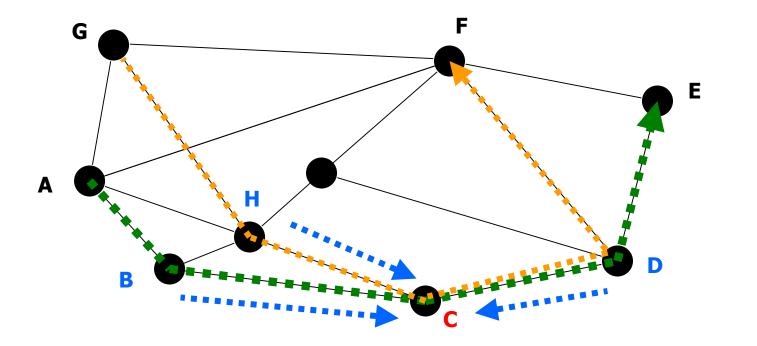
Graceful Restart...


Currently, while data forwarding is OK,

- * IF....
 - the router control plane restarts (due to crash or s/w upgrade)
 - the control channel between a pair of routers restarts
- * Then...
 - All LSP's traversing the router are terminated.
 - Major traffic disruption inside the network
- With Graceful Restart,
 - * the control plane can be recovered,
 - ... without disturbing the data plane
 - no disruption to data/user traffic


- Two LSPs going through C.
- B, D and H have the knowledge about the labels that are used for data forwarding on C.


C advertises the Graceful Restart capability to neighbors, B, H, D.


- The control plane on C has crashed.
- If data forwarding is OK, B, H and D won't over-react, and keep the LSPs intact.

After detecting C is up again, B, D and H sends labels information to C to help its recovery.

Juniper Networks, Inc. Copyright © 2002

Only applicable on new-generation routers: Requires the separation of data & control plane This is perceived to be especially important in the context of GMPLS

Outline

- Introduction
- Fast Reroute
- Graceful Restart

Summary

- Both Fast Reroute and Graceful Restart are designed to improve data plane availability in the face of network failures.
- From our measurement, the reroute timing on MPLS Fast Reroute is as good as SONET APS.
- MPLS Graceful Restart can help to prevent traffic disruption in today's network.
- Requires new-generation routers.

Fast Reroute and Graceful Restart Comparison (1)

Fast Reroute:

- * Backup tunnels may consume network resources (e.g. bandwidth in case of SONET/SDH or OXCs).
 - Can become a serious constraint in optical networks
- Many-to-one backups rely on label-stack
 - Not available in environments such as optical networks
- Configuration can be a problem.
- Cannot protection user traffic at ingress routers
 - Works very well on transit routers.

Fast Reroute and Graceful Restart Comparison (2)

Graceful Restart:

- Does not consume any network resource
 - Very desirable for optical networks
- Configuration is simple
 - Thanks to the capability advertisement
- Can protect ingress routers
 - As well as transit and egress routers
- Require new-generation routers

Thank you!

