BGRP (Border Gateway Reservation Protocol)

A Tree-Based Aggregation Protocol for Inter-Domain Reservations

Ping Pan Bell Labs + Columbia Ellen Hahne Bell Labs Henning Schulzrinne Columbia

1

Outline

- Resource Reservation
 - Applications
 - Architectures
 - Challenges
- Protocol Scaling Issues
- BGRP Protocol
 - Major Messages
 - Performance
- Conclusions & Future Work

Resource Reservation

- Applications
- Old Architecture: Int Serv + RSVP
- Challenges
- New Architecture: Diff Serv + BGRP

Reservation Applications

- Real-Time QoS
 - Voice over IP
 - Video
- Virtual Private Networks
- Differentiated Services
 - Better than Best Effort
- Traffic Engineering
 - Offload congested routes
 - Integration of ATM, Optical & IP (MPLS)
 - Inter-Domain Agreements

Reservation Architectures

- Old Solution: Int Serv + RSVP
 - End-to-end
 - Per-flow
- Challenges
 - Data Forwarding Costs
 - Protocol Overhead
 - Inter-Domain Administration
- New Solution: Diff Serv + BGRP
 - Aggregated
 - Scalable
 - Manageable

Two Scaling Challenges

- Data Forwarding Costs
 - Int Serv: per micro-flow
 - Diff Serv: ~32 AF/EF Code Points
 - Solves that problem !
- Control Protocol Overhead
 - RSVP: O(N²), N = # hosts
 - BGRP: O(N), N = something much smaller
 - Much more to say about this !

Protocol Scaling Issues

- Network Structure
- Network Size
- How much Aggregation?
- How to Aggregate?

Network Structure: Multiple Domains (AS)

Current Network Size

- 10⁸ (60,000,000) Hosts
- 10⁵ (60,000) Networks
- 10⁴ (6,000) Domains

Traffic Trace

(90-sec trace, 3 million IP packet headers, at MAE-West, June 1, 1999)

.

.

Granularity	# Sources	# Destinations	# Source- Destination Pairs
Application	(Addr + Port)	(Addr + Port + Proto)	(5-tuple)
	143,243	208,559	339,245
Host	56,935	40,538	131,009
Network	13,917	20,887	79,786
Domain	2,244	2,891	20,857

Traffic Trace

- Over 1-month span (May 1999) at MAE-West:
 - 4,908 Source AS seen
 - 5,001 Destination AS seen
 - 7,900,362 Source-Destination pairs seen!

How many Reservations? (How much aggregation?)

- 1 reserv'n per source-dest'n pair?
 - -10^{16} host pairs
 - 10¹⁰ network pairs
 - 10⁸ domain pairs
- 1 reserv'n per source OR 1 reserv'n per dest'n?
 - -10^8 hosts
 - -10^5 networks
 - 10⁴ domains
- Router capacity: $10^4 < \#$ Reserv'ns $< 10^6$
- Conclusion: 1 reserv'n per Network or Domain for each Diff Serv traffic class

Network Growth (1994-1999)

Growth Rates

- Graph has a Log Scale
- *H* (# Hosts) : Exponential growth
- D (# Domains) : Exponential growth
- Moore's Law can barely keep up!
- Overhead of control protocols?
 - -O(H) or O(D), May be OK
 - $-O(H^2)$ or $O(D^2)$, Not OK !

How to Aggregate?

- Combine Reserv'ns from all Sources to 1 Dest'n for 1 Diff Serv class
- Data & Reserv'ns take BGP route to Dest'n
- BGP routes form *Sink Tree* rooted at Dest'n domain (no load balancing)
- Aggregated Reserv'ns form *Sink Tree*
- Where 2 branches meet, Sum Reserv'ns

A Sink Tree rooted at S3

How to handle end-user reservation?

BGRP Protocol

- Basic Operation
- Comparison with RSVP
- Enhancements
- Performance Evaluation

BGRP Basics

- Inter-Domain only
- Runs between Border Routers
- Follows BGP Routes
- Reserves for Unicast Flows
- Aggregates Reserv'ns into Sink Trees
- Delivers its Messages Reliably
- 3 Major Messages
 - Probe: source to dest'n; reserv'n path discovery
 - Graft: dest'n to source; reserv'n establishm't & aggreg'n
 - Refresh: adjacent routers; reserv'n maintenance

Tree Construction: 1st Branch

Tree Construction: 2nd Branch

Tree Construction: Complete

PROBE Message

- Source (leaf) toward Destination (root)
- Finds reservation path
- Constructs Route Record:
 - Piggybacks Route Record in message
 - Checks for loops
 - Checks resource availability
- Does not store path (breadcrumb) state
- Does not make reservation

GRAFT Message

- Destination (root) toward Source (leaf)
- Uses path from PROBE's Route Record
- Establishes reservations at each hop
- Aggregates reservations into sink tree
- Stores reservation state per-sink tree

REFRESH Message

- Sent periodically
- Between adjacent BGRP hops
- Bi-directional
- Updates all reserv'n state in 1 message

Comparison of BGRP vs. RSVP

- Probing:
 - BGRP PROBE vs. RSVP PATH
 - Stateless vs. Stateful [O(N²)]
- Reserving:
 - BGRP GRAFT vs. RSVP RESV
 - State-light [O(N)] vs. Stateful [O(N²)]
 - Aggregated vs. Shared
- Refreshing:
 - Explicit vs. Implicit
 - Bundled vs. Unbundled

BGRP Enhancements

Keeping Our Reservation Tree Beautiful Despite:

- Flapping leaves
- Rushing sap
- Broken branches

Problem: Flapping Leaves

- Over-reservation
- Quantization
- Hysteresis

Problem: Rushing Sap

- CIDR Labeling
- Quiet Grafting

Quiet Grafting: 1st Branch

Quiet Grafting: 2nd Branch

Quiet Grafting: Complete

Problem: Broken Branches

- Self-Healing
- Filtering Route Changes

Performance Evaluation

Show BGRP benefits as function of:

- Region Size
- Topology
- Traffic Load
- Refresh Rate
- Quantum Size

Flow Counts vs. Region Size

Time	Region	# Source-	# Destinations	Ratio
Interval	Granularity	Destination		
		Pairs		
		(For RSVP)	(For BGRP)	
90 sec.	Application	339,245	208,559	1.6
	Host	131,009	40,538	3.2
	Network	79,786	20,887	3.8
	Domain	20,857	2,891	7.2
1 month	Domain	7,900,362	5,001	1,579.8

Flow Counts vs. Region Size

- Assume reserv'n is popular.
- Aggregation is needed !
- Region-based aggregation works.
- BGRP helps most when:
 - Aggregating Region is Large.
 - Reserv'n Holding Time is Long.
- Theoretical "N vs. N²" problem is real !

Number of Flows (broken down by BW)

BGRP / RSVP Gain for each BW Class

38

Modeling the Topological Distribution of Demand

3 distributions: Flat, Hierarchical, Selected Source

Reservation Count vs. Link Number

40

Reservation Count vs. Node Number

Gain: N^{rsvp} / N^{bgrp}

42

Reservation Count vs. Traffic Load

- Model for given hop H:
 - P paths thru H
 - T sink trees thru H
 - ρ micro-flows @ path (Poisson λ, μ, ρ)
- # RSVP reserv'ns = $(1 e^{-\rho}) \cdot P$
- **# BGRP reserv'ns =** $(1 e^{-\rho \cdot F/T}) \cdot T$
- BGRP helps most for large ρ

– Gain ~ P/T

• Graph: *P*=100000, *T*=1000

Reservation Count vs. Traffic Load

44

Message Rate vs. Refresh Rate

- Model for given hop H:
 - P paths thru H
 - T sink trees thru H
 - ρ micro-flows @ path (Poisson λ, μ, ρ)
 - $-\eta$ refresh rate
- **RSVP msg rate =** $3\lambda \cdot P + 2\eta \cdot P \cdot (1 e^{-\rho})$
- **BGRP msg rate =** $3\lambda \cdot P + 2\eta \cdot T \cdot (1 e^{-\rho \cdot P/T})$
- BGRP helps most for $\eta \gg \lambda$, $\rho \gg 1$ – Gain ~ *P / T*
- Graph: P = 100K, T = 1000, $\rho = 10$, $\lambda = .001$

Message Rate vs. Refresh Rate

Message Reduction vs. Quantum Size

- Single hop H (tree leaf)
- ρ micro-flows on H (birth/death, Poisson)
- Each micro-flow needs 1 unit of BW
- H manages aggregate BW reserv'n
- Quantization: Reserv'n must be $k \cdot Q$
- Hysteresis: Descent lags by Q

Quantization with Hysteresis

Message Reduction vs. Quantum Size

- Closed-form expression for state probabilities
- Quantization & Hysteresis cut message rate by: $e^{-\rho} \cdot \sum_{k=1}^{\infty} \left(\rho^{(k \cdot Q)} / \sum_{i=0}^{Q^{-1}} \left[\rho^i \cdot (k \cdot Q - i)! \right] \right)$
- E.g., $\rho = 100$ & Q=10, message rate cut by 100
- Multi-hop model with Quiet Grafting:
 - Further improvement
 - Approximate analysis
 - Simulation

Message Reduction vs. Load & Quantum Size

Message reduction factor

50

Conclusions

BGRP meets Challenges

- Scalable Protocol State
- Scalable Protocol Processing
- Scalable Protocol Bandwidth
- Scalable Data Forwarding
- Inter-Domain Administration

Future Work

- Detailed Protocol Specification
- Simulation
- Reference Implementation
- MPLS
- Lucent products
- Internet 2 (Q-bone)
- IETF: Draft; BOF; Working Group

Future Work: Bandwidth Broker Model

