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Abstract— We present a systematic method for constructing
3-D models of large outdoor sites. The method is designed for
a mobile robot platform and incorporates automated acquisition
of scanned data as well as automated view planning and model
construction. In our modeling process, we first use a preliminary
view or set of preplanned views to yield an initial, approximate,
3-D model of the target structure. Then, we update this model by
using a voxel-based procedure to plan and acquire the next best
view. This updating is repeated sequentially until an accurate
and complete 3-D model is finally obtained. The method was
successfully tested on a portion of the Columbia University
campus.

I. INTRODUCTION

Accurate three-dimensional models of large outdoor struc-
tures, such as buildings and their surroundings, have many
uses. These models can provide an educational walk around
a structure that is thousands of miles away. They can allow
engineers to analyze the stability of a structure and then test
possible corrections without endangering the original. They
can allow us to preserve historical sites that are in danger of
destruction, and they can allow us to preserve archaeological
sites at various stages of an excavation. In all of these cases,
it is important to have an accurate computer based 3-D model
of the large scale outdoor structure.

Methods for acquiring such models have progressively in-
creased in accuracy and have evolved from manual methods to
more automated methods. At the simpler end of the spectrum,
one can send a team of surveyors to take measurements by
hand and then have a designer put together a model from
those measurements. More sophisticated tools do exist. There
are a number of laser range scanners on the market that will
quickly generate a dense point cloud of measurements. With a
sufficient number of scans around the object being measured,
one can generate models of centimeter or better accuracy.

Although the models obtained by laser scanning are now
very accurate and the acquisition process is fast and automated,
there is still a major human component involved. The scanning
sensor must be physically moved from location to location,
and each scanning operation itself can take up to one hour
depending on the type of sensor and the density of the scan.
In addition, a plan must be laid out to determine where to take
each individual scan. This requires choosing efficient views
that will cover the entire surface area of the structure without
occlusions from other objects and without self occlusions from
the target structure itself. This is the essence of the so–called
view planning problem.

We propose to automate this view planning task by mount-
ing the scanning equipment on a mobile robot platform,

AVENUE [1] (see Fig. 1), that is capable of localizing and
navigating itself through an urban environment. View planning
software for model construction is then added to the robot’s
navigation system. This paper presents our work on the view
planning component of this system.

Our method of model building has two basic steps. In an
initial static modeling phase, the system acquires a preliminary
view or set of views of the target region. In the second phase,
a voxel-based method is used to choose the next best view
from information in the initial model. This phase now becomes
dynamic as each new scan updates our model and provides
new information for the next best view. The entire method
can produce an accurate and complete 3-D model of large
complicated structures.

II. RELATED WORK

Currently there are a number of other research projects
attempting to construct three-dimensional models of urban
scenes and outdoor structures. These projects include the 3-D
city model construction project at Berkeley [2], the outdoor
map building project at the University of Tsukuba [3], the
MIT City Scanning Project [4], and the volumetric robotic
mapping project by Thrun et al [5] which initially focused
on the mapping of mines but has recently been extended to
outdoor scenes. For the most part, however, these methods
leave the actual planning component to a human operator.

The view planning problem can be described as the task
of finding a set of sensor configurations which efficiently
and accurately fulfill a modeling or inspection task (see [6]
and [7]). The literature can be divided into three separate
categories. The first two deal with model-based and non-
model-based methods. The third describes methods applicable
to view planning for a mobile robot.

The model-based methods are the inspection methods in
which the system is given some initial model of the scene.
Early research focused on planning for 2-D camera-based
systems. Included in this are works by Cowan and Kovesi [8]
and by Tarabanis et al [9]. Later, these methods were extended
to the 3-D domain in works by Tarbox and Gottschlich [10]
and by Scott et al [11]. We can also include the art gallery
problems in this category. In two dimensions, these problems
can be approached with traditional geometric solutions such
as in Xie el al [12] and with randomized methods such as in
González-Baños et al [13]. The art gallery approach has also
been applied to 3-D problems by Danner and Kavraki [14].

The non-model-based methods seek to generate models
with no prior information. These include volumetric methods



Fig. 1. On the left is the ATRV-2 based AVENUE Mobile Robot. In the center is a photograph of our test case, Uris Hall, taken from the roof of a neighboring
building (picture courtesy of Alejandro Troccoli). On the right is a 2-D map of the building footprints on the northern portion of the Columbia campus. Also
shown on the right are the 9 scan locations (shown as black dots) determined by the initial two-dimensional view planner of method B. The views from these
locations cover 95% of the 2-D outline of Uris Hall.

such as Connolly [15], Banta et al [16], Massios and Fisher
[17], and Soucy et al [18]. There are also surface-based
methods which include Maver and Bajcsy [19], Pito [20], Reed
and Allen [21], and Sequeira et al ([22], [23]). A statistical
approach is taken by Whaite and Ferrie [24].

View planning for 2-D map construction with a mobile robot
is addressed by González-Baños et al [25] and Grabowski et
al [26]. View planning for 3-D scenes with a mobile robot is
addressed by Nüchter et al [27].

III. PLATFORM AND ENVIRONMENT

The platform for this project is the AVENUE mobile robot
([28], [1]). This robot has as its base unit the ATRV-2 model
originally manufactured by RWI (see Fig. 1). To this base
unit, we have added additional sensors including a differential
GPS unit, a laser range scanner, two cameras (including one
omnidirectional camera [29]), a digital compass, and wireless
Ethernet. The system is currently capable of localizing itself
with its sensor suite, planning a path to a specified location,
and navigating itself to that location.

Our initial tests of this system were performed on the
northern half of the Columbia University campus. We will
continue to use the campus and its surrounding area as a test
bed, but as our system matures we will move to larger sites
such as New York City’s Governors Island. The site modeling
procedure described in this paper was specifically tested on
Columbia’s Business School Building, Uris Hall (see Fig. 1).

IV. CONSTRUCTING THE INITIAL MODEL: PHASE 1

In the first stage of the modeling process, we wish to
compute an initial model of the target region. This model will
be based on limited information about the site and will most
likely have gaps in the data which must be filled in during
the later stage of the algorithm. The data acquired in this
initial stage will serve as a seed for the boostrapping method

used to complete the modeling process. The first stage has two
possible approaches.

A. Utilizing Existing 3-D Information

Method A for constructing an initial model involves uti-
lizing existing 3-D data about the scene. We have access
to 3-D data derived from stereo photogrammetry taken from
overflights of the Columbia campus. These data, along with
an initial scan taken from the ground, form the bases of our
initial model.

The photogrammetry provides sparse 3-D data that outlines
the rooftops of the buildings that were imaged. By adding
interpolated data to this point cloud, we simulate the higher
density of the scans generated by our ground-based sensor.
This sampling operation was necessary because the second
stage 3-D planning method makes use of a voxel representation
of the model and densely sampled point data are required for
our voxelization procedure.

In addition to these aerial data, we take a single initial scan
of the target building from the ground (see Fig. 2) to fill in
the model before passing it on to the second stage of our
method. This scan is taken from an arbitrary position in the
target region. We must then register the aerial data with the
initial ground scan. In our final robotic system this will be done
utilizing the localization features of our robot. In this paper,
we are only testing the view planning algorithm, and therefore
the scans are registered by manually surveying the location
of each individual scan. All further scans are registered in a
similar manner.

B. Planning the Initial Views

Method B for constructing an initial model makes use of
the two-dimensional ground map of the region (see Fig. 1) to
plan a series of environment views for our robotic scanning
system. All scanning locations in this initial phase are planned
in advance, before the robot does any data acquisition.



Fig. 2. On the top is the initial ground scan of the target building (with the
scanner’s automatic texture mapping enabled), best viewed in color. In the
map on the bottom the black dots represent the five scan locations used in
our 3-D NBV algorithm experiment. Scan 0 is the scan which provided the
initial model from phase one, and the remaining scans from phase two are
numbered in the order that they were computed by the algorithm.

Planning these locations resembles the classical art gallery
problem, which asks where to optimally place guards such that
all walls of the art gallery can be seen by the set of guards.
Solutions to this well-known problem can be applied to our
initial planning task. We wish to find a set of positions for
our scanner such that it can image all of the known walls in
our 2-D map of the environment. The entire view planning
problem can be solved by making the simplifying assumption
that if we can see the 2-D footprint of a wall then we can see
the entire 3-D wall. In practice, this is never the case, because
a 3-D part of a building facade or other wall that is not visible
in the 2-D map might obstruct a different part of the scene.
However, for an initial model of the scene to be used later
for view refinement, this assumption should give us enough
coverage to be sufficient.

The traditional art gallery problem assumes that the guards
can see all the way around their location, that is, they have
a 360 degree field of view. It also assumes that the guards
have an unlimited distance of vision and that the guards can
view a wall at any grazing angle. None of these assumptions
are true for most laser scanning systems, so the traditional
methods do not apply exactly to our problem. González-Baños
et al [13] proposed a randomized method for approximating
solutions to art gallery problems. We have chosen to extend

their randomized algorithm to include the visibility constraints
of our sensor, such as minimum and maximum range as well
as grazing angle.

In our version of the randomized algorithm, a set of initial
scanning locations are randomly distributed throughout the
free space of the region to be imaged. In our test region of Uris
Hall, we chose to use an initial set of 200 random scanning
locations. Next, the visibility of each of the viewpoints is
computed. We use the ray-sweep algorithm [30] to compute
the visibility polygon, which has two types of edges. The first
contains the obstacle edges that are on the boundary of the
region’s free space. The second contains intermediate edges
which lie in the interior of the free space. We then discard
the intermediate edges so that the only remaining edges of the
visibility polygon are on the boundary of the free space.

Each of these edges is clipped such that the remaining edges
satisfy the constraints inherent to our scanning device. For the
range constraints, we set a minimum and maximum range for
the scanner (with our scanner, between 1 meter and 100 meters
is the best range of distances for data acquisition). We also take
into account grazing angle, since our sensor loses accuracy at
grazing angles larger than 70o. We could additionally constrain
our sensor to have a limited field of view, however this is not
relevant for our current scanner and its 360o field of view (in
two dimensions). This entire procedure gives a set of obstacle
edges on the boundary which a viewpoint at a given location
can actually image.

Finally, we utilize a greedy cover algorithm to select an
approximation for the optimal number of viewpoints needed
to cover the entire scene. We first select the viewpoint which
sees the largest amount of the boundary, and we then remove
that section of the boundary from the coverage needed from
the remaining potential viewpoints. We repeat this process
until either the entire boundary has been covered or until
adding additional viewpoints adds too small an amount of new
information to warrant continued scanning. For our test, we set
the threshold such that the algorithm terminates if additional
scans add less than 2% of the total boundary of the target
object. Our algorithm typically returns between eight and ten
scanning locations for our test region (see Fig. 1) giving us a
coverage of 95% of the region’s obstacle boundary.

Choosing an efficient tour of our chosen viewpoints can be
formulated as a standard traveling salesman problem (TSP).
Although this problem is NP hard, good approximation algo-
rithms exist to compute a nearly optimal tour of the observa-
tion locations. The cost of traveling between two observation
points can be computed by finding the shortest unobstructed
path between them and then using the length of that path
as the cost. The existing path planning module computes the
shortest path between two points, and we can use that method
to calculate edge costs for our TSP implementation.

Once the initial set of viewpoints and the efficient tour have
been chosen, the robot needs to take scan data at each site.
The AVENUE system has existing path planning together with
localization and navigation modules [31], all of which can be
integrated into our view planner.



V. THREE DIMENSIONAL MODELING: PHASE 2

After the initial modeling phase has been completed, we
have a preliminary model of the environment. The model
will have holes in it, many caused by originally undetectable
occlusions. We now implement a 3-D view planning system
that makes use of this model to plan efficiently for further
views. In fact, this planning method can be used to fill in more
than just small holes, it only needs to be given some starting
data from which it can then generate more refined views. In
our tests of the method, we started with an initial arbitrarily
positioned ground scan together with aerial scan data.

This modeling phase does not plan all of its views at once.
Instead, it takes the initial three-dimensional model of the
environment and plans a single next best view that will acquire
what we estimate to be the largest amount of new information
possible, given the known state of the world. Once this scan
has been acquired, the new data are integrated into the model
of the world.

A. Voxel Space

Our method for the 3-D modeling stage requires a different
data representation than just the simple point cloud that we
were using in the initial stage. We need a way to tell what
parts of the scene have been imaged and what parts have not.
To do this, we maintain a second representation of the world
which keeps track of seen-empty, seen-occupied, and unseen
portions of the region to be imaged. This would most easily
be represented by a voxel map. Because this is a large scale
imaging problem, the voxels could be made rather big and
would still satisfy their purpose. A voxel size of one meter
cubed is sufficient to allow for computing occlusions in our
views.

The voxel representation is generated from the point cloud.
Before any data have been acquired, all voxels in the grid
are labeled as unseen. When a new scan is taken, voxels that
contain at least one data point from that scan are marked as
seen-occupied (even if a previous scan had labeled a voxel as
seen-empty). For a data point to have been acquired, there must
have been an unoccluded line of sight between the scanner
position and that data point. A ray is then traced from each
data point back to the scanner position. Each unseen voxel that
it crosses is marked as seen-empty. If the ray passes through a
voxel that had already been labeled as seen-occupied, it means
that the voxel itself may already have been filled by a previous
scan or another part of the current scan. This means that the
voxel itself is only partially occupied and we allow the ray to
pass through it without modifying its status as seen-occupied.
Using this method, our initial model is inserted into the voxel
space and subsequent scans update this space.

B. Next Best View

Our approach to this final modeling phase takes its cue from
Pito’s work [20], in which a grid of cells called the “positional
space” is arranged around the object to be modeled. In Pito’s
work, the objects being imaged are small and the sensor is
free to move anywhere around the object. He considers only

patches of unknown information at the boundary of his current
mesh and projects rays back from them into the positional
space. Pito chooses the cell in the positional space that views
the largest number of these unknown patches as the next view.

We extend this idea to a voxel–based representation. In our
case, we are restricted to operating on the ground plane with
our wheeled robot. We can exploit the fact that we have a
reasonable two-dimensional map of the region. This 2-D map
gives us the footprints of the buildings as well as a good
estimate of the free space on the ground plane in which we
can operate. We mark the cells on this ground plane which
are within the free space defined by our 2-D map as being
candidate views. We can then use these marked voxels on the
ground plane as our version of the “positional space.”

We wish to choose a location on this ground plane grid
that maximizes the number of unseen voxels that can be
viewed from a single scan. Considering every unseen voxel
in this procedure is unnecessarily expensive and should be
avoided. At the end of the first stage of our method, much
of the environment has already been imaged and many of
the “unseen” voxels will actually be regions in the interior
of buildings. We need to focus on those unseen voxels that
are most likely to provide us with useful information about
the faces of the buildings. These useful voxels are the ones
that fall on the boundaries between seen-empty regions and
unseen regions. These boundary regions are most likely to
contain previously occluded structures. If an unseen voxel is
completely surrounded by seen-occupied voxels or even by
other unseen voxels, then there is a good chance that it may
never be visible by any scan. We therefore choose to consider
only unseen voxels that are adjacent to at least one seen-empty
voxel.

Now that we have a set of appropriate unseen voxels
to consider, we proceed with the optimization. As possible
positions for the next best view, we use the centers of the
voxels which intersect the ground plane within the region’s
free space. At each such position, we keep a tally of the
number of unseen voxels that can be seen from that position.
Each position’s voxel tally starts at 0 and is incremented by 1
for every unseen voxel that it can view.

To determine whether an unseen voxel can be viewed, we
trace rays from its center to the center of each voxel on the
ground plane. If the ray intersects any voxel that is seen-
occupied, we discard the ray because it could be occluded
by the contents of that occupied voxel. If the ray intersects
any voxel that is unseen, we discard the ray because we are
uncertain of the contents of that voxel and it is still possible
that it will be occluded. We must also consider the minimum
and maximum range of the scanner. If the length of the ray is
outside the scanner’s range, then we discard the ray.

We should also consider the grazing angle condition. If the
grazing angle between a ray and the surface that we expect
at an unseen voxel is larger than the maximum angle allowed
by our sensor, we should discard the ray. Since, by definition,
these unseen voxels are unknown, we do not have a good idea
of what the surface normal at that location would be. To get



around this, we can look at the local area of voxels surrounding
the unseen voxel in question. We can construct a plane that
on average divides the unseen voxels in that local region from
the seen-empty voxels. This plane is an estimate of the surface
that divides the unseen region from the seen-empty region, and
its normal can be used to compute an estimated grazing angle.

If a ray has not been discarded by the occlusion, range, or
grazing angle condition, we can safely increment the ground
plane position that the ray intersects. At the end of this
calculation, the ground plane position with the highest tally
is chosen as the robot’s location to take the next scan. The
robot then plans a path and navigates to the chosen position.
It triggers a new scan once it has arrived, and that scan
is integrated into both the point cloud model and the voxel
representation. This entire second stage is then repeated until
we reach a sufficient level of coverage of the site. To decide
when to terminate the algorithm, we look at the number of
unknown voxels that would be resolved by the next iteration.
If that number falls below some small threshold value, then
the algorithm terminates; otherwise, it continues.

VI. TEST RESULTS

In this section, we report on our test of the view planning
algorithm in modeling Uris Hall. For the initial phase of our
two stage algorithm, we have chosen to use preexisting 3-D
aerial data and an initial ground scan of the target region as
described in section IV-A.

We initialized our voxel space such that all cells were
labeled unseen. First, the initial model was converted to voxels
and inserted into the voxel space. Voxels that contained data
points from the first scan were labeled as seen-occupied.
We then carved the seen-empty voxels by ray tracing from
the origin of the scanning system. Since the overhead data
was taken from a great height, we assumed an orthographic
projection for the voxels that originated from the aerial data.
For initial model data that originated from a ground scan, we
carved out the additional seen-empty voxels by ray tracing
using a perspective projection from the origin of that scanning
system. The resulting model can be seen in figure 3. Red
voxels are unseen and gray voxels are seen-occupied.

We performed our next best view computation as described
in section V-B. The NBV algorithm chose a view directly
behind the building which was a region for which we had
no preexisting scan information (see Fig. 3). We then moved
the scanner to that location, acquired data, and incorporated
those data into our voxel space. This process was repeated
until we reached our termination threshold. The results of
the first 2 NBV calculations can be seen in figure 3. There
were approximately two million voxels in our voxel space.
We set our termination threshold to 100 voxels. Our NBV
algorithm reached this threshold after four iterations. The four
scan locations plus the original ground scan location from the
initial modeling phase can be seen in figure 2.

The resulting final model is shown in figure 4. Most of
the site was accurately modeled, but there remained three
noticeable areas with holes still present. The first problem

Fig. 3. On the top left is a view of the voxelized initial model generated
by the first phase of our algorithm. Voxels in gray are labeled seen-occupied,
voxels in red are labeled unseen. On the top right is another view of the initial
model. The location of the first NBV computed by the second phase of our
algorithm is indicated by the green column. On the bottom left is a view of
the model after a scan from the first NBV has been incorporated into the
voxel space. On the bottom right is another view of the model in the previous
image with the second NBV indicated by the green column.

areas were regions on the front facade of the tower portion
of the building. These were areas that were occluded by the
lower portion of the building. Since our scanner was restricted
to scanning from the ground level and was also restricted in
how far away from the target building it could move (because
of surrounding buildings), these regions were not actually
resolvable with our robotic system. This problem can be seen
in the front view of the building on the left side of figure 4.
The other two problem regions were on the back side of the
model (seen on the right side of Fig. 4). There was a small
region near the center of the building that was occluded by
a sculpture about which we had no prior knowledge. There
was also a region at the corner of the building for which a
tree blocked our view. For all these three problems, fewer
than 100 voxels would actually have been resolvable from any
given NBV, and as a result the algorithm terminated.

Fig. 4. The final voxel space after all NBV computed scans have been
acquired and imported. On the left is a front view, on the right is a back
view. These figures are best displayed in color.



VII. CONCLUSION

We have presented a systematic method for constructing 3-
D models of large outdoor structures. The method is designed
for a mobile robot platform and incorporates automated ac-
quisition of scanned data as well as view planning and model
construction. The procedure starts from a 2-D ground map
of the environment, which defines the open space available
to the robot, and then progresses through two distinct stages.
A preliminary 3-D model is constructed either by utilizing
existing fragmentary 3-D information or by having the robot
compute a set of initial scans using our 2-D view planning
algorithm. This initial model is then refined by a dynamic
modeling phase which makes use of a voxel representation
of the environment and which successively plans a next best
view for the robot to acquire a complete model.

The method was tested on the Columbia University campus
and was used to construct an accurate 3-D model of Uris
Hall. For this particular test, the initial model was constructed
using 3-D aerial data and a single arbitrary ground scan as
described in section IV-A. This initial model had only a small
fraction of the detailed structure of the targeted building. As
a result, the subsequent NBV algorithm had to fill in much of
the scene. Nevertheless, the number of additional scans that
the algorithm required was small. Therefore, the total distance
the robot would need to travel would not be excessive even
though the robot would have to retrace its path several times
in order to reach the algorithm’s next best views.

For sites substantially larger than the one we tested, this path
retracing will present a significant problem as the number of
required NBV scans becomes large. To minimize this problem,
the static view planning method described in section IV-B
would be a very useful alternative for obtaining the initial
model. This procedure would actually require more initial
scans; however, they would all be precomputed, so that an
efficient tour of the views could be arranged. With more initial
coverage of the scene, the subsequent 3-D planning method
would require fewer iterations and smaller travel distances
to obtain the complete model. For very large scenes, one
encounters an additional difficulty. The number of unseen
voxels which must be considered for the NBV algorithm will
become extremely large even though we limit consideration of
such voxels to the boundaries of the open space. Our future
research will address these important problems associated with
very large sites.
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[25] H. González-Banos, E. Mao, J. C. Latombe, T. M. Murali, and A. Efrat,
“Planning robot motion strategies for efficient model construction,” in
International Symposium of Robotics Research, 1999, pp. 345–352.

[26] R. Grabowski, P. Khosla, and H. Choset, “Autonomous exploration via
regions of interest,” in IEEE IROS, 2003, pp. 27–31.
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