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Abstract

In this paper we present a system for topologically lo-
calizing a mobile robot using color histogram matching
of omnidirectional images. The system is intended for
use as a navigational tool for the Autonomous Ve-
hicle for Exploration and Navigation of Urban En-
vironments (AVENUE) mobile robot. Our method
makes use of omnidirectional images which are ac-
quired from the robot’s on-board camera. The method
is fast and rotation invariant. Our tests have indi-
cated that normalized color histograms are best for an
outdoor environment while normalization is not re-
quired for indoor work. The system quickly narrows
down the robot’s location to one or two regions within
the much larger test environment. Using this regional
localization information, other vision systems that we
have developed can further localize the robot.

1 Introduction

The determination of a mobile robot’s location in a
complex environment is an interesting and important
problem. Localization of the robot can be done geo-
metrically or topologically. In this paper, we present
a fast method of topological localization using the
analysis of color histograms. Our method can then
be used to help another vision system perform pre-
cise geometrical localization. This combination of
techniques is used to navigate our autonomous site
modeling robot AVENUE. The AVENUE project’s
[1] overall goal is to automate the site modeling pro-
cess which includes building geometrically accurate
and photometrically correct models of complex out-
door urban environments. These environments are
typified by large 3-D structures (i.e. buildings) that
encompass a wide range of geometric shapes and a
large scope of photometric properties.
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AVENUE uses a mobile robot platform and a soft-
ware system architecture that controls the robot to
perform human-assisted or fully autonomous data ac-
quisition tasks [7]. For a site modeling task, the robot
is provided with a 2-D map of its environment. High-
level planning software is used to direct the robot to
a number of different sensing locations where it can
acquire imagery that is fused into a photo-realistic
(i.e texture mapped) 3-D model of the site. The sys-
tem must plan a path to each sensing location and
then control the robot to reach that location. Posi-
tional accuracy is a paramount concern, since recon-
structing the 3-D models requires precise registration
among image and range scans from multiple acquisi-
tion sites.

The navigation portion of the AVENUE system [7]
currently localizes the robot through a combination
of three different sensor inputs. It makes use of the
robot’s built-in odometry, a differential GPS system,
and a vision system. The vision system matches
edges on nearby buildings with a stored model of
those buildings in order to compute the robots ex-
act location. However, to pick the correct building
model for comparison, the robot needs to know its
approximate location. In urban environments with
tall buildings, GPS performance can fail with too few
visible satellites. To alleviate this, we have developed
a two-level, coarse-fine vision sensing scheme that can
supplement GPS and odometry for localization. This
paper describes a fast method for topologically locat-
ing the robot using vision. Once the robot has been
coarsely located in the environment, more accurate
vision techniques can be utilized to calculate the ex-
act position and orientation of the robot [6].

The topological location needs to be fast as it works
with a set of real-time images which are acquired from
the moving mobile robot (see Fig. 1) and which re-
quire on-board processing using the mobile robot’s
limited computing power. Our method is based upon
histogram matching of omnidirectional images ac-
quired from the robot. The method is fast, rotation
invariant, and has been tested in both indoor and
outdoor environments. It is relatively robust to small



changes in imaging position between stored sample
database images and images acquired from unknown
locations. As in all histogram methods, it is sensitive
to changing lighting conditions. To compensate for
this, we have implemented a normalized color space
matching metric that improves performance.

2 Related Work

Topological maps for general navigation were origi-
nally introduced for use by mobile robots [9]. Many
of the methods involve the use of computer vision to
detect the transition between regions [12]. Recently
a number of researchers have used omnidirectional
imaging systems [11] to perform robot localization.
Cassinis et al. [2] used omnidirectional imaging for
self-localization, but they relied on artificially colored
landmarks in the scene. Winters et al. [19] also stud-
ied a number of robot navigation techniques utilizing
omnidirectional vision.

Our work most closely resembles that of Ulrich and
Nourbakhsh [17], who originally studied topological
localization of a mobile robot using color histograms
of omnidirectional images. The primary distinction
between the two works is that we address outdoor
scenes more thoroughly and we attempt to normalize
for variable lighting.

The concept of using color histograms as a method
of matching two images was pioneered by Swain and
Ballard [15]. A number of different metrics for finding
the distance between histograms have been explored
[8, 14, 18].

Other approaches include simultaneous localization
and map building [3, 5, 10, 16], probabilistic ap-
proaches [13, 16], and Monte Carlo localization [4].

3 Hardware and Environment

Our mobile robot, AVENUE, has as its base unit the
ATRV-2 model manufactured by RWI (see Fig. 1).
To this base unit we have added additional sensors in-
cluding a differential GPS unit, a laser range scanner,
two cameras, a digital compass, and wireless Ether-
net.

The sensor used for our color-histogram localiza-
tion method is an omnidirectional camera [11] man-
ufactured by Remote Reality. The on-board com-
puter can perform all of the image processing for the
method. For our experiments, the robot operated in
an indoor and outdoor environment (see Fig. 1).

For the indoor environment, we divided the area into

regions corresponding to each of the robot-accessible
hallways and rooms. The lighting did not change sig-
nificantly over time in this environment. The major
distinguishing characteristics between regions were
the occasional colorful posters on office doors.

For the outdoor environment, we divided the area into
regions corresponding to which buildings were most
prominent. It should be noted that the ground plane
around almost all of the buildings had the same brick
pattern. Therefore, aiming the omni–camera up (that
is, with the mirror facing down at the ground) was
not an option, because all of the regions would have
looked essentially the same. We needed to aim the
camera down in order to obtain a good view of the
buildings extending all the way to their tops. This
introduced a significant problem with the sun, which
would often be visible in the image and would satu-
rate many pixels. We were able to reduce this effect
by masking out a large portion of the sky in our im-
ages.

4 Vision Processing

The Database: Our method involves building up
a database of reference images taken throughout the
various known regions that the robot will be explor-
ing at a later time. Each reference image is then
reduced to three histograms, using the Red, Green,
and Blue color bands. Each histogram has 256 buck-
ets, with each bucket containing the number of pixels
in the image with a specific intensity. The location
of the pixels in the actual image plays no role in this
histogram. When the robot is exploring those same
regions at a later time; it will take an image, con-
vert that to a set of three histograms, and attempt to
match the histograms against the existing database.
The database itself is divided into a set of characteris-
tic regions. The goal is to determine in which specific
physical region the robot is currently located. The
indoor and outdoor environments have very different
lighting and color characteristics, and therefore we
have used two different methods of analysis for the
histograms.

The images themselves, both for the database and
for the later unknowns, are taken with the robot’s
on-board omnicamera. The images are taken at a
resolution of 640x480 with a color depth of 3 bytes
per pixel. We use an omnidirectional camera instead
of a standard camera because it allows our method
to be rotationally invariant. Images taken from the
same location but with a different orientation will dif-
fer only by a simple rotation. Since the histogram



Figure 1: The ATRV-2 Based AVENUE Mobile Robot (left), the outdoor campus environment as seen from
above (center) and in outline form (right).

only takes into account the colors of the pixels and
not their position within the image, two histograms
taken from the same location but from a different ori-
entation will essentially be the same. This rotational
invariance of the camera allows us to cut down the
size of our database considerably, since only one im-
age at a given physical location is needed to get a
complete picture of the surrounding area. However,
we would still have problems if we were to build our
database by driving the robot straight through the
center of each region. At different locations in a given
region, the proximity of a building or other structure
is important. We therefore build up a more compre-
hensive database by having the robot zigzag through
the test environment. This allows us to obtain repre-
sentative images of a given region from different posi-
tions within that region. Although this does increase
the size of the database, it is not a major problem be-
cause the database is stored as a series of histograms,
not images, and the comparison between each of the
256-bucket histograms is very fast.

The learning phase of this algorithm, starts with the
user inputing which region the robot is about to pass
through. At this point the robot starts taking an
omni-image once every two seconds. The user drives
the robot throughout the region in a zigzag pattern,
allowing maximal coverage. As each image is cap-
tured by the frame grabber, the training program
immediately computes the three color histograms for
that particular image. Only the histograms need to
be stored, not the images. People walking through
the field of view (at a reasonable distance away) have
a minimal effect on the histograms.

Masking: The histograms are actually constructed
only after we have performed some preprocessing on
the images. Unwanted portions of the omni-image
must be eliminated. First, we only consider pixels
within the circular mirror and ignore the outer pixels
resulting from the tube which surrounds the optical
equipment. We do this by finding the center and ra-
dius of the mirror in the image and then ignoring
all pixels outside that circle (see Fig. 2). Second,
there are fixed pieces of the robot’s superstructure
that are always present and always in the same ori-
entation (since these pieces and the camera are at-
tached to the robot and never move with respect to
each other). We create a bit-map mask, mark all of
the pixels that lie on the robot’s superstructure, and
apply that mask to each image that we take. This
way we only concentrate on the pixels that should
be different from image to image. Finally, we need
to eliminate the camera itself from the omni-image.
This is done in a manner similar to our handling of
the unwanted outer pixels. We take the center and
the radius of the camera in the image, and exclude
all pixels inside the corresponding circle. Because our
camera was positioned to look straight up at the sky
and because the sky can vary greatly in color, we also
needed some way to minimize the amount of sky visi-
ble. Instead of having the inner pixel mask just cover
the camera, we extended it out even further to block
out much of the sky. However, if we were to enlarge
this mask too much, we would cut off much of the
surrounding buildings. These buildings are in fact a
key feature for our algorithm because they often are
of different colors. By experimenting with different



Figure 2: Outdoor Omni-Image Unmasked (top left), Masked (top center), Indoor Omni-Image Unmasked (top
right), Unwarped Outdoor Omni-Image (bottom).

mask radii, we were able to find a reasonable com-
promise mask size which eliminated much of the sky
without significantly cutting off the tops of buildings.

Environmental Effects: The controlled lighting
environment of the indoor regions cannot be dupli-
cated in our outdoor tests even with the most cooper-
ative weather conditions. In order to reduce variation
as much as possible, we used a normalization process
on the images before histograming them. This pro-
cess uses R

R+G+B
, G

R+G+B
, and B

R+G+B
of each given

pixel for the histograming. This gives us the percent-
age of each color at that particular pixel regardless of
the overall intensity of that pixel. So, in theory, for a
fixed physical location, if a pixel of a certain color was
highly illuminated in one image and was in a slight
shadow in another image, there should be the same
percentages of each color after normalization in both
images. In the indoor environments, we could use
either the normalized or the non-normalized images
because of the low variation in lighting conditions.
We chose the normalized images for use in the highly
variable outdoor images.

Matching: At this point, our software has a col-
lection of histograms grouped together according to
their region. We can now use this database to try to
match an unknown image to it and find the proper
region for this unknown. When we initially compare
two histograms together, we treat each color band
separately. Going through bucket by bucket, we com-
pute the absolute value of the difference between the
two histograms at that particular bucket and then
sum these differences across all buckets. This metric
measures the difference between the two histograms

in each of the red, green, and blue bands. Experi-
mentally, we find that taking the sum of the three
differences across the color bands gives a much bet-
ter indicator than any one of the color bands taken
by itself.

To find the reference region that corresponds to an
unknown image, we histogram the unknown image
and use our metric to determine the difference be-
tween it and each of the histograms stored in our
database. We then pick the histogram with the small-
est difference in each of the regions in our database.
Of these smallest differences, we then pick the very
smallest and choose the region of that known refer-
ence histogram as the region for the unknown. This
method allows us to find the region with the abso-
lute minimum histogram difference, but it also per-
mits us to identify those regions whose histograms
have a difference which is within a certain range of
the absolute minimum. By reducing the number of
possible regions, we can more effectively search for a
precise location using more exact vision methods (see
the discussion in section 6).

5 Experiments

In figure 4, a typical set of normalized and non-
normalized histograms in the three color bands is
shown for an outdoor image.

We built a reference database of images which were
obtained from the robotics laboratory and from the
other offices and hallways on our floor. There were
12 distinct regions, each with an approximately equal



Region Images Non-Normalized Normalized
Tested % Correct % Correct

1 21 100% 95%
2 12 83 % 92%
3 9 77% 89%
4 5 20% 20%
5 23 74% 91%
6 9 89% 78%
7 5 0% 20%
8 5 100% 40%
Total 89 78% 80%

Region Images Non-Normalized Normalized
Tested % Correct % Correct

1 50 58% 95%
2 50 11% 39%
3 50 29% 71%
4 50 25% 62%
5 50 49% 55%
6 50 30% 57%
7 50 28% 61%
8 50 41% 78%
Total 400 34% 65%

Figure 3: Results of an indoor test (left). Test images were taken from only 8 of 12 regions. Results of an
outdoor test (right). Test images were taken from all 8 regions.
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Figure 4: The normalized and non-normalized his-
tograms of a typical masked outdoor omni-image.

number of images (50) in them. We created two ver-
sions of this database, one normalized and one non-
normalized. All images had the necessary masking.
We then took a second set of images throughout our
indoor region to be used as unknowns. When the non-
normalized unknown images were compared against
the non-normalized database, we obtained an over-
all success rate of 78% (see Fig. 3). When utilizing
the normalized database with normalized unknowns,
we obtained a success rate of 80% (see Fig. 3). The
success rate was consistently good throughout the in-
door regions with the exceptions of regions 4 and 7.
These two regions are in fact located at the corners
of the hallways. They are small transition areas be-
tween two much larger and more distinctive regions,
and they are also extremely similar to each other.
For these reasons, our algorithm had difficulty distin-
guishing the two regions from each other and from
the larger regions on which they bordered.

We repeated the same test on a set of outdoor regions
that spanned the northern half of the Columbia cam-
pus. There were 8 distinct regions in this test, and
each of these regions had approximately 120 images.
We again created two versions of the database, one
normalized and one non-normalized. We then took
a second set of outdoor images to be used as un-
knowns. When using non-normalized images for the
histograms, we achieved a success rate of 34% (see
Fig. 3). When using normalized images, the suc-
cess rate was increased to 65% (see Fig. 3). The
majority of the regions had consistently good success
percentages, with the exception of region 2. This re-
gion was a very special case because one of the large
buildings which dominated a different region (region
1) was still prominently visible when the robot was
in region 2. However, the two regions were at a large
enough physical distance apart that it would not have
been appropriate to consider them a single region.

Using the set of outdoor unknowns, we also computed
all of the regions whose histogram differences were
within 10% of the minimum histogram difference. In
most cases there were only two other regions that fell
within this range, and 80% of the time one of those
regions was the correct one.

6 Summary and Future Work

When we performed our matching tests with the in-
door database, we found that the difference between
the results of using non-normalized images versus nor-
malized images was not significant. The success rate
for the normalized ones was 80%, only about 2% bet-
ter than for the non-normalized. When we performed
our database matching tests outdoors, the normal-
ized images had a success rate that was about twice
as high as the non-normalized. This was what we



were expecting. However, the success rates were still
noticeably lower outdoors than indoors. The normal-
ized outdoor images gave us success rates of about
65%. There was however a very helpful feature. We
could identify a small number of regions whose his-
tograms were close to the best-matched histogram.
This reliably narrowed down the possible regions for
the robot from 8 to 2 or 3.

The color histogram method described in this paper
is part of the larger AVENUE project, which con-
tains another vision based localization system. This
other localization method matches images of the fa-
cades of nearby buildings with pre-existing models
of those buildings. From these matches, exact infor-
mation on the position of the robot can be found [6].
However, this system assumes that we have some pre-
vious information as to where in the environment the
robot actually is. Using previous, presumably accu-
rate, odometry and GPS data, it then attempts to
match the robot’s environment with models of build-
ings that should be nearby. However, one can not
always make the assumption that the GPS data or
odometry data is that good. In particular, when the
robot is very near buildings, GPS data is virtually
useless. The algorithm presented in this paper can
narrow down the general location to within two or
three possibilities. This greatly decreases the num-
ber of models against which the main vision system
has to attempt a match. The combination of the two
systems will allow us to accurately localize our robot
within its test environment without any artificial land
marks or pre-existing knowledge about its position.

What is needed next is a fast secondary discrimina-
tor to distinguish between the two or three possible
regions to further decrease the work load of the main
vision system. One possibility would be to record
the robot’s initial region and then keep track of the
regions already passed, thus narrowing down the pos-
sibilities for the next region. We also plan to add the
use of edge images to the system so that we can en-
code some geometric information into our database
that will be independent of the lighting of the scene.
A metric based on the edge images could then be used
as a secondary discriminator on the narrowed-down
possibilities resulting from the algorithm presented in
this paper.
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