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ABSTRACT
We introduce the notion of non-monotone utilities, which
covers a wide variety of utility functions in economic the-
ory. We show that it is PPAD-hard to compute an approxi-
mate Arrow-Debreu market equilibrium in markets with lin-
ear and non-monotone utilities. Building on this result, we
settle the long-standing open problem regarding the compu-
tation of an approximate Arrow-Debreu market equilibrium
in markets with CES utilities, by proving that it is PPAD-
complete when the Constant Elasticity of Substitution pa-
rameter, ρ, is any constant less than −1.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]

Keywords
Market equilibrium, computational complexity,
CES utility, PPAD, FIXP

1. INTRODUCTION
General equilibrium theory [13,20] is regarded by many as

the crown jewel of Mathematical Economics. It studies the
interactions of price, demand and supply, and is built on the
demand-equal-supply principle of Walras [36]. A remarkable
market model central to this field is the one of Arrow and
Debreu [3], which has laid the foundation for competitive
pricing mechanisms [3,31].

In this model, traders exchange goods at a marketplace to
maximize their utilities.1 Formally, an Arrow-Debreu mar-
ket M consists of a set of traders and a set of goods, denoted
by {G1, . . . , Gm} for some m ≥ 1. Each trader has an initial
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production. Here we focus on the setting of exchange only.
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endowment w ∈ R
m
+ , where wj denotes the amount of Gj

she brings to the market. Each trader also has a real-valued
utility function u. Given a bundle x ∈ R

m
+ of goods, u(x) is

her utility if she obtains x after the exchange.
Let π ∈ R

m
+ denote a price vector, where πj denotes the

price of Gj . Each trader first sells her initial endowment w
at π to obtain a budget of w ·π. Then she spends it to buy a
bundle of goods x from the market to maximize her utility.
We say π is a market equilibrium of M , if we can assign each
trader an optimal bundle, with respect to π, such that the
total demand equals the total supply and the market clears.

The celebrated theorem of Arrow and Debreu [3] asserts
that under mild conditions every market has an equilibrium.
Their proof, however, is based on Kakutani’s fixed point the-
orem [25], which is non-constructive and non-algorithmic.

The problem of computing a market equilibrium was first
studied in the pioneering work of Scarf [31]. During the past
decade, starting with [14], the computation/approximation
of market equilibria has been studied intensively, and much
progress has been made. This includes efficient algorithms
for various types of utility functions and market models (e.g.
[8,9,15,16,24,34,37] many of which are based on the convex
programming approach of [19,28]) and complexity-theoretic
results (e.g., [4, 6,10,35]).

Markets with CES Utilities
We study the complexity of approximating market equilibria
in Arrow-Debreu markets with CES (Constant Elasticity of
Substitution) utilities [26].

A CES utility function takes the following form:

u(x1, . . . , xm) =
(

∑m
j=1 αj x

ρ
j

)1/ρ

(1)

where αj ≥ 0 for all j; and the parameter ρ < 1 and ρ 6= 0.
The family of CES utilities was first introduced in [17,33].

It was used in [2] to model production functions, and predict
economic growth. It has been one of the most widely used
families of utility functions in economics literature [12, 32],
due to its versatility and flexibility in economic modeling.
For example, the popular modeling language MPSGE [30]
for equilibrium analysis uses CES functions (and their gen-
eralization to nested CES functions) to model consumption
and production. The parameter ρ of a CES utility function
is related to the elasticity of substitution σ, a measure of how
easy it is to substitute different goods or resources (namely,
ρ = (σ − 1)/σ). Selecting specific values for ρ between 1
and −∞ yields various basic utility functions and models
different points in the substitutes-complements spectrum,
ranging from the perfect substitutes case when ρ = 1, which



corresponds to linear utilities, to the intermediate case when
ρ → 0, which corresponds to Cobb-Douglas utilities, and to
the perfect complements case when ρ → −∞, which corre-
sponds to Leontief utilities.

Nenakov and Primak [28] showed a convex program that
characterizes the set of equilibria when ρ = 1, i.e., all utility
functions are linear. Jain [24] discovered the same convex
program independently, and used the ellipsoid algorithm to
give a polynomial-time exact algorithm. Indeed this convex
program can also be applied to characterize the set of equi-
libria in CES markets, when ρ > 0. In [7], Codenotti et al.
gave a different convex formulation for the set of equilibria in
CES markets with −1 ≤ ρ < 0. The range of ρ < −1, how-
ever, has remained an intriguing, well-known open problem.
For this range, it is known that the set of market equilibria
can be disconnected, and thus, one cannot hope for a direct
convex formulation.

The failure of the convex-programming approach seems to
suggest that the problem might be hard. Moreover, when ρ
→ −∞, CES utilities converge to Leontief utilities for which
finding an approximate market equilibrium is known to be
PPAD-hard [10]. This argument, however, is less compelling
because the fact that a market with CES utilities converges
to a Leontief market, as ρ → −∞, does not imply that the
equilibria of those CES markets converge to an equilibrium
of the Leontief market at the limit, Actually, it is easy to
build examples where this is not the case, and in fact, it is
possible that the CES markets have equilibria that converge
but the Leontief market at the limit does not even have any
equilibrium or approximate equilibrium.

Moreover, with respect to the decision problem of deter-
mining whether an equilibrium exists, CES utilities do not
behave like the Leontief limit but rather like the tractable
utilities. Typically, the tractability of the equilibrium exis-
tence problem conforms with that of the computation prob-
lem (under standard sufficient conditions for existence). For
example, both the existence problem [22] and the computa-
tion problem [24] for linear utilities can be solved in poly-
nomial time, and the same holds for Cobb-Douglas utili-
ties [18], whereas the existence problem is NP-hard for Leon-
tief utilities [10] and for additively separable and piecewise-
linear utilities [35] (and their computation problem is PPAD
hard [4,10,35]). However, it is known [7] that the existence
problem for CES utilities is polynomial-time solvable for all
(finite) values of ρ. This suggests that the equilibrium com-
putation problem for CES might be also tractable.

The difficulty in resolving the complexity of CES markets
with a constant parameter ρ <−1 is caused by the continu-
ous nature of the problem. Most, if not all, of the problems
previously shown to be PPAD-hard have a rich underlying
combinatorial structure, whether it is to compute an appro-
ximate Nash equilibrium in a normal-form game [5,11] or to
compute an approximate equilibrium in a market with Leon-
tief utilities [10]; and with additively separable and concave
piecewise-linear utilities [4,35]. In contrast, given any price
vector π, the optimal bundle x of a CES trader is a continu-
ous function over π, with an explicit algebraic form (see (2)
in Section 2). The problem of finding a market equilibrium
then boils down to solving a system of polynomial equations
over variables π, and it is not clear how to extract from it a
useful combinatorial structure.

Our first result resolves the complexity of approximating
equilibria in CES markets for all values of ρ < −1:

Theorem 1. For any fixed rational number ρ < −1, the
problem of finding an approximate market equilibrium in a
CES market of parameter ρ is PPAD-complete.

It is worth mentioning here that the notion of approxima-
te market equilibria used in Theorem 1 is one-sided, i.e., π is
an ǫ-approximate market equilibrium if the excess demand
of each good is bounded from above by ǫ-fraction of the total
supply. While the two-sided notion is more commonly used
in the literature (which we refer to as ǫ-tight approximate
market equilibria), i.e., the absolute value of excess demand
is bounded, we present an unexpected CES market example
with ρ < 0 in Section 2.2 and show that any of its 1/2-tight
approximate equilibria requires exponentially many bits to
describe. By contrast, we show that for the one-sided notion
there is always an ǫ-approximate equilibrium with a poly-
nomial number of bits, and, furthermore, its computation is
in PPAD. We show also that the problem of computing an
actual equilibrium (to any desired precision) is in FIXP.

Non-Monotone Families of Utilities
The resolution of the complexity of CES markets with para-
meter ρ < −1 inspired us to ask the following question:

Can we prove a complexity dichotomy
for any given family of utility functions?

Formulating it more precisely, we use U to denote a generic
family of functions that satisfy certain mild conditions (e.g.,
they should be continuous and quasi-concave).

The question now becomes the following: Does there exist
a mathematically well-defined property on families of func-
tions such that: For any U satisfying this property, the equi-
librium problem it defines is in polynomial time; For any U
that violates this property, the problem is hard.

For the algorithmic part of this question, a property that
has played a critical role in the approximation of market eq-
uilibria is WGS (Weak Gross Substitutability). Here a fam-
ily U of utilities satisfies WGS if, for any market consisting
of traders with utilities from U , increasing the prices of some
goods while keeping all other prices fixed cannot cause a de-
crease in the demand of any good with fixed price. WGS im-
plies that the set of equilibrium prices is convex, the classical
tatonnement process always converges to an equilibrium [1]
and a discrete version of tatonnement [8] converges in poly-
nomial time to an approximate equilibrium. Another general
property that also implies convexity of the set of equilibria
is WARP (Weak Axiom of Revealed Preference, see [26] for
definition and background).

While several families of utilities satisfy WGS or WARP,
they do not cover all efficiently solvable market problems,
e.g., the family of CES utilities with parameter ρ : −1 ≤
ρ < 0 does not satisfy WGS or WARP, but has a convex
formulation after a change of variables [7].

For the hardness part of this question, our knowledge is
much more limited. Only for a few specific and isolated fam-
ilies of utilities mentioned earlier, is the problem of finding
an approximate equilibrium shown to be hard. And the re-
duction techniques developed in these proofs are all different,
each fine tuned for the utilities being considered.

Our second contribution is a PPAD-hardness result that
is widely applicable to any generic family of utility functions
as long as it satisfies the following condition:



Definition 1.1. (Informal). U is a non-monotone
family of utilities if there exists a market M with utilities
from U, a price vector π, and a good G of M , such that:
1) the excess demand of good G at π is nonnegative, and
2) raising the price of G at π, while keeping all other
prices the same, (strictly) increases the demand of G.

Examples of non-monotone families include CES with ρ<
−1, Leontief, and separable, piecewise linear functions (see
Section 2.3). Our second result shows that non-monotonicity
implies the following hardness result:

Theorem 2. (Informal). If U is non-monotone, then
the following problem is PPAD-hard: Given a market in
which the utility of each trader is either linear or from U,
find an approximate equilibrium.

We remark that there is clearly a gap between WGS and
non-monotonicity. It remains an open problem as whether
we can further reduce the gap, and whether we can remove
the use of linear functions in Theorem 2.

The rest of the paper is organized as follows. In Section 2,
we give basic definitions and state formally our main results.
Sections 3 and 4 give the PPAD-hardness proofs (Theorems
2 and 1). Sections 5 shows that the problem of computing an
equilibrium for CES markets is in FIXP and Section 6 shows
that computing an approximate equilibrium is in PPAD.

2. PRELIMINARIES AND MAIN RESULTS
Notation. R+ is the set of nonnegative real numbers; ‖·‖

denotes the L∞ norm. Given a vector y ∈ R
m and c > 0,

we use B(y, c) to denote the set of x with ‖x− y‖ ≤ c.

2.1 Markets and Market Equilibria
An Arrow-Debreu market M consists of a set of traders,

{T1, . . . , Tn} and a set of goods, {G1, . . . , Gm}. Each trader
Ti has an initial endowment wi ∈ R

m
+ , where wi,j denotes

the amount of good Gj she initially owns, and a utility func-
tion ui : R

m
+ → R+, where ui(xi,1, . . . , xi,m) represents the

utility she derives if the amount of Gj she obtains by the
end is xi,j for each j ∈ [m].

Let π = (π1, . . . , πm) 6= 0 be a nonnegative price vector,
where πj ≥ 0 denotes the price per unit of Gj . Each trader
Ti sells her initial endowment wi at prices π and obtains a
budget of wi · π =

∑

j∈[m] wi,j · πj . She then spends the

budget to buy a bundle of goods xi ∈ R
m
+ from the market

to maximize her utility.
Let opti(π) denote the set of optimal bundles (demands)

of Ti with respect to π, i.e., the set of vectors x ∈ R
m
+ that

maximize ui(x) subject to x · π ≤ wi · π. The (aggregate)
excess demand Z(π) consists of all the vectors z of the form
z = x1 + · · · + xm − (w1 + · · · + wm), where xi ∈ opti(π)
for each i ∈ [n]. For each Gj , we use Zj(π) to denote the
projection of Z(π) on the jth coordinate. In general, Z(π)
is a set and Z is a correspondence. Also note that given a
z ∈ Z(π), when zj > 0 the traders demand more of Gj than
the total available supply; when zj < 0 they demand less.

We say π is a market equilibrium of M if we can assign
each trader Ti an optimal bundle xi with respect to π, such
that the total demand equals the total supply and the mar-
ket clears, i.e. π is a market equilibrium iff 0 ∈ Z(π). Since
opti(π) is invariant under scaling of π (by a positive factor),
the set of market equilibria is closed under scaling.

Let Wi =
∑

i∈[n] wi,j denote the total supply of Gj . Now
we define two versions of approximate market equilibria:

Definition 1. We call π an ǫ-approximate market
equilibrium of M , for some ǫ > 0, if there exists a vector
z ∈ Z(π) such that zj ≤ ǫWj for all j ∈ [m].

We call π an ǫ-tight approximate market equilibrium
if there exists z ∈ Z(π) such that |zj | ≤ ǫWj for all j.

Both notions of approximate equilibria have been used in
the literature. While the two-sided notion is more commonly
used, we present a CES market with ρ < 0 in Section 2.2, of
which every 1/2-tight approximate equilibrium requires an
exponential number of bits to describe.

In general, a market equilibrium may not exist. The pio-
neering theorem of Arrow and Debreu [3] asserts that under
certain mild conditions a market always has an equilibrium.
Here we use the weaker sufficient condition of Maxfield [27].
We say a utility function u : Rm

+ → R+ is non-satiated with
respect to the kth good, if for any x ∈ R

m
+ , there exists a

y ∈ R
m
+ such that u(y) > u(x) and yj = xj for all j 6= k. We

say u is locally non-satiated if for any vector x ∈ R
m
+ and any

ǫ > 0, there exists a y ∈ B(x, ǫ) such that u(y) > u(x). If
the utility of a trader is locally non-satiated then her optimal
bundle must exhaust her budget. Hence, if every trader in
M has a locally non-satiated utility, then Walras’ law holds:
z · π = 0 for all z ∈ Z(π).

From a market M , we can define a directed graph, called
the economy graph of M , which has a vertex for each good
and has an edge from Gi to Gj if there is a trader Tk such
that wk,i > 0 and uk is non-satiated with respect to Gj . We
call M strongly connected if its economy graph is. Maxfield
[27] showed that if M is strongly connected and all utilities
are continuous, quasi-concave, and locally non-satiated, then
M always has an equilibrium. (Maxfield used a graph with
the traders as vertices but the two graphs are related.)

2.2 CES Utility Functions
We call u a CES function with parameter ρ < 1, ρ 6= 0, if

it is of the form given in (1). Let T denote a trader with a
CES utility u, initial endowment w, and let S = {j ∈ [m] :
αj > 0} be the goods in which she is interested. If π > 0 is
a positive price vector, then using the KKT conditions one
can show that T has a unique optimal bundle x where

xj =

(

αj

πj

)1/(1−ρ)

× w · π
∑

k∈S α
1/(1−ρ)
k · π−ρ/(1−ρ)

k

(2)

for each j ∈ S. When a CES market M is strongly connec-
ted, then πj must be positive, for all j ∈ [m], in any (exact
or approximate) market equilibrium of M .

The problem of whether there exists an equilibrium in a
CES market can be solved in polynomial time: a simple nec-
essary and sufficient condition for the existence of an equili-
brium was shown in [7] based on the decomposition of the
economy graph into strongly connected components. They
furthermore showed that the computation of an equilibrium
for the whole market (if the condition is satisfied) reduces
to the computation of equilibria for the submarkets induced
by the strongly connected components. Thus, we will focus
on strongly connected markets.

As a CES market may not have a rational equilibrium in
general, even when ρ and all the coefficients are rational, we



study the approximation of market equilibria. To this end,
we define the following three problems:

1. ces: The input of the problem is a pair (k,M), where
k is a positive integer encoded in unary (k represents the
desired number of bits of precision), and M is a strongly
connected market in which all utilities are CES, with the
parameter ρi < 1 of each trader Ti being rational and given
in unary (because ρ appears in the exponent in the utility
and demand functions). Both the endowments wi,j and
coefficients αi,j are rational and encoded in binary. The
goal is to find a price vector π that is within 1/2k of some
equilibrium in every coordinate, i.e., such that there exists
an (exact) equilibrium π

∗ of M with ‖π − π
∗‖∞ ≤ 1/2k .

2. ces-approx: The input is the same as ces. The goal is
to find an ǫ-approximate market equilibrium, ǫ = 1/2k.

3. For each (fixed) rational number ρ < −1, we also define
the following problem ρ-ces-approx: The input is the
same as ces, except that the utilities of all the traders have
the same fixed parameter ρ, which is considered as a
constant, not part of the input. The goal is to find an
ǫ-approximate market equilibrium of M , where ǫ = 1/k.

Next we present the following example to justify the use
of ǫ-approximate market equilibria, instead of the two-sided
ǫ-tight approximate market equilibria:

Example 2.1. Fix a ρ < 0 and let r = |ρ| > 0. Let M
denote the following CES market with parameter ρ. Here
M has n goods G1, . . . , Gn and n traders T1, . . . , Tn. Each
Ti, i ∈ [n], has 2i(n+1) units of good Gi at the beginning.
Each Ti, i ∈ [n− 1], is equally interested in G1 and Gi+1

so in particular, T1 is interested in only G1 and G2. Tn is
only interested in G1. The economy graph of M is clearly
strongly connected. We prove in the full version that any
(1/2)-tight approximate equilibrium π must have

maxj πj

/

minj πj ≥ 2n(1+r)n−2

We state our main results. First in Section 5 and Section
6, we show the membership of ces in FIXP [21] and the
membership of ces-approx in PPAD [29], respectively:

Theorem 3. ces is in FIXP.

Theorem 4. ces-approx is in PPAD.

We prove in Section 4 that CES markets are PPAD-hard
to solve when ρ < −1. Combined with Theorem 4, we have:

Theorem 5. For any rational number ρ < −1, the
problem ρ-ces-approx is PPAD-complete.

The hard instances we construct in the proof of Theorem
5 are in fact very restricted in the sense that each trader
is interested in either one or two goods and applies one of
the following utility functions: u(x) = x, u(x1, x2) = (xρ

1 +

xρ
2)

1/ρ, or u(x1, x2) = (α · xρ
1 + xρ

2)
1/ρ, where α is a positive

rational constant that depends on ρ only.

2.3 Non-Monotone Markets and Utilities
We use U to denote a generic family of continuous, quasi-

concave and locally non-satiated functions, e.g., linear func-
tions, piecewise-linear functions (see Example 2.4), CES fun-
ctions for a specific parameter of ρ, e.g. ρ = −3, or even the

finite set of three functions given above. Ideas behind the
proof of Theorem 5 allow us to prove a PPAD-hardness re-
sult for approximating equilibria of markets in which the
utility of each trader is either linear or from U , when U is
“non-monotone”. We first formally set up the problem.

First, we assume that U is countable and each function
g ∈ U corresponds to a unique binary string, so that a trader
can specify a function g ∈ U using a binary string. In a
market with m goods, we say a trader “applies” a function
g ∈ U if her utility function u is of the form u(x1, . . . , xm) =
g (xℓ1/b1, . . . , xℓk/bk) where g ∈ U has k ≤ m variables;
ℓ1, . . . , ℓk ∈ [m] are distinct indices; and b1, . . . , bk are posi-
tive rational numbers (representing a setting of units for the
goods by scaling). In this way, each trader can be described
by a finite binary string. Second, we assume that there ex-
ists a univariate function g∗ ∈ U that is strictly monotone
(i.e., can have single-minded traders that are interested in
only one good). We use MU to denote the set of all markets
in which every trader has a rational initial endowment and
applies a utility function from U . We also use M∗

U to denote
the set of markets in which every trader has a rational initial
endowment and applies either a utility function from U or a
linear utility with rational coefficients.

We define non-monotone markets and families of utilities:

Definition 2. Let M be a market with k ≥ 2 goods. We
say M is non-monotone at a price vector π > 0 if for some
c > 0 and some good in M , say G1, the excess demand
Z1(y1, . . . , yk) of G1 is a continuous function (instead of
a correspondence) over y ∈ B(π, c), with Z1(π) ≥ 0; the
partial derivative of Z1 with respect to y1 exists in B(π, c),
is continuous over B(π, c), and is (strictly) positive at π.

We call M a non-monotone market if there exists such a
price vector π > 0. We call U a non-monotone family of
utilities if there exists a non-monotone market in MU .

By definition, M being non-monotone at π means that
raising the price of G1 while keeping the prices of all other
goods the same would actually increase the total demand
of G1. It is easy to see, using the continuity of Z1 and its
partial derivative ∂Z1/∂y1 in B(π, c), that we can require,
without loss of generality, the price vector π to be rational in
Definition 2. However, Z1(π) and (∂Z1/∂y1)(π) do not have
to be rational. Also, M is not necessarily strongly connected.
In our hardness proofs we will use the market M and price
π of the definition as a black-box gadget. Although the
size of the gadget market can be treated as a constant (it
only depends on the family U), we will need to compute
approximately Z1(π) to desired precision. We say a real
number β is moderately computable if there is an algorithm
that, given γ > 0, outputs a γ-rational approximation β′ of
β: |β′ − β| ≤ γ, in time polynomial in 1/γ.

Now we can state our PPAD-hardness result for a non-
monotone family U of functions. We use U-market to de-
note the following problem: The input is a pair (k,M),
where k is a positive integer in unary and M is a strongly
connected market from M∗

U encoded in binary. The goal is
to output an ǫ-approximate equilibrium of M with ǫ = 1/k.

Theorem 6. Let U be a non-monotone family of utility
functions. If there exists a market M ∈ MU such that M
is non-monotone at a rational price vector π > 0 and the
excess demand Z1(π) of G1 at π is moderately computable,
then the problem U-market is PPAD-hard.



Next, we give three examples of non-monotone markets.

Example 2.2. (CES Utilities with ρ < −1) Consider
the following market M with two goods G1 and G2, and
two traders T1 and T2. T1 has one unit of G1, T2 has one
unit of G2, and the utilities are u1(x1, x2) = (αxρ

1 + xρ
2)

1/ρ

and u2(x1, x2) = (xρ
1 + αxρ

2)
1/ρ, respectively.

When ρ < −1 and α is large enough, [23] proves that M
has (1, 1) as an equilibrium and is non-monotone at (1, 1).
This implies that M has multiple isolated equilibria, and
the set of equilibria of a CES market with ρ < −1 is not
convex (not even connected) in general.

Example 2.3. (Leontief Utilities) We say u is a
Leontief utility function if u(x1, . . . , xk) = minj∈S {xj/aj},
where aj > 0 for all j ∈ S ⊆ [k]. Let M be the Leontief
market consisting of the following two traders T1 and T2.
Here T1 has one unit of G1 and T2 has one unit of G2.
The utility function of T1 is u1(x1, x2) = min{x1/2, x2};
the utility function of T2 is u2(x1, x2) = min{x1, x2/2}.
Then M is non-monotone at (1, 1).

Example 2.4. (Separable, Piecewise-Linear
Utilities). A utility function is additively separable and
piecewise linear if u(x1, . . . , xk) = f1(x1) + · · · +fk(xk),
where f1, . . . , fk are piecewise-linear functions. Consider
the following market M with two goods G1, G2, and two
traders T1, T2. T1 has one unit of G1, and T2 has one unit
of G2. Their utility functions are u1(x1, x2) = x1 +f(x2)
and u2(x1, x2) = f(x1) + x2, with f(x) = 2x if x ≤ 1/3;
and f(x) = 2/3 if x > 1/3. It can be shown that M has
(1, 1) as an equilibrium and is non-monotone at (1, 1).

Note that in general, the excess demand of a market
with such utilities is a correspondence instead of a map,
and partial derivatives may not always exist. But in our
definition of non-monotone markets, we only need those
properties in a local neighborhood of π, like (1, 1) here.

Since linear functions are special cases of additively sepa-
rable, piecewise-linear functions, we obtain a corollary from
Theorem 6 and Example 2.4: finding an approximate equi-
librium in a market with additively separable, concave, and
piecewise-linear utilities is PPAD-hard. This is the main re-
sult of [4]. Combining it with the PPAD membership of [35]:

Corollary 2.1. The problem of finding an approximate
equilibrium in a market with additively separable, concave,
and piecewise-linear utilities is PPAD-complete, even when
each univariate function is either linear or of the form of f
in Example 2.4, i.e., linear function with a threshold.

2.4 Polymatrix Games and Nash Equilibria
To prove Theorem 5 and 6, we give polynomial-time re-

ductions from the problem of finding an approximate Nash
equilibrium in a polymatrix game, with two pure strategies
for each player. Such a game with n players can be described
by a 2n × 2n rational matrix P, with all entries between 0
and 1. An ǫ-well-supported Nash equilibrium is then a vec-
tor x ∈ R

2n
+ such that x2i−1 + x2i = 1 and

x
T ·P2i−1 > x

T ·P2i + ǫ ⇒ x2i = 0

x
T ·P2i > x

T ·P2i−1 + ǫ ⇒ x2i−1 = 0

for all i ∈ [n], where we use P2i−1 and P2i above to denote
the (2i− 1)th and (2i)th column vectors of P, respectively.

We let polymatrix denote the following problem: Given
a polymatrix game P, find an ǫ-well-supported Nash equi-
librium with ǫ = 1/n. It was shown in [11] that computing
an exact Nash equilibrium of a polymatrix game with two
strategies for each player is PPAD-complete. We show in
the full paper that polymatrix is also PPAD-hard. The
proof follows closely techniques developed in [5,11].

Theorem 7. polymatrix is PPAD-complete.

3. PPAD-HARDNESS FOR
NON-MONOTONE UTILITIES

We start with a brief sketch of our construction. Given a
2n× 2n polymatrix game P, we build a market MP ∈ M∗

U ,
and prove that, given any ǫ-approximate equilibrium of MP

for some polynomially small ǫ, we can recover a (1/n)-well-
supported Nash equilibrium x of P in polynomial time.

A building block of MP is the linear price-regulating mar-
kets [4, 35]. Such a market consists of two traders {T1, T2}
and two goods {G1, G2}. Each Ti owns τ > 0 units of Gi,
i ∈ {1, 2}. The utility of T1 is (1+α)x1 +(1−α)x2 and the
utility of T2 is (1− α)x1 + (1 + α)x2, for some α ∈ (0, 1).

Let πi denote the price of Gi. Then we have the following
useful property: Even if we add more traders to the market,
as long as their total endowment of G1 and G2 is negligible
compared to τ , the ratio π1/π2 must be between (1−α)/(1+
α) and (1 + α)/(1− α) at an approximate equilibrium.

Our construction then starts with the following blueprint
of encoding 2n variables x and the 2n linear forms xT ·Pj ,
j ∈ [2n], inMP. Let G1, . . . , G2n andH1, . . . ,H2n denote 4n
goods. Let τ = n2. Let α and β be two polynomially small
parameters with α ≪ β. For each i ∈ [n], we first create a
price-regulating market over G2i−1 and G2i with parameters
τ and α, and a price-regulating market over H2i−1 and H2i,
with τ and β. For each i, j ∈ [2n], we add a trader Ti,j who
owns Pi,j units of Hi and is only interested in Gj .

At this moment, the property of price-regulating markets
implies that at any approximate equilibrium π, the ratio of
π(H2i−1) and π(H2i) is in [(1− β)/(1+ β), (1+ β)/(1− β)];
the ratio of π(G2i−1) and π(G2i) is in [(1−α)/(1 +α), (1 +
α)/(1−α)], where we use π(G) to denote the price of a good
G in π. Here is some wishful thinking : If for every i ∈ [n],
we have π(H2i−1) + π(H2i) = π(G2i−1) + π(G2i) = 2, then
a vector x can be extracted from π as follows:

xi =
π(Hi)− (1− β)

2β
, for each i ∈ [2n].

Clearly x is nonnegative, and satisfies x2i−1 + x2i = 1 for
all i. The 2n linear forms xT ·Pj we are interested in now
appear in MP as follows: The total money that traders Ti,j ,
i ∈ [2n], spend on good Gj is

∑

i∈[2n]

Pi,j

(

2βxi + (1− β)
)

= 2β · xT ·Pj + (1− β)
∑

i∈[2n]

Pi,j

With some wishful thinking, assume all the Pj ’s sum to
the same value. As β ≫ α, xT ·P2j−1 > xT ·P2j+1/n would
imply that the total demand for G2j−1 from traders Ti,2j−1,
i ∈ [2n], must be strictly larger than that of G2j from Ti,2j ,
i ∈ [2n]. Since π is an approximate equilibrium, the price-
regulating market over {G2j−1, G2j} must buy strictly more
G2j than G2j−1 to balance the deficit. This can only happen
when π(G2j−1) = 1 + α and π(G2j) = 1− α.



However, what we really need to finish the construction is
π(H2j−1) = 1 + β and π(H2j) = 1 − β and thus, x2j−1 = 0
and x2j = 1 and the Nash constraint is met. The big missing
piece of the puzzle is then how to enforce at an approximate
equilibrium the following ratio amplification:

π(G2j−1)

π(G2i)
=

1 + α

1− α
⇒ π(H2j−1)

π(H2j)
=

1 + β

1− β

It turns out that our goal can be achieved by adding care-
fully a chain of copies of a non-monotone market M , as well
as linear price-regulating markets and traders who transfer
money between them (like the Ti,j ’s above). We create such
a chain that starts from G2j−1, G2j and ends at H2j−1,H2j ,
for each j ∈ [n]. These non-monotone markets, working with
price-regulating markets, can step-by-step amplify the ratio
of two goods, either from (1+α)/(1−α) to (1+β)/(1−β);
or from (1−α)/(1+α) to (1−β)/(1+β). The tricky part is
that all actions happen in a local neighborhood of M , where
the phenomenon of non-monotonicity appears.

3.1 Preparation
Given a 2n× 2n polymatrix game P, we can normalize P

to get P′ as follows: For all i ∈ [2n] and j ∈ [n], set

P ′
i,2j−1 = (1 + t)/2 and P ′

i,2j = (1− t)/2

where t = Pi,2j−1 −Pi,2j . Now all entries of P′ are between
0 and 1, and P′ satisfies P ′

i,2j−1 + P ′
i,2j = 1, for all i, j. By

the definition, it is easy to show that P′ has the same set of
ǫ-well-supported Nash equilibria as P. So from now on, we
assume, without loss of generality, that P is normalized.

Next we show that given M and π that satisfy conditions
of Theorem 6, one can normalize it to get the following more
convenient form. In this extended abstract, we assume the
number of goods in M is k = 2 to simplify the presentation.
The proof for general k can be found in the full version.

Lemma 3.1. (Normalized Non-Monotone Market)
There are two (not necessarily rational) positive constants
c and d with the following property. Given any positive and
rational µ and γ, one can build a market Mµ,γ ∈ MU with
two goods G1 and G2, in time polynomial in 1/γ and the
number of bits to encode µ. Let fµ,γ(x) denote the excess
demand function of G1, when G1 is priced at 1 + x and G2

is priced at 1− x. Then fµ,γ is well defined over [−c, c];
|fµ,γ(0)| ≤ µγ; f ′

µ,γ(0) = µd > 0; and satisfies
∣

∣fµ,γ(x)− fµ,γ(0)− µdx
∣

∣ ≤ |x/D|, for all x ∈ [−c, c],

where D = max{20, 20/d}.

3.2 Our Construction
First of all, the two main building blocks of MP are

Normalized Non-Monotone Markets: Given two posi-
tive rational numbers µ and γ, we use nm (µ, γ,G1, G2) to
denote the creation of a new copy of Mµ,γ over G1 and G2.
Price-Regulating Market: Given positive rational num-
bers τ and α, we use pr(τ, α,G1, G2) to denote the creation
of a price-regulating market of parameters τ, α over G1, G2.

All other traders in MP are single-minded : each of them is
interested in one specific good and spends all the budget on
it. We say a trader is a (τ, G1 : G2)-trader if her endowment
consists of τ units of G1 and she is only interested in G2; and

we say a trader is a (τ,G1, G2 : G3)-trader if her endowment
consists of τ units of G1, G2 each and is interested in G3.

Without loss of generality, assume n = 2t is a power of 2.
Then MP consists of the following O(nt) = O(n log n) many
goods: auxi for i ∈ [n]; and Gi,j for i ∈ [2n], j ∈ [0 : 4t].

We also divide the goods, except the auxi’s, into n(4t+1)
groups {Ri,j} = {G2i−1,j , G2i,j}, i ∈ [n] and j ∈ [0 : 4t].

Next we list all the parameters we use in the construction.
We use αi to denote 2i/n5 for each i ∈ [0 : 4t], so α0 = 1/n5

and α4t = 1/n. Recall the positive constant d from Lemma
3.1.We let d∗ denote a positive rational number (a constant)
that satisfies 1− 1/D ≤ d∗d ≤ 1. Other parameters we use
include: β = α4t = 1/n, µ = d∗n = Θ(n), τ = n2, γ = 1/n6,
ξ = δnt, δ = ǫt, and ǫ = 1/n8.

Construction of MP. First, we use nm and pr to build a
closed economy over each of the n(4t+1) groups Ri,j . Here
by a closed economy over a group of goods, we mean a set of
traders whose endowments consist of goods from this group
only and they are interested in goods from this group only.

For each group Ri,j , i ∈ [n] and j ∈ [4t], we add a market
pr(τ, αj , G2i−1,j , G2i,j). We also add a non-monotone mar-
ket nm(µ, γ,G2i−1,j , G2i,j). We will refer to them simply as
the pr market and the nm market over Ri,j , respectively.

For each group Ri,0 of {G2i−1,0, G2i,0}, where i ∈ [n], we
only add pr(τ, α0, G2i−1,0, G2i,0).

Next we create single-minded traders who trade between
different groups. The initial endowment of each such trader
consists of goods from Ri,j and is only interested in one of
the goods from another group Ri′.j′ . We will refer to her as
a trader who trades from Ri,j to Ri′,j′ .

At the same time we construct a weighted directed graph
G which will be used in the proof of correctness only. Here
each Ri,j corresponds to a vertex. We add an edge from Ri,j

to Ri′,j′ in G whenever we create a set of traders who trade
from Ri,j to Ri′,j′ . Our construction below guarantees that
whenever we create traders who trade from Ri,j to Ri′,j′ ,
the total endowment of these traders must consist of same
amount, say w > 0, of G2i−1,j and G2i,j . We set w to be the
weight of this edge. We show by the end of the construction
that G is strongly connected and for every group, its total
in-weight is the same as its total out-weight.

Here is the construction: For each i ∈ [2n] we will use
below Gi to denote Gi,0; and Hi to denote Gi,4t. We add to
MP a (Pi,j ,Hi : Gj)-trader, for each pair i, j ∈ [2n]. As P is
normalized, it is easy to verify that we should add an edge
in G from Ri,4t to Rj,0 with weight 1, for each i, j. Next, for
each pair i ∈ [n] and j ∈ [0 : 4t−1], we add two traders: one
(n,G2i−1,j : G2i−1,j+1)-trader and one (n,G2i,j : G2i,j+1)-
trader. We add an edge from Ri,j to Ri,j+1 of weight n.

This finishes the construction of graph G. It is clear that
G satisfies both conditions we promised earlier.

Finally, we add traders between auxj and Rj,0. Let

rj = 2n−∑

i∈[2n] Pi,j > 0, for each j ∈ [2n]. (3)

As P is normalized, r2j−1+ r2j = 2n. We finally add to MP

the following three traders: one ((1−β)r2j−1,auxj : G2j−1)
trader, one ((1−β)r2j ,auxj : G2j)-trader and one ((1−β)n,
G2j−1, G2j : auxj)-trader. This finishes the construction.

3.3 Proof of Correctness
First we introduce additively approximate market equilib-

ria to simplify the presentation: We say π is an ǫ-additively



approximate market equilibrium of a market, for some ǫ ≥ 0,
if there exists a vector z ∈ Z(π) such that zj ≤ ǫ, for all j.
We prove in the rest of this section that given an ǫ-additively
approximate equilibrium π of MP, where ǫ = 1/n8, we can
compute a (1/n)-well-supported equilibrium x of P in poly-
nomial time. Theorem 6 follows since the total endowment
of each good in MP is O(n2).

In the rest of the section, we let π denote an ǫ-additively
approximate equilibrium of MP with ǫ = 1/n8, and we use
π(G) to denote the price of a good G in π. For each group
Ri,j , we let πi,j = π(G2i−1,j) + π(G2i,j). Let

πmax = max
{

πi,j : i ∈ [n], j ∈ [0 : 4t]
}

and

πmin = min
{

πi,j : i ∈ [n], j ∈ [0 : 4t]
}

.

We also use a = b± c, where c > 0, to denote the inequality
b− c ≤ a ≤ b+ c. All missing proofs below can be found in
the full version. First, from the pr markets, we have

Lemma 1. For all i ∈ [n] and j ∈ [0 : 4t], we have

1− αj

1 + αj
≤ π(G2i−1,j)

π(G2i,j)
≤ 1 + αj

1− αj
.

Since only one trader is interested in auxj , we have

Lemma 2. If we scale π so that πj,0 = 2 for some j ∈ [n],
then we have π(auxj) ≥ 1−O(ǫ/n).

Using the strong connectivity of G and the property that
each vertex in G has the same total in- and out-weight, we
can relate the money flowing in and out of each Ri,j to show:

Lemma 3. If we scale π so that πmin = 2, then we have
πmax = 2 +O(ǫt).

From Lemma 3, we can also upper bound π(auxj):

Lemma 4. If we scale π so that πj,0 = 2 for some j ∈ [n],
then we have π(auxj) ≤ 1 +O(ǫt).

From now on, π is scaled so that πmin = 2. Combining
Lemmas 2, 3 and 4, we have π(auxi) = 1±O(ǫt) and

2 ≤ πi,j = π(G2i−1,j) + π(G2i,j) ≤ 2 +O(ǫt) (4)

for all i and j. Now we know that all prices are pretty close
to each other. By Walras’ law, we can show that the excess
demand of each good must be close to 0 from both sides:

Lemma 5. If π is an ǫ-additively approximate equilibrium
of MP, then there is a z ∈ Z(π) such that ‖z‖∞ ≤ O(ǫnt).

Let ξ = ǫnt = log n/n7 and δ = ǫt.
Now we are ready to recover a (1/n)-well-supported Nash

equilibrium of P. Recall that we use Hi to denote Gi,4t. For
each i ∈ [n], let θi = (π(H2i−1) + π(H2i))/2 and set x to be

x2i−1 =
π(H2i−1)− (1− β)θi

2βθi
and x2i =

π(H2i)− (1− β)θi
2βθi

where β = α4t = 1/n. We have x2i−1+x2i = 1. Also xi ≥ 0
follows from Lemma 1. To finish the proof, we prove

Theorem 8. When n is sufficiently large, x built above
is a (1/n)-well-supported Nash equilibrium of P.

To prove Theorem 8, we need the following key lemma.

Lemma 6. For all i ∈ [n] and j ∈ [4t], we have

1 + αj−1

π(G2i−1,j−1)
=

1− αj−1

π(G2i,j−1)
⇒ 1 + αj

π(G2i−1,j)
=

1− αj

π(G2i,j)

1− αj−1

π(G2i−1,j−1)
=

1 + αj−1

π(G2i,j−1)
⇒ 1− αj

π(G2i−1,j)
=

1 + αj

π(G2i,j)

Before proving Lemma 6, we use it to prove Theorem 8:

Proof Sketch of Theorem 8. Assume that the vector
x we get violates one of the Nash constraints. Wlog, assume
that xT ·P1 > xT ·P2 + 1/n and we need to prove x2 = 0.

Let T1, T2 denote the traders in the pr market over R1,0.
To prove x2 = 0, we compare the money spent by all traders
in MP on G1 and G2 except T1 and T2, which we denote by
M1 and M2, respectively. A careful analysis combined with
xT ·P1 > xT ·P2 +1/n implies M1 ≥ M2 +Ω(β/n). So the
difference between their demand for G1 and G2 is

M1

π(G1)
− M2

π(G2)
≥ M2 +Θ(β/n)

π(G1)
− M2(1 + α0)

π(G1)(1− α0)
= ω(ξ)

Because the total supply of G1 is the same as that of G2,
it follows from Lemma 5 that the total demand of G1 from
T1, T2 must be strictly smaller than the total demand of G2

from them. But this can only happen when π(G1)/π(G2) =
(1+α0)/(1−α0). Using Lemma 6 and induction, we finally
get π(H1)/π(H2) = (1 + β)/(1− β) and thus, x2 = 0.

Finally, we prove Lemma 6. Given a group Ri,j , where i
∈ [n] and j ∈ [4t], we first scale π again so that πi,j = 2.
Note that what we need to prove in Lemma 6 remains the
same after scaling. We are interested in the total demand of
G2i−1,j from all the traders in MP except those two traders
in the pr market over Ri,j .

First, for the nm market over Ri,j , we use f(x) to denote
the excess demand (within the nm market only) for G2i−1,j

when π(G2i−1,j) = 1 + x and π(G2i,j) = 1− x. Note that f
is fµ,γ in Lemma 3.1 and satisfies |f(0)| = O(µγ) and

∣

∣f(x)− f(0)− µdx
∣

∣ ≤ |µx/D|, for all x ∈ [−c, c], (5)

where D = max{20, 20/d} and c > 0 are both constants ind-
ependent of n. So when n is sufficiently large, β ≪ c.

Next we let h(x, y) denote the excess demand function of
G2i−1,j from all traders except those two in the pr market
over Ri,j when π(G2i−1,j−1) = 1+y, π(G2i−1,j) = 1+x and
π(G2i,j) = 1−x. By Lemma 1 and 3, we are only interested
in x, y satisfying |x| ≤ αj and |y| ≤ αj−1 +O(δ). We have

h(x, y) = f(x)− nx/(1 + x) + ny/(1 + x).

By (5), we get the following lemma:

Lemma 7. For any x, y with |x| ≤ 3|y| and |y| = αj−1 ±
O(δ), we have h(x, y) > ny/2 if y > 0; and h(x, y) < ny/2
if y < 0.

We are now ready to prove Lemma 6:

Proof of Lemma 6. We first scale π so that πi,j = 2.
Depending on whether

1 + αj−1

π(G2i−1,j−1)
=

1− αj−1

π(G2i,j−1)
or

1− αj−1

π(G2i−1,j−1)
=

1 + αj−1

π(G2i,j−1)

we have either y = αj−1±O(δ) or −αj−1 ±O(δ) by Lemma
1 and Lemma 3. Moreover, from Lemma 1 we have |x| ≤ αj



and thus, |x| ≤ 3|y| since αj = 2αj−1 = ω(δ). We conclude
from Lemma 7 that either h(x, y) > ny/2 or h(x, y) < ny/2
respectively. By nαj−1 ≥ nα4t ≫ ξ, Lemma 5 implies that
the excess demand of G2i−1,j , within the pr over Ri,j , must
be either strictly negative or strictly positive, respectively.

When it is strictly negative, we know that the first trader
T1 of the price-regulating market does not spend all her bud-
get on G2i−1,j . This, combined with Lemma 1, implies the
first case of Lemma 6. The other case is similar.

4. PPAD-HARDNESS FOR CES UTILITIES
We prove Theorem 5. Let ρ < −1 denote a fixed rational

number and r = −ρ. The major challenge is that we can
no longer use the linear pr markets, but only CES utilities
with ρ. Note that we used the following two properties of pr
markets: The price ratio is bounded between (1−α)/(1+α)
and (1+α)/(1−α); and must be equal to one of them if the
demand of G1 from the pr market is different from that of
G2. The continuous nature of CES makes it difficult, if not
impossible, to construct a market that behaves similarly.

Instead, we use the CES market M of [23] (as in Example
2.2), which is itself a non-monotone market with three iso-
lated equilibria. The high-level picture of the construction
is then similar to that of Theorem 2, in which we add to MP

a chain of copies of the non-monotone market M , for each
j ∈ [n], starting from G2j−1, G2j and ending at H2j−1,H2j .

4.1 Properties of Example 2.2
We examine more closely the market M of Example 2.2.

We always assume that α is a positive rational number such
that a = α1/(r+1) is rational as well. We need the following
notion of excess spending : Let S denote a set of traders.
Given π and a good G, the excess spending on G from S is
the product of π(G) and the excess demand of G from S. We
are interested in the excess spending f(x) on G1 from T1 and
T2, when the prices of G1, G2 are π1 = 1+x and π2 = 1−x
with x ∈ (−1, 1). Using (2) we can compute a formula for
f(x), from which we get that f(0) = 0; f(x) = −f(−x), for
any x ∈ (−1, 1); and f ′′(0) = 0. Moreover, we can show:

Lemma 8. When a > (r+1)/(r−1) is rational, f ′(0) > 0
is rational and f has three roots in (−1, 1). Let {−θ, 0, θ}
denote the three roots, where θ > 0, then we have f ′(θ) < 0.

From now on, we always assume that a > (r+1)/(r− 1),
and use {−θ, 0, θ} to denote the three roots of f over (−1, 1)
with θ > 0. Let λ = f ′(0), a positive rational number.

Next, let g(x) = f(x)−λx, for x ∈ (−1, 1). By definition,
we have g(0) = 0, g′(0) = 0, and g′′(0) = 0. We prove

Lemma 9. Given any rational r > 1, there is a rational
a such that a > (r + 1)/(r − 1); α = a1+r is rational; g(x)
< 0 for all x ∈ (0, 1); and g(x) > 0 for all x ∈ (−1, 0).

From now on, we always assume that a and α satisfy all
conditions of Lemma 9. While θ is not rational in general,
we can use f to get a γ-rational approximation θ∗ of θ, i.e.,
|θ∗ − θ | ≤ γ, in time polynomial in 1/γ. Let σ = f ′(θ) < 0.

Given a sufficiently large positive integer N , we let AN =
[−δ, δ], BN = [δ, θ−δ], CN = [θ−δ, θ+δ], B′

N = [−θ+δ,−δ],
C′

N = [−θ− δ,−θ+ δ], SN = [−θ− δ, θ+ δ], where δ = 1/N .
We use Lemmas 8 and 9 to prove the following lemmas:

Lemma 10. When N is sufficiently large, we have
|g(x)| ≤ |λx/2| for all x ∈ AN .

Lemma 11. When N is sufficiently large, we have
f(x) ≥ min(λ, |σ|)δ

/

2 for all x ∈ BN .

Lemma 12. Assume that N is sufficiently large. Then
g(x) = −λθ ±∆ with ∆ = δ(λ− σ/2) implies that x ∈ CN .

Note that similar lemmas also hold for B′
N and C′

N .

4.2 Our Construction
Given a normalized 2n× 2n polymatrix game P, we con-

struct a CES market MP of parameter ρ as follows.

Non-Monotone CES Markets: We use M to denote the
CES market discussed above, with rational constants α and
a satisfying conditions of Lemma 9. Given a positive rational
number µ, we use ces(µ,G1, G2) to denote the creation of
the following two traders T1 and T2 in MP. They are only
interested in G1, G2 and have the same utilities as the two
traders in M . T1 has µ units of G1; T2 has µ units of G2.

Construction of MP. Let m = n7. MP has O(nm) goods:
auxi, G2i−1,j and G2i,j , for i ∈ [n] and j ∈ [0 : m]. We then
divide them into n(m+ 1) groups: Ri,j = {G2i−1,j , G2i,j}.

First for each i ∈ [n], we add a trader to MP with τ = n4

units of G2i−1,0 and G2i,0 each and her utility is u(x1, x2) =
(xρ

1 + xρ
2 )

1/ρ, where x1 (or x2) denotes the amount ofG2i−1,0

(or G2i,0) she obtains. Next for each group Ri,j , i ∈ [n] and
j ∈ [m], we create ces(µ,G2i−1,j , G2i,j) with µ = n/λ.

Now we add a number of single-minded traders who trade
between different groups, and follow the same notation used
earlier. We define a weighted directed graph G similarly.

First for each i ∈ [2n], we use Gi to denote Gi,0; and Hi

to denote Gi,m. For each pair i, j ∈ [2n], we add to MP one
(Pi,j ,Hi : Gj)-trader. Since P is normalized we add an edge
in G from Ri,m to Rj,0 with weight 1, for each i, j ∈ [n].

Next, for each i ∈ [n], j ∈ [m], we add one (n,G2i−1,j−1 :
G2i−1,j)-trader; and one (n,G2i,j−1 : G2i,j)-trader. We add
an edge of weight n. This finishes the construction of G.

Finally for each j ∈ [n], we add traders between auxj and
Rj,0. Let r2j−1 and r2j be the numbers defined in (3). Let θ∗

denote a γ-rational approximation of θ, with γ = 1/n7. We
add one ((1−θ∗)r2j−1,auxj :G2j−1); one ((1−θ∗)r2j ,auxj :
G2j); and one ((1− θ∗)n,G2j−1, G2j : auxj)-trader in MP.

This finishes the construction of MP.

4.3 Proof of Correctness
We let π denote an ǫ-additively approximate equilibrium

of MP, where ǫ = 1/n14 . We show one can recover a (1/n)-
well-supported Nash equilibrium of P in polynomial time.

Below for each Ri,j , we let πi,j = π(G2i−1,j) + π(G2i,j).
The proofs of the following three lemmas are very similar

to those of Lemma 2, Lemma 3 and Lemma 4:

Lemma 13. If we scale π so that πj,0 = 2 for some
j ∈ [n], then we must have π(auxj) ≥ 1−O(ǫ/n).

Lemma 14. Let πmax and πmin denote πmax = max i,j πi,j

and πmin = min i,j πi,j , both taken over i ∈ [n] and j ∈ [0 :
m]. If we scale π so that πmin = 2, then πmax = 2+O(mǫ).

Lemma 15. If we scale π so that πj,0 = 2 for some j ∈
[n], then we have π(auxj) ≤ 1 +O(mǫ).

For each i ∈ [n], j ∈ [0 : m], we let xi,j denote the number
satisfying (1 + xi,j)/(1− xi,j) = π(G2i−1,j)/π(G2i,j). Note
that xi,j is unique, and invariant under scaling of π.



It would be great if we can show something similar to Le-
mma 5. However, right now we have no bound on the ratio
of π(G2i−1,j) and π(G2i,j). Next we prove the following:

Lemma 16. |xi,0 | = O(1/n3) for all i ∈ [n].

Let N = n6 and thus, xi,0 ∈ SN . We can use the following
lemma to show that xi,j ∈ SN for all i and j, by induction.

Lemma 17. For any i ∈ [n] and j ∈ [m], if xi,j−1 ∈ AN ,
then we have xi,j ∈ AN ∪BN ∪B′

N ; if xi,j−1 ∈ BN , then
xi,j ∈ BN ∪ CN ; if xi,j−1 ∈ B′

N then xi,j ∈ B′
N ∪ C′

N ; if
xi,j−1 ∈ CN , then xi,j ∈ CN ; and if xi,j−1 ∈ C′

N , then
xi,j ∈ C′

N .

The proof of this lemma heavily uses properties of f and
g proved in Section 4.1.

We construct a vector y from π as follows. Recall θ∗ is a
γ-rational approximation of θ with γ = 1/n7. Let δ = 1/N .

For each i ∈ [n], if xi,m ≥ θ∗ − 2δ, then we set y2i−1 = 1
and y2i = 0; if xi,m ≤ −(θ∗−2δ), then we set y2i−1 = 0 and
y2i = 1; otherwise, we set y2i−1 and y2i to be

y2i−1 = (θ∗ + xi,m)
/

(2θ∗) and y2i = (θ∗ − xi,m)
/

(2θ∗)

Clearly y is a nonnegative and y2i−1 + y2i = 1. Note that
when xi,m ∈ CN , we must have xi,m ≥ θ∗ − 2δ since γ < δ,
and hence y2i−1 = 1 and y2i = 0. Similarly, if xi,m ∈ C′

N ,
then y2i−1 = 0 and y2i = 1. To prove of Theorem 5, we need

Theorem 9. When n is sufficiently large, y built above
is a (1/n)-well-supported Nash equilibrium of P.

The idea is similar to the proof of Theorem 8 except that
we need to replace Lemma 6 by the following:

Lemma 18. For each i ∈ [n], xi,0 ∈ BN ∪ CN implies
xi,m ∈ CN , and y2i−1 = 1, y2i = 0. Similarly, we have
xi,0 ∈ B′

N ∪ C′
N implies xi,m ∈ C′

N , and y2i−1 = 0, y2i = 1.

The key property for the proof of the lemma is that, when
xi,j−1, xi,j ∈ BN for some j, then xi,j = xi,j−1 + Ω(1/N).
Combining with Lemma 17, it follows that if xi,0 ∈ BN then
xi,m ∈ CN because m = n7 and N = n6. The proof of the
key property uses Lemmas 14 and 11 and a bound on the
excess spending of G2i−1,j and G2i,j .

Proof Sketch of Theorem 9. Assume a constraint is
violated, wlog, yT ·P1 > yT ·P2+1/n, and we need to show
y2 = 0. For this purpose, we show that x1,0 ∈ BN ∪ CN .

The theorem then follows from Lemma 18,

5. MEMBERSHIP IN FIXP
Next we prove Theorem 3. The input here is a market M

with n traders and m goods, with the endowments wi,j and
coefficients αi,j encoded in binary, and the CES parameters
ρi encoded in unary. Wlog, we will focus on prices π in the
unit m-dimensional simplex S, with entries summing to 1.

Let wmax = maxi,j {wi,j}, wmin = min i,j{wi,j : wi,j > 0},
αmin = mini,j {αi,j : αi,j > 0}, and αmax = maxi,j {αij}.

We use h = (αminwmin)/(αmaxwmax2nm
2) and

t = max
(

{⌈1− ρi⌉ : ρi < 0} ∪ {⌈1/(1 − ρi)⌉ : ρi > 0}
)

to define parameter µ = (hm/m)t
m

.

Given a vector π ∈ S, we let π̂ denote the vector in which
π̂j = max(πj , µ), for each j ∈ [m]. We will use the following
continuous map F : S → S whose jth dimension is:

Fj(π) =
π̂j +max{0, Zj(π̂)}

∑m
k=1(π̂k +max {0, Zk(π̂)})

(6)

where Zj(π̂) denotes the excess demand of the jth good.
To prove membership in FIXP, it suffices to show that the

fixed points of F coincide with the market equilibria of M ,
and that we can construct in polynomial time an algebraic
circuit C with operations {+,−, ∗, /,max,min, k

√ }, m in-
puts, and m outputs which, on input π, outputs F (π). We
prove that F satisfies these conditions in the full version.

6. MEMBERSHIP IN PPAD
We now prove Theorem 4. We use the notation of Section

5. First, we show that one may assume without loss of gen-
erality that there is a trader who owns a positive amount of
all m goods and equally likes all of them. (This holds only
for ǫ-approximate equilibria, but not for ǫ-tight.)

Let ξ = (wmin/(4nm))2 and let π̂j = max (πj , ξ), j ∈ [m].
We use the same continuous map F given in (6), and we call
π ∈ S a c-approximate fixed point of F if ‖F (π)− π‖ ≤ c.

We show first that any c-approximate fixed point π of F ,
where c = ξǫwmin/2, is also an ǫ-approximate equilibrium.
Then we show that F has two crucial properties: It is poly-
nomially continuous, and it is approximately polynomially
computable. We can then prove the theorem.

Proof Sketch of Theorem 4. It suffices to compute a
c-approximate fixed point of F . We discretize S into a reg-
ular simplicial decomposition in which each cell simplex has
diameter ≤ δ, for a carefully chosen δ with number of bits
polynomial in the size of the market and log (1/ǫ). We define
an m-coloring on the vertices of the decomposition based on
the approximate values of F on these vertices. The coloring
satisfies Sperner’s lemma, so there must be a panchromatic
simplex. Finding such a simplex is known to be in PPAD,
e.g., using the method described in [21]. Finally, we prove
that one of the vertices of a panchromatic simplex must be
a c-approximate fixed point of F . The theorem follows.

7. CONCLUSIONS
This paper is a first step towards a systematic understand-

ing of what features make the equilibrium analysis of mar-
kets computationally hard. To this end, we introduced the
notion of non-monotone utilities, which covers a wide vari-
ety of important utility functions. We showed that for any
family U of non-monotone utilities, it is PPAD-hard to com-
pute an approximate equilibrium for a market with utilities
that are drawn from U or are linear. Using our general ap-
proach, and a further, more customized analysis, we resolved
the long-standing open problem on the complexity of CES
markets when the parameter ρ is less than −1, showing that
for any fixed value of ρ < −1, the problem of computing an
approximate equilibrium is PPAD-hard.

This work raises clearly many questions. First, regarding
CES functions, what is the complexity of computing (within
desired precision) an actual (exact) equilibrium, is it FIXP-
complete? Second, can we dispense with the linear functions
used in the general theorem, i.e., is it true that for any family
U of non-monotone utilities, the approximate equilibrium
problem is PPAD-hard for markets that use utilities from U



only? For the important class of CES functions with (any)
ρ < −1, we were able to show this, using a deeper analysis
of the class of CES functions, and appropriate adaptations
of the construction. Can a similar approach work in general
for all non-monotone utilities?

Most ambitiously, can we obtain a dichotomy theorem that
enables us to classify every family of utility functions (under
standard, generally acceptable, mild assumptions for utili-
ties) into those that can be solved efficiently and those that
are apparently intractable (PPAD-hard and/or FIXP-hard)?
The present paper takes a first step towards this goal.
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