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Abstract—Wireless Service Providers (SPs) typically generate
revenue by offering various data plans to their users. Recently,
SPs have been exploring another potential source of revenue by
allowing Content Providers (CPs) to sponsor users’ requests for
data. With this option, sometimes referred to as sponsored content,
a CP can provide the requested content to the end user and
compensate the SP for the service cost. The user benefits from
free content without any charge to her data plan. This work
considers an on-line setting in which sponsoring decisions are
only made when end user requests for content are realized. Our
objective is to maximize the combined profit of a given SP both
from the users’ data plans as well as sponsored content. We
consider the commonly offered data plans of fixed-quota. In the
fixed-quota data plan, a user pays a fixed fee for the right to
obtain a pre-determined amount of unsponsored content during
each billing cycle (month). We show that for this data plan there
is no on-line algorithm with bounded competitive ratio. However,
by relaxing the requirements, an efficient on-line algorithm is
introduced. Our simulations show the benefits of the proposed
algorithm, which outperforms alternative solutions and provides
near optimal profit for the SPs for various settings.

I. INTRODUCTION

Recent years have seen an explosion in the use of mobile
data connections. This has been driven by an increased adop-
tion of smartphones and tablets whose users expect to be able
to use mobile applications at any time. Mobile data enables
wireless service providers (SPs) to extend their revenue by
offering data plans to their users. One recent trend is that
operators are terminating unlimited data plans and requiring
end users to purchase data in fixed monthly quotas, via a fixed-
quota data plan. One feature of such plans is that revenue is
generated solely from the end users. It is well-known in the
industry that most end users have certain limits to payment
beyond which it is difficult to extract further revenue. When
the end users reach those limits they will prefer to stop data
consumption (or switch to another SP) rather than pay more.

However, there are many data transactions for which the
content provider (CP) also derives economic value from pro-
viding the content, e.g., via embedded advertisements. In such
cases, it is in the interest of the content provider to allow
an end user to access its content, even if that end user has
already exhausted its monthly data quota. However, when this
happens the service provider will require compensation for
the extra bandwidth usage that occurs. This gives rise to the
notion of sponsored content, which is sometimes known as
two-sided pricing. In a sponsored content setup, a content
provider pays a certain fee to the service provider so that the
end user’s data quota is not decremented after a visit to the
content provider’s content. Moreover, the end user can still
access the content even when its quota is exhausted. Two
instantiations of sponsored content were recently announced.

In late 2013 the Korean operator SKT advertised a scheme
in which users to the shopping site m.gsshop.com will have
their bandwidth charges paid by the content provider [8].
Then, at the Consumer Electronics Show in January 2014,
AT&T announced a service that allows any content provider
to sponsor the content being transmitted to its end users [4].

Addressing the emerging need to manage sponsored con-
tent, we explore in this study algorithmic solutions for max-
imizing the combined profit of wireless operators from both
sponsored content as well as the data plans offered to end
users. Previous work (e.g. [1]) has analyzed sponsored content
in an offline setting where sponsoring decisions are made
before requests for traffic arrive. The goal of this paper is
to propose a model for how sponsored content could work
in an online setting where sponsoring decisions are made in
real-time as traffic requests arrive.

A. Motivating Example

We now consider a particular instantiation of the sponsored
content paradigm that motivates the online model that we
consider in this paper. In our example an SP provides a
service to users where they can specify music videos that they
wish to watch. These videos can potentially be provided by
many different CPs. If a user watches the music video from
a particular CP, then the CP benefits because they are able to
show the user a pre-roll advertisement.

When a user request for a music video arrives at the SP,
the SP asks each CP whether they are willing to sponsor the
request (so that it is free to the end user). If at least one CP is
willing then the SP decides which CP will provide the music
video to the end user (and the user does not have to pay for
the wireless bandwidth that is consumed by the video). If no
CP is willing to sponsor the request then the SP directs some
default CP to provide the music video but the user has to “pay”
for the associated bandwidth out of its own user quota.

We note that in the above setup all the parties (i.e. the
SP, CPs and end users) are motivated to participate. CPs are
motivated to sponsor since by doing so they are likely to
receive more traffic and show more advertisements. The SP is
motivated to offer a sponsored content service since it now has
a secondary revenue stream from the CPs. It does not solely
have to rely on revenue from the end users. Obviously, in such
a setting the end-users benefit from free content without being
charged for the service.

Our study considers a generic content sponsoring model
which captures several practical realizations of sponsored
mobile content. For instance, in one realization the desired
content, e.g., a music video, can be specified by its URL,
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which explicitly specifies the serving CP. In this case the only
decision that the CP/SP have to make is whether or not the
bandwidth associated with the video is sponsored. There is no
notion of selection among different CPs. Another realization
may involve a Mobile App that is provided by the SP and
allows the user to select desired content. The app then sends
the request to the SP and allows it to check sponsoring options
among the different CPs.

B. Our results

We focus on an online setting in which user requests
for content arrive in an online manner and multiple content
providers can bid to sponsor these requests. The service
provider then decides for each request whether or not spon-
soring should take place. In this study the sponsoring decision
must be made online without any knowledge of future requests
(i.e. we do not assume any predictable behavior of the users).
If sponsoring should take place the service provider decides
which content provider should do it. Content providers cannot
make unlimited bids. Each content provider has a budget that it
can use for sponsoring content. To the best of our knowledge,
we are the first to propose an online optimization framework
for the challenge of maximizing the combined profit of wireless
service providers from sponsored content as well as users’ data
plans. Besides the bids of the content providers, our solutions
also take into account the service cost for the operator to
deliver the request to the user over the wireless network.

As we discuss in the next section, our problem bears some
resemblance to the Sponsored Search problem in which search
engines wish to sell sponsored links in response to search
queries. Our main goal is to investigate whether the ideas from
Sponsored Search can be carried over to the Sponsored Content
setting. Our contribution can be summarized as follows:

In Section III, we present a concrete model and problem
statement for the case in which sponsoring decisions are made
in an online fashion. We consider the commonly used Fixed-
Quota data plan model in which each end user pays in advance
for a fixed data quota for unsponsored content.

In Section IV, we show that the Fixed-Quota profit max-
imization problem has elements of both the Adwords [11],
[3] and the Online Generalized Assignment Problem (GAP)
problem [15] depending on whether the end users consume all
their quota. We first show that we cannot hope for an algorithm
that always has finite competitive ratio with respect to the
optimal profit. We then present an approximation algorithm
that combines an Adwords algorithm with a GAP algorithm
so that we are always competitive with respect to sponsoring
revenue for the users that do not consume all their quota and
we are always competitive with respect to profit for the users
that do consume all their quota.

In Section V, we present a numerical example to show that
our Fixed-Quota solution is competitive with the best of the
Adwords and GAP algorithms, even as the “correct” approach
changes depending on whether an end user’s quota is fully
depleted in the optimal solution.

II. RELATED WORK

Sponsored Search: In our formulation of the sponsored
content problem, we assume that requests arrive over time and

sponsoring decisions have to be made in an online fashion.
Another related online problem that has received a great deal
of attention in recent years is “Sponsored Search” [6], [9],
[10]. As already discussed, one of the goals of our paper
is to show how techniques from Sponsored Search can be
applied to online Sponsored Content. We remark however that
our problem is different from Sponsored Search due to two
main factors. First, in sponsored search all the revenue comes
from sponsoring, there is no notion of revenue from end users.
Second, as a consequence of this Sponsored Search has no
notion of end user quotas. One of the main challenges in our
work is correctly incorporating the concept of end user quotas.

Sponsored Content Analysis: Papers [7], [14] examine a
formulation of sponsored content based on network utility
maximization in which a service provider sets bandwidth
prices to both the end user and the content provider who then
jointly determine the data rate so as to maximize an aggregate
utility. Other papers [5], [12], [13] study sponsored content in
relation to different notions of net neutrality. Paper [1] focused
on an off-line setting where the content provider has to decide
in advance how much content it is willing to sponsor during an
upcoming month. Accesses to the content are charged against
this amount until it is depleted at which point end users have
to revert to paying for access.

III. MODEL AND PROBLEM STATEMENT

A. System Model

We consider a sponsored content management system from
the viewpoint of a single service provider SP. The system
contains n end users (EUs) denoted as U1, . . . Un and m con-
tent providers (CPs) denoted as CP1, . . . , CPm. Each content
provider has a budget Bj that can be used for sponsoring users’
requests, while each user is associated with a payment plan,
referred to as a data plan, for obtaining unsponsored content.
We examine the system dynamics over a fixed time period, e.g.
a month,1 assuming that all the CPs’ budgets and the users’
data plans are initialized at the beginning of the period.

User requests: Each user Uk makes a series of requests for
content qk1, qk2, . . . that arrive over time and we assume that
each request can be satisfied by some CPs. The content size of
a request qki is denoted by ski and if a request qki is served
then the SP incurs a service cost for sending the requested
content to the user. For simplifying our discussion and w.l.o.g.
we will assume that the service cost of sending one unit of
data is normalized to 1. So ski denotes both the content size
as well as the service cost of the request qki.

Sponsored content: For each request qki there is a set2 φki

of CPs that are willing to sponsor the request and each CPj ,
j ∈ φki, places a bid bjki. We assume each bid has to cover
at least the service cost, i.e., bjki ≥ ski. If the SP chooses3 a
CPj , j ∈ φki, to sponsor request qki (and deliver the requested
content to user Uk) then CPj’s budget is decremented by bjki

and the user’s data plan is not charged. The SP incurs a service
cost of ski for carrying the requested content, however, it earns

1This ignores the fact that in many countries (e.g. the US) user billing
periods are not synchronized. In other countries (e.g. South Korea), user billing
periods are indeed synchronized to the calendar month.

2The set φki may be empty, i.e., no CP wishes to sponsor the request.
3Note that the SP is allowed to not choose any CP to sponsor.
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Symbol Semantics

m The number of content providers (CPs).

n The number of end users.

Bj The budget of CPj for sponsoring content.

Fk The monthly fee of end user Uk .

Qk The monthly data quota of user Uk .

qki the i-th request of end user Uk .

ski The service cost of the request qki.

φki The set of CPs that bid on the request qki.

bjki The bid of CPj , j ∈ φki on the request qki.

xjki = 1 if request qki is sponsored by CP j.

yki = 1 if request qki is served, 0 otherwise.

TABLE I: Main notation used in this paper.

a revenue of bjki. Hence, the SP’s profit from this transaction
is bjki − ski. To keep track of sponsored content, we define a
variable xjki for every request qki and CPj . We set xjki = 1
if qki is sponsored by CPj and xjki = 0, otherwise.

Data Plans: For supporting its operation cost, we assume that
the SP provides a Fixed-quota plan to each of its users. In this
plan, each end user Uk pays a fixed monthly fee of Fk for
the right to access a limited amount of at most Qk units of
unsponsored content. We assume Fk > Qk to ensure that the
SP obtains a strictly positive profit from EU Uk.

A request qki of user Uk that is not sponsored is served if
and only if the user has sufficient unused quota. On the other
hand, a request that can be sponsored may be served even if
the user does not have enough quota.4 For every served request
qki the quota of user Uk is reduced by ski. Moreover, the SP
incurs a cost of ski for delivering the content, so its profit from
this transaction is −ski. Since a request qki of user Uk may
not be served at all, in addition to the variables xjki, which
are defined above, we let yki ∈ {0, 1} denote whether or not
request qki is served at all. From the above discussion we have
that yki ≥

∑

j xjki.

Notation: In certain sections we focus on a single CP and/or
a single end user. For these cases we typically omit the
parameters j and/or k as appropriate.

B. Problem Statement

We focus on the SP goal to maximize its total profit, which
equals the revenue from the data plans and content sponsoring
minus the total service cost of carrying the requested content.
In the Fixed-quota (FQ) data plan the SP profits both from
sponsored content as well as unused users’ quotas. The total
profit from sponsoring is

∑

jki(bjki−ski) ·xjki, while the net-

profit from unsponsored requests is
∑

k Fk −
∑

ki ski · (ykr −
∑

j xjkr). Notice that (ykr −
∑

j xjkr) is 1 only if request qki

is served but not sponsored, otherwise this expression equals
0. We now provide a mathematical definition of our objective
in the form of an integer linear program (ILP). (Since the
ILP is defined by future requests it cannot be used to actually
compute a solution. More generally, we work in the framework
of competitive analysis and so we have no prior information
(stochastic or otherwise) regarding future requests.)

4In practice, a user that has exhausted its data quota may purchase additional
quota. Such an option adds additional difficulty to the optimization and we
defer it to future work.

POPT = max







∑

k

Fk +
∑

jki

bjki · xjki −
∑

ki

ski · yki







s.t.
∑

j∈φki

xjki ≤ 1 ∀qki

∑

ki

bjki · xjki ≤ Bj ∀j

∑

i

(yki −
∑

j

xjki) · ski ≤ Qk ∀k

yki ≥
Qk − ski −

∑i−1

r=1
skr(ykr −

∑

j xjkr)

Qk

∀k

xjki ∈ {0, 1} ∀j ∈ φki, xjki = 0 ∀j 6∈ φki

The above formulation of the objective comes from the fact
that, besides the fixed revenue from the monthly user payments
∑

k Fk, the total revenue from sponsoring is
∑

jki bjki · xjki

and the total service cost of delivering the content is
∑

ki ski ·
yki. The first constraint ensures that each request qki is
sponsored by at most one of the CPs in φki, while the second
constraint captures the notion that CPj cannot spend more than
its budget Bj on sponsoring. The following two constraints put
restrictions on the variables yki. The third constraint ensures
that the amount of unsponsored content which is served to user
Uk is at most its data quota Qk, while the fourth condition
guarantees that the system serves request qki if user Uk has
sufficient data quota. Note that xjki, yik ∈ {0, 1}.

C. Online Competitive Algorithmic Tools

Unlike offline optimization problems, in the case of an
online problem the algorithm must decide how to respond to
each incoming request without knowledge of the future input.
An online algorithm is termed α-competitive if its performance
is at most α times worse than the optimal offline algorithm for
any possible input [2]. We now describe two online problems
that we make use of in our study. Both of these problems have
been applied in the context of Sponsored Search.

The AdWords Problem [11], [3]: Consider a system with m
bidders that bid on a set W of query words. Each bidder i has
a fixed budget Bi for a given time period and it specifies a bid
biw for every word in W . The system gets as input a sequence
of requests (also termed queries), one at a time, and it may
assign a request q to bidder i for profit of biw. The objective
is to maximize the system profit while preserving the bidder
budget constraints. In [11] Mehta et al. introduce a simple
online algorithm with competitive ratio of 1 − (1/e), under
the assumption that bids are small compared to the budgets. To
achieve this competitive ratio the algorithm balances between
the bid values and the unspent budget of the bidders. Let
ψ(x) = 1 − ex−1 and let ri, 0 ≤ ri ≤ 1, be the relative
portion of budget currently spent by bidder i. The algorithm
allocates the next query w to bidder i with the maximal product
biw ×ψ(ri). In [3] the authors achieved the same competitive
ratio by using a primal-dual approach.

The Generalized Assignment Problem (GAP) [15]: The
GAP problem assumes a system with m bins each with
capacity Bj , j ∈ {1, . . . ,m}. There is also a set of items
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S = {I1, . . . , Im}, where item Ii has a value vji and a weight
(or alternatively a size) wji when placed in bin j. A sequence
Q of items from S arrive one at a time and must be either
placed in one of the bins or discarded. The objective is to
maximize the value of the items placed in the bins while
respecting the capacity of each bin. When the system has
a single bin this problem is known as the online Knapsack
problem. Assuming that the weight and the value of each item
is substantially smaller than the bin sizes, Zhou et al. [15]
present 1/(ln(U/L)+1)-competitive algorithms for the Online
Knapsack and GAP problems, where U and L are given upper
and lower bounds on the ratio

vji

wji
for every bin j and item i.

To obtain this competitive ratio, the algorithm follows an
optimistic approach, which expects the arrival of high profit
items, i.e., it admits a low profit item into a bin only if a
small portion of the bin capacity is used and it reserves most
of the bin capacity for high profit items. The algorithm works
as follows; Let zj denote the used portion of bin j. When an
item i arrives, it can be admitted to bin j if its profit ratio
rji =

vji

wji
> Ψj(zj), for a given function Ψj(z). If an item

can be admitted to several bins then the bin j with the maximal
profit ratio rji is selected. By selecting for each bin j, Ψj(z) =
(Uj ·e/Lj)

z ·(Lj/e), where Uj and Lj are the upper and lower
bounds of the profit ratio of any item inserted to bin j, the
aforementioned competitive ratio is achieved5.

IV. THE FIXED-QUOTA DATA PLAN

In this section, we propose an algorithm for scenarios with
a fixed-quota data plan and we start with some observations.

Consider the simple case of a single CP and a single EU
(in which case we can drop the dependence on j and k).
There exists a phase transition which occurs when the user
exceeds the quota. In particular, from this point and onward,
the additional profit depends on the difference between the
bid size and the associated cost, rather than the bid itself.
Furthermore, after the quota is exhausted, the algorithm may
opt to refuse to sponsor a request without any penalty.

• If in the optimal solution the user does not spend all her quota
then all requests must be served. Hence, the cost of serving
a request cannot be avoided and the optimization problem
reduces to an Adwords problem [11] where the values of the
items are the bids bi, i = 1, 2, . . . and the budget has size B.
In this case of a single CP, the optimal solution is to accept
as many bids as possible until the budget is exhausted.

• The problem becomes fundamentally different when the
optimal solution reaches the user’s quota. In this case, one
must sponsor the requests that generate the highest revenue,
which is the size of the bid after we subtract the service cost
associated with the specific request. Hence, this is now an
online knapsack problem [15] (i.e, GAP with a single CP)
where request i has size bi and value bi − si.

The central idea of our analysis is that there exists a clean
dichotomy between the situations mentioned above. On the
one hand, if we know in advance that the user will not spend
the quota, the best strategy is to sponsor those requests based
solely on the bid sizes, since the algorithm will have to pay for

5We slightly modified the algorithm in [15] by considering upper and lower
bounds per bin to improve performance without affecting approximation ratios.

Time

P
ro
fi
t

OPT
Q

ALG

Case 1

Time

P
ro
fi
t

OPT

Q

ALG

Case 2

Fig. 1: Example 1 - Case 1 . (Left), Case 2 (Right).

the cost of all the requests. In this case the problem reduces
to an Adwords problem. On the other hand, if the quota is
exceeded, the algorithm’s behaviour will change since now
there are two options: the option of sponsoring now versus the
one of denying service in order to save the budget for later
requests that may generate higher revenue. Hence in this case
we wish to solve an online knapsack problem.

A. Lower Bound on Traditional Competitive Ratio

Ideally we would like an algorithm that has a finite compet-
itive ratio with respect to the profit of the optimal algorithm.
Unfortunately, we show in this section that such an algorithm
cannot exist. Hence we will consider slightly modified notions
of competitive ratio (which we introduce after presenting our
bad example.)

Example 1: Bad Example – We now present an example
to show that for any finite ε > 0, there is no 100ε/9-
competitive algorithm with respect to SP profit. The example
consists of a single CP, a single EU and two types of requests.
Type 1 requests have bi = 1 and si = 1. Type 2 requests
have bi = 10 and si = 1. For a fixed quota size Q, we let
F = Q/(1 − ε) and B = F/ε. The adversary begins by
sending B requests of type 1. There are two cases to consider
(as shown in Figure 1).

• Case 1: (Fig. 1 - left.) The online algorithm ALG sponsors
at most (1 − ε)B of the Type 1 requests. In this case the
adversary does not introduce any more requests and so the
optimal solution is to sponsor all requests. (The budget B is
large enough to do this.) The optimal profit is therefore F +
∑

i(bi − si) = F + B(1 − 1) = F , whereas the profit of
the ALG is at most F +

∑

i(bixi − siyi) which is bounded
by F + (1 − ε)B(1 − 1) − min{Q, εB} ≤ F − min{(1 −
ε)F, εF/ε} = εF .

• Case 2: (Fig. 1 - right.) The online algorithm ALG sponsors
more than (1 − ε)B of the Type 1 requests. In this case
the adversary follows the Type 1 requests with B/10 Type
2 requests in which case the optimal solution is to spon-
sor none of the Type 1 requests. (In the optimal solution
note that only Q of the Type 1 requests will actually be
served since after that the EU quota is exhausted). Hence
the optimal profit is F +

∑

i∈Type 2(bi − si) − Q which

equals F + B
10

(10 − 1) − Q = εF + 9B
10

. The profit of
the ALG is at most F +

∑

i∈Type 2 xi(bi − si) which equals

F + εB(10 − 1) = εB + 9εB = 10ǫB.
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In both cases the competitive ratio of ALG is at most 100ε/9.

In light of this lower bound we consider a slightly different
notion of competitive ratio. In particular, we divide the EUs
into two groups; those for which the unsponsored requests
in OPT are below the quota Qk and those for which the
unsponsored requests in OPT are above the quota Qk. Recall
that for the first group we want the sponsoring decisions to
be competitive with respect to the actual profit bjki − ski for
a request. For the second group we want to be competitive
with respect to the sponsoring revenue bjki since the request
will be served regardless. Hence we present algorithms that
are competitive with respect to

∑

ji(bjki − ski) for the first

group of EUs and are competitive with respect to
∑

ji bji for
the second group of EUs. The details will be given in the exact
statements of Theorems 1 and 2.

We turn to present algorithms for the fixed quota problem
that work by combining an algorithm for the Adwords problem
with an algorithm for the online GAP problem. In particular we
assume access to a χaw-competitive algorithm for the Adwords
problem and a χgap-competitive algorithm for the online GAP
problem. For example, if we use the algorithm of Mehta et
al. [11] for Adwords and the algorithm of Zhou et al. [15]
for online GAP then we can take χaw = 1 − 1

e
and χgap =

1/(log(U/L) + 2) as long as L ≤ (bjki − ski)/bjki ≤ U and
the bjki values are small relative to Bj .

B. The Algorithm

We now present a randomized algorithm for the fixed
quota plan which we denote by FQON . As requests arrive
in an online fashion, the algorithm needs to decide whether
to sponsor or not. If the algorithm decides to sponsor, the
revenue increases by the bid size minus the service cost; if
not, the strategy depends on the status of the user. If the user
is “within” quota, the algorithm cannot reject any request, and
the revenue must decrease by the service cost. If the user has
exceeded the quota, any nonsponsored request is rejected and
in that case, the revenue remains the same.

The randomized algorithm, FQON , virtually runs in parallel
the following two algorithms:

1) A1: Online generalized assignment with m bins. The jth
bin has size Bj . If request qki is placed in bin j this has
both value and size bjki. (Note that this is equivalent to the
Adwords problem and so we assume a competitive ratio of
χaw = 1 − (1/e).)

2) A2: Online generalized assignment with m bins. The jth
bin has size Bj . If request qki is placed in bin j this has value
bjki − ski and size bjki.

Every time a new request qki arrives FQON flips a fair coin
and follows one of the above algorithms.

We remark that in order to for our analysis to hold, each
algorithm A1 and A2 is run in the background. That is, we
record the entire state of the system as if both A1 and A2

were being run on the input. In particular, each algorithm Ai

makes its decisions as if the current quota and budget balances
were calculated according the decisions of Ai. It does not base
its decisions on the current quota and budget balances of the
combined randomized algorithm.

C. Example

We now present a toy example that illustrate how FQON

operates. Later, in Section V we describe the performance of
the algorithm numerically on a more complex scenario. Our
toy example is motivated by the bad example described in
Section IV-A and it assumes two CPs, two end users and two
request types both with the same service cost of 1. The budgets
and quotas of all CPs and EUs equal B = Q. The monthly
service fee F = Q + ε for both EUs. The two CPs have the
same bid of 1 on Type 1 requests , i.e, b11 = b21 = 1, but
different bids on Type 2 requests, b12 = 2 and b22 = 10. Both
users start with sending B Type 1 requests, which terminate
at the same time, follow by a sequence (which may be empty)
of Type 2 requests.

Algorithm A1: Note that Algorithm A1 will simply sponsor
all of the requests until the CPs’ balance is exhausted. We
consider the following two cases.
• Case 1: The EUs send only Type 1 requests. All these
requests are sponsored and the profit is simply the two service
fees, i.e. 2F .
• Case 2: Each EU sends also a long enough sequence of Type
2 requests, these requests are charged to the user’s quota until
it is used up and consequently A1’s profit is 2(F −Q) = 2ε.

Algorithm A2: This algorithm sponsors only requests with bid
value higher than the service cost. Thus, it does not sponsor
any Type 1 requests.
• Case 1: The EUs send only Type 1 requests which will be
charged to the EU quotas. Thus, the profit is 2(F −Q) = 2ε.
• Case 2: The CP budgets will be used to sponsor the Type 2
requests (first the budget of CP 2 is used and then the one of
CP 1). So the profit is 2(F −Q) + B

2
+ 9B

10
≥ 14

10
·B.

Algorithm FQON : We now illustrate how FQON maintains a
balance between the two types of good behavior.
• Case 1: The algorithm sponsors half of the Type 1 requests
and charges the users’ quotas for the second half so the profit
is 2(F − 1

2
· Q) = F + ε, which is more than half of the

optimum profit.
• Case 2: Half of the Type 1 requests are sponsored while
the other half of the CPs’ budgets are used for sponsoring the
Type 2 requests. The EUs’ quotas are used for delivering the
unsponsored requests until they are exhausted. Consequently,
the profit in this case is 2(F − Q) + 1

2
(B

2
+ 9·B

10
) ≥ 7

10
· B,

which is also more than half of the optimal profit.

D. Analysis of FQON

It follows easily that the total budget for CP j spent will
not exceed Bj in expectation, since the expected budget for
CP j used by both A1 and A2 is at most Bj/2. Let κki be an
indicator random variable which takes value 0 if A1 is used
for request qki and 1 if A2 is used. The algorithm outputs a
set S of sponsored requests that depends on the sequence κi.

Let COPT be the set of EUs whose quota is exceeded
by OPT and let CALG be the set of EUs whose quota is
exceeded by FQON . Let SOPT be the set of sponsoring triples
jki decided by OPT . (Note that there can be at most one
such j for each ki.) Let SALG be the set of sponsoring triples
decided by FQON .

Let POPT (C) be the profit that OPT achieves with respect
to the EUs in set C. Note that POPT = POPT (COPT ) +
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POPT (C̄OPT ). We begin with the special case of a single CP
and a single EU since it is easier to state.

Theorem 1: Assume a single CP and a single EU,

• If OPT exceeds the quota Q then
E[PALG] ≥ χgapPOPT /2.

• If OPT does not exceed the quota Q then
E[PALG] ≥ POPT − 1

2

∑

i∈SOP T
bi.

To see why the bound in the second case is desirable recall
that if OPT does not exceed the quota then OPT essentially
tries to maximize

∑

i∈SOP T
bi, (subject to

∑

i∈S̄OP T
si ≤ Q).

The expected profit of FQON differs from POPT by at most
half this amount.

Theorem 2: Consider the general situation with multiple
CPs and EUs. We can write E[PALG] = P1 + P2 where,

P2 ≥ χgapPOPT (COPT ),

P1 ≥ POPT (C̄OPT ) − (1 − χaw)
∑

k∈C̄OP T

∑

jki∈SOP T

bjki.

Hence one of the following two inequalities must hold:

E[PALG] ≥ χgapPOPT /2,

E[PALG] ≥ (POPT /2) − (1 − χaw)
∑

k∈C̄OP T

∑

jki∈SOP T

bjki.

The proofs are deferred to the Appendix due to space con-
straints. However, the intution for why they hold are given by
the description in Section IV-C. In all situations one of the
algorithms has performance close to POPT and FQON makes
the same decision as that algorithm for half the requests. In
the Appendix we also show that we can derandomize FQON

by giving both A1 and A2 a budget of size Bj/2 for CPj

(which ensures that the CP budgets are always respected). The
derandomized version of FQON sponsors any request that is
sponsored by at least one of A1 or A2.

V. NUMERICAL EVALUATION

Due to space limit, we present one numerical example.
Here, we assume there are 2 different end users, multiple CPs
and two request types. All requests have s = 0.1. Each CP
has budget 20 and bids b = 0.11 for Type 1 requests and
b = 1 for Type 2 requests. For each EU the quota is Q = 50
and inexpensive requests arrive twice as frequently as lucrative
ones. The exact arrival rates are such that for EU 1 the total
size of all arrivals is Q/2 and for EU 2 the total size of all
arrivals is 2Q. Fig. 2 compares the performance of FQON with
its constituent algorithms Adwords and online GAP (GAPON )
(which do not take into account the fact that users can change
their status by exhausting their quota). When the number of
CPs is large (and hence quotas are more likely to be exhausted)
it is better to follow the Adwords algorithm whereas for fewer
CPs, GAPON is more appropriate. Our algorithm FQON lies
in the middle and hence can handle either case without a
drastic dropoff in performance. This is useful when the budget
changes dynamically. For example, in a real-word situation,
new bidders are usually added or some existing ones are often
removed. In such a case, our algorithm guarantees a good
performance throughout, while if we were to use one of the
other two, we should anticipate a larger fluctuation in the
generated profit.
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Fig. 2: Ratio of the profit of Adwords, FQON and GAPON

algorithms to OPT for Multiple EUs and Multiple CPs.
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