
The Complexity of Optimal Multidimensional Pricing

Xi Chen∗ Ilias Diakonikolas† Dimitris Paparas‡ Xiaorui Sun∗

Mihalis Yannakakis‡

Abstract

We resolve the complexity of revenue-optimal determin-
istic auctions in the unit-demand single-buyer Bayesian
setting, i.e., the optimal item pricing problem, when the
buyer’s values for the items are independent. We show
that the problem of computing a revenue-optimal pric-
ing can be solved in polynomial time for distributions of
support size 2 and its decision version is NP-complete
for distributions of support size 3. We also show that
the problem remains NP-complete for the case of iden-
tical distributions.

1 Introduction

Consider the following natural pricing scenario: We
have a set of n items for sale and a single unit-demand
buyer, i.e., a consumer interested in obtaining at most
one of the items. The goal of the seller is then to set
prices for the items in order to maximize her revenue
by exploiting stochastic information about the buyer’s
preferences. More specifically, the seller is given ac-
cess to a distribution F from which the buyer’s valu-
ations v = (v1, . . . , vn) for the items are drawn, i.e.,
v ∼ F , and wants to assign a price pi to each item in
order to maximize her expected revenue. We assume,
as is commonly the case, that the buyer here is quasi-
linear, i.e., her utility for item i ∈ [n] is vi− pi, and she
will select an item with the maximum nonnegative util-
ity or nothing if no such item exists. This is known
as the Bayesian Unit-demand Item-Pricing Problem
(BUPP) [CHK07], and has received considerable at-
tention in the CS literature during the past few years
[GHK+05, CHK07, Bri08, CHMS10, CD11, DDT14].

Throughout this paper we focus on the well-studied
case [CHK07, CHMS10, CD11] that F = ×ni=1Fi is a
product distribution, i.e., the valuations of the buyer for
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the n items are mutually independent random variables.
We assume that the n (marginal) distributions Fi are
discrete and are known to the seller, i.e., the values
of the support and the corresponding probabilities are
rational numbers given explicitly in the input.

This seemingly simple computational problem ap-
pears to exhibit a very rich structure. Prior to our work,
even the (very special) case that the distributions Fi
have support 2 was not well understood: First note
that the search space is apparently exponential, since
the support size of F is 2n. What makes things trick-
ier is that the optimal prices are not necessarily in the
support of F (see [CD11] for a simple example with two
items with distributions of support 2). So, a priori, it
was not even clear whether the optimal prices can be de-
scribed with polynomially many bits in the size of the
input description.

Revenue-optimal pricing is well-studied by econo-
mists (see, e.g., [Wil96] for a survey and [MMW89] for a
simple additive case with two items). The pricing prob-
lem studied in this work fits in the general framework of
optimal multi-dimensional mechanism design, a central
question in mathematical economics (see [MV07] and
references therein). Finding the optimal deterministic
mechanism in our setting is equivalent to finding the
optimal item-pricing. A randomized mechanism, on
the other hand, would allow the seller to price lotteries
over items [BCKW10, CMS10], albeit this may be less
natural in this context.

Optimal mechanism design is well-understood in
single-parameter settings for which Myerson [Mye81]
gives a closed-form characterization for the optimal
mechanism. Chawla, Hartline and Kleinberg [CHK07]
show that techniques from Myerson’s work can be used
to obtain an analogous closed-form characterization
(and also an efficient algorithm) for pricing in our set-
ting, albeit with a constant factor loss in the revenue.
In particular, they obtain a factor 3 approximation to
the optimal expected revenue (subsequently improved
to 2 in [CHMS10]). Cai and Daskalakis [CD11] ob-
tain a polynomial-time approximation scheme for dis-
tributions with monotone hazard-rate (and a quasi-
polynomial time approximation scheme for the broader



class of regular distributions). That is, prior to this
work, closed-form characterizations (and efficient algo-
rithms) were known for approximately optimal pricing.
The question of whether such a characterization exists
for the optimal pricing has remained open and was posed
as an open problem in these works [CHK07, CD11].

Our Results. In this paper, we take a principled
complexity-theoretic look at the BUPP with indepen-
dent (discrete) distributions. We start by showing (The-
orem 1) that the general decision problem is in NP (and
as a corollary, the optimal prices can be described with
polynomially many bits). We note that the membership
proof is non-trivial because the optimal prices may not
be in the support. Our proof proceeds by partitioning
the space of price-vectors into a set of (exponentially
many) cells (defined by the value distributions Fi), so
that the optimal revenue within each cell can be found
efficiently by a shortest path computation. One conse-
quence of the analysis is that the optimal pricing prob-
lem has the integrality property: if the values in the
supports are integer then the optimal prices are also
integer (though they may not belong to the support).

We then proceed to show (Theorem 2) that the
case in which each marginal distribution has support
at most 2 can be solved in polynomial time. Indeed, by
exploiting the underlying structure of the problem, we
show that it suffices to consider O(n2) price-vectors to
compute the optimal revenue in this case.

Our main result is that the problem is NP-hard,
even for distributions of support 3 (Theorem 3) or
distributions that are identical but have large support
(Theorem 4). This answers an open problem first posed
in [CHK07] and also asked in [CD11, DDT14]. The
main difficulty in the reductions stems from the fact
that, for a general instance of the pricing problem, the
expected revenue is a highly complex nonlinear function
of the prices. The challenge is to construct an instance
such that the revenue can be well-approximated by a
simple function and is also general enough to encode an
NP-hard problem.

Previous Work. We have already mentioned the
main algorithmic works for the independent distribu-
tions case with approximately-optimal revenue guaran-
tees [CHK07, CHMS10, CD11]. On the lower bound
side, Guruswami et al. [GHK+05] and subsequently
Briest [Bri08] studied the complexity of the prob-
lem when the buyer’s values for the items are corre-
lated, respectively obtaining APX-hardness and Ω(nε)
inapproximability, for some constant ε > 0. More re-
cently, Daskalakis, Deckelbaum and Tzamos [DDT14]
showed that the pricing problem with independent dis-
tributions is SQRT-SUM-hard when either the support

values or the probabilities are irrational. We note that
their reduction relies on the fact that, for certain care-
fully constructed instances, it is SQRT-SUM-hard to
compare the revenue of two specific price-vectors. This
has no bearing on the complexity of the problem under
the standard discrete model we consider here, since the
exact revenue of a price-vector can be computed effi-
ciently.

Related Work. The optimal mechanism design prob-
lem, i.e., the problem of finding a revenue-maximizing
mechanism in a Bayesian setting, has received consi-
derable attention in the CS community during the past
few years. The vast majority of the work so far is algo-
rithmic [CHK07, CHMS10, BGGM10, Ala11, DFK11,
HN12, CDW12a, CDW12b], providing approximation
or exact algorithms for various versions of the prob-
lem. Regarding lower bounds, Papadimitriou and Pier-
rakos [PP11] show that computing the optimal deter-
ministic single-item auction is APX-hard, even for the
case of 3 bidders. We remark that, if randomization
is allowed, then this problem can be solved exactly in
polynomial time via linear programming [DFK11]. In
a very recent work [DDT12], Daskalakis, Deckelbaum
and Tzamos show #P -hardness of computing the op-
timal randomized mechanism for the case of additive
buyers. We remark that their result does not have any
implication for the unit-demand case due to the very
different structures of the two problems.

The rest of the paper is organized as follows. In
Section 2 we define formally the problem, state our main
results, and prove some preliminary basic properties. In
Section 3 we show that the decision problem is in NP.
In Section 4 we present a polynomial-time algorithm for
distributions with support size 2. Section 5 shows NP-
hardness for the case of support size 3, and Section 6
for the case of identical distributions. We conclude in
Section 7.

2 Preliminaries

In our setting, there are one buyer and one seller with
n items, indexed by [n] = {1, 2, . . . , n}. The buyer is
interested in buying at most one item (unit demand),
and her valuation of the items are drawn from n inde-
pendent discrete distributions, one for each item. We
use Vi = {vi,1, . . . , vi,|Vi|}, for each i ∈ [n], to denote
the support of the value distribution of item i, where
0 ≤ vi,1 < · · · < vi,|Vi|. We use qi,j > 0, j ∈ [|Vi|],
to denote the probability of item i having value vi,j ,
with

∑
j qi,j = 1. Let V = ×ni=1Vi. We also use Pr[v]

to denote the probability of the valuation vector being
v = (v1, . . . , vn) ∈ V , i.e., the product of qi,j ’s over i, j
such that i ∈ [n] and vi = vi,j .



In the problem, all the n distributions, i.e., Vi and
qi,j ’s, are given to the seller explicitly. The seller then
assigns a non-negative price pi to each item i ∈ [n].
Once the price vector p = (p1, . . . , pn) is determined,
the buyer draws her values v = (v1, . . . , vn) from the
distributions independently, i.e., her values are v ∈ V
with probability Pr[v]. We assume that the buyer is
quasi-linear: her utility for item i equals vi − pi. Let

U(v,p) = max
i∈[n]

(vi − pi) .

If U(v,p) ≥ 0, the buyer selects an item i ∈ [n] that
maximizes her utility vi − pi, and the revenue of the
seller is pi. If U(v,p) < 0, the buyer does not select any
item, and the revenue of the seller is 0. For convenience
let T (v,p) denote the set of items with maximum non-
negative utility (T (v,p) = ∅ iff U(v,p) < 0).

Knowing the distributions (as well as the behavior
of the buyer), the seller’s objective is then to compute
a vector p ∈ Rn+ that maximizes her expected revenue

R(p) =
∑
i∈[n] pi · Pr

[
buyer selects item i

]
.

We use Item-Pricing to denote the following decision
problem: The input consists of n discrete distributions,
where vi,j and qi,j are all rational and encoded in binary,
and a rational number t ≥ 0. The problem asks whether
the supremum of the expected revenue R(p) over all
price vectors p ∈ Rn+ is at least t, where we use R+ to
denote the set of non-negative real numbers.

We note that the aforementioned decision problem
is not well-defined without a tie-breaking rule, i.e., a
rule that specifies which item the buyer selects when
there are multiple items with maximum non-negative
utility. Throughout the paper, we will use the following
maximum price1 tie-breaking rule (which is convenient
for our arguments): when there are multiple items with
maximum non-negative utility, the buyer selects the
item with the smallest index among items with the
highest price. (We note that the critical part is that
an item with the highest price is selected. Selecting the
item with the smallest index among them is arbitrary
and does not affect the revenue; however, we need to
make such a choice so that it makes sense to talk about
“the” item selected by the buyer in the proofs.) We
will use R(v,p) to denote the seller’s revenue under
the maximum price tie-breaking rule when the valuation
vector is v ∈ V . So we have

R(p) =
∑

v∈V Pr[v] · R(v,p).

1It may also be called the maximum value tie-breaking rule,

since an item with the maximum price among a set of items with
the same utility must also have the maximum value.

We show in Section 2.2 of the full version that our
choice of the maximum price tie-breaking rule does not
affect the supremum of the expected revenue (hence, the
complexity of the problem):

Lemma 2.1. The supremum of the expected revenue
over p ∈ Rn+ is invariant to tie-breaking rules.

We will henceforth always adopt the maximum price
tie-breaking rule throughout the rest of the paper, and
let R(v,p) denote the revenue of the seller with respect
to this rule. We show two more lemmas in Section 2.2
of the full paper. Given Vi, let P = ×ni=1[ai, bi], where
ai = minj vi,j and bi = maxj vi,j .

Lemma 2.2. For any price vector p ∈ Rn+, there exists
a price vector p′ ∈ P such that R(p′) ≥ R(p).

Lemma 2.3. There exists a vector p∗ ∈ P such that

R(p∗) = supp∈Rn
+
R(p).

By Lemma 2.3, one of the advantages of the max-
imum price rule is that the supremum of the expected
revenue R(p) is always achievable, so it makes sense to
talk about whether a price vector is optimal or not. In
the following example, we point out that this does not
hold for general tie-breaking rules.

Example: Suppose item 1 has value 10 with probability
1, item 2 has value 8 with probability 1/2 and value 12
with probability 1/2, and in case of tie the buyer prefers
item 1. The supremum in this example is 11: set p1 = 10
for item 1 and p2 = 12 − ε for item 2. The buyer will
buy item 1 with probability 1/2 (if her value for item
2 is 8) and item 2 with probability 1/2 (if her value for
item 2 is 12). However, an expected revenue of 11 is not
achievable: if we give price 12 to item 2, then the buyer
will always buy item 1 and the revenue is 10. Note that
the expected revenue for this tie-breaking rule is not a
continuous function of the prices.

We are now ready to state our main results. First,
we show in Section 3 that Item-Pricing is in NP.

Theorem 1. Item-Pricing is in NP.

Second, we present in Section 4 a polynomial-time
algorithm for Item-Pricing when all the distributions
have support size at most 2.

Theorem 2. Item-Pricing is in P when every distri-
bution has support size at most 2.

As our main result, we resolve the complexity of
the problem, by showing that it is NP-hard even when
all distributions have support at most 3 (Section 5), or
when they are identical (Section 6).



Theorem 3. Item-Pricing is NP-hard even when
every distribution has support size at most 3.

Theorem 4. Item-Pricing is NP-hard even when
the distributions are identical.

3 Membership in NP

In this section we prove Theorem 1, i.e., Item-Pricing
is in NP.

Proof. [Proof Sketch of Theorem 1] We will partition
P = ×ni=1[ai, bi] into equivalence classes, so that two
price vectors p,p′ from the same class yield the same
outcome for all valuations v, i.e., the buyer selects the
same item or none at all. Consider the partition of P
induced by the following set of hyperplanes. For each
item i and each value si ∈ Vi, we have a hyperplane
pi = si. For each pair of items i, j ∈ [n] and pair
of values si ∈ Vi and tj ∈ Vj , we have a hyperplane
si−pi = tj−pj , i.e. pi−pj = si−tj . These hyperplanes
partition our search space P into polyhedral cells, where
the points in each cell lie on the same side of each
hyperplane (either on the hyperplane or in one of the
two open-halfspaces). We can show then:

Claim 3.1. For every valuation v ∈ V , all the price
vectors in each cell yield the same outcome.

Next we show that, for each cell C, it is easy to
compute the supremum of the expected revenue R(p)
over p ∈ C. To this end, we let Wi denote the set of
valuations for which the buyer picks item i if the prices
lie in the cell C, and let γi be the probability of Wi:
γi =

∑
v∈Wi

Pr[v]. By Claim 3.1, Wi and γi are the
same for all prices in the cell C. It turns out that γi can
be computed efficiently as follows. For each si ∈ Vi, let
V (si) be the set of valuations with vi = si for which the
buyer picks item i if the prices lie in the cell C. Then
Wi is the disjoint union of V (si), si ∈ Vi. For each
j 6= i, we can determine efficiently the subset of values
Lj ⊆ Vj such that the buyer prefers item i to j if i has
value si and j has value from Lj . V (si) is the Cartesian
product of Lj , j 6= i, and {si}. Thus, we multiply the
probabilities of Lj ’s and the probability of si. Summing
up the probabilities of V (si) over si ∈ Vi gives us γi.

Finally, the supremum of the expected revenue
R(p) over p ∈ C is the maximum of

∑
i∈[n] γi · pi, over

all p in the closure of C. Let C ′ denote the closure
of C; this is the polyhedron obtained by changing all
the strict inequalities of C into weak inequalities. The
supremum of

∑
i γi · pi over all p ∈ C can be computed

in polynomial time by solving the linear program that
maximizes

∑
i γi · pi subject to p ∈ C ′. In fact, this LP

has a special form and as we will show below, we can test

feasibility by solving a negative weight cycle problem,
and we can compute the optimal solution by solving a
single-source shortest path problem. It follows that the
specification of a cell C in the partition is an appropriate
yes certificate for the decision problem Item-Pricing,
and the theorem is proved.

Next we describe in more detail how to determine
whether a set of equations and inequalities defines a
nonempty cell, and how to compute the optimal solution
over a nonempty cell. The description of a (candidate)
cell C consists of equations and inequalities specifying
(1) for each item i, the relation of pi to every value
si ∈ Vi, and (2) for each pair of items i, j and each pair
of values si ∈ Vi and tj ∈ Vj , the relation of pi − pj to
si−tj . Construct a weighted directed graph G = (N,E)
over n+ 1 nodes N = {0, 1, . . . , n} where nodes 1, . . . , n
correspond to the n items. For each inequality of the
form pi < si or pi ≤ si, include an edge (0, i) with
weight si, and call the edge strict or weak accordingly
as the inequality is strict or weak. In fact, there is a
tightest such inequality (i.e., with the smallest value si)
since the cell is in P , and it suffices to include the edge
for this inequality only. Similarly, for each inequality
of the form pi > si or pi ≥ si (or only for the tightest
one) include an edge (i, 0) with weight −si. For each
inequality of the form pi−pj < si−tj or pi−pj ≤ si−tj
(or only for the tightest), include a (strict or weak) edge
(j, i) with weight si − tj . Similarly, for each inequality
of the form pi− pj > si− tj or pi− pj ≥ si− tj (or only
for the tightest), include a (strict or weak) edge (i, j)
with weight tj − si. We have the following connections:

Lemma 3.1. 1. A set of equations and inequalities
defines a nonempty cell if and only if the corresponding
graph G does not contain a negative weight cycle or a
zero weight cycle with a strict edge.

2. The supremum of the expected revenue for a
nonempty cell is achieved by the price vector p that
consists of the distances from node 0 to the other
nodes of the graph G.

The NP characterization of Item-Pricing as well
as the corresponding structural characterization of the
optimal price vector of each cell have several easy and
useful consequences. First, we get an alternative proof
of Lemma 2.3 (see the full version). Another conse-
quence suggested by the characterization of Lemma 3.1
is that the maximum expected revenue can always be
achieved by a price vector p in which all pi are sums of
a value and differences between pairs of values of items.
This implies the following useful corollary.



Corollary 3.1. If all the values in Vi, i ∈ [n], are
integers, then there must exist an optimal price vector
p ∈ P with integer coordinates.

4 A Polynomial-Time Algorithm for Support 2

In this section we present a polynomial-time algorithm
for the case that each distribution has support size at
most 2. In Section 4.1, we give a polynomial-time algo-
rithm under a certain “non-degeneracy” assumption on
the values. In Section 4.2 we generalize this algorithm
to handle the general case.

4.1 An Interesting Special Case In this subsec-
tion, we assume that every item i has support size ex-
actly 2, where Vi = {ai, bi} satisfies bi > ai > 0, for
all i. Let qi : 0 < qi < 1 denote the probability of the
value of item i being bi, and let ti = bi − ai > 0. More-
over, we assume in this subsection that the two vectors
a = (a1, . . . , an) and b = (b1, . . . , bn) satisfy the follow-
ing “non-degeneracy” assumption: b1 < · · · < bn,
ai 6= aj and ti 6= tj for all i, j ∈ [n]. As we show next in
Section 4.2, this special case encapsulates the essential
difficulty of the problem.

Let OPT denote the set of optimal price vectors in
P = ×ni=1[ai, bi] that maximize the expected revenue.
We prove a sequence of lemmas below (all the proofs,
except that of Lemma 4.5, can be found in the full
version) to show that, given a and b that satisfy all
the conditions above, one can compute efficiently a set
A ⊂ P of price vectors (independent of qi’s) such that
|A| = O(n2) and OPT ⊆ A. As a result, by computing
R(p) for all p ∈ A we obtain the maximum of expected
revenue and an optimal price vector.

We start with the following two lemmas:

Lemma 4.1. If p ∈ P satisfies pi > ai for all i ∈ [n],
then either p = b or we have p /∈ OPT.

Lemma 4.2. If p ∈ P has more than one i ∈ [n] such
that pi = ai, then we have p /∈ OPT.

Lemma 4.2 reduces our search space to p such that
either p = b or p ∈ Pk for some k ∈ [n], where we use
Pk to denote the set of price vectors p ∈ P such that
pk = ak and pi > ai for all other i ∈ [n].

Lemma 4.3. If p ∈ Pk but pi /∈ {bi, bi − tk} for some
i 6= k, then we have p /∈ OPT.

As suggested by Lemma 4.3, for each k ∈ [n], we
use P ′k to denote the set of p ∈ Pk such that pk = ak
and pi ∈ {bi, bi − tk} for all other i. In particular, pi
must be bi if ti < tk (ti 6= tk from the non-degeneracy
assumption). The next lemma shows that we only need
to consider p ∈ P ′k such that pi = bi for all i < k.

Lemma 4.4. If p ∈ P ′k satisfies p` = b` − tk > a` for
some ` < k, then we have p /∈ OPT.

Finally we use P ∗k for each k ∈ [n] to denote the set
of p ∈ P such that pk = ak; pi = bi for all i < k; pi = bi,
for all i > k such that ti < tk; and pi ∈ {bi, bi − tk}, for
all other i > k. However, P ∗k may still be exponentially
large in general. Let Tk denote the set of i > k such that
ti > tk. Given p ∈ P ∗k , our last lemma implies that, if i
is the smallest index in Tk such that pi = bi − tk, then
pj = bj − tk for all j ∈ Tk larger than i; otherwise p
is not optimal. As a result, there are only O(n2) many
price vectors that we need to check, and the best one
among them is optimal. We use A ⊂ P to denote this
set of vectors.

Lemma 4.5. Given k ∈ [n] and p ∈ P ∗k , if there exist
two indices c, d ∈ Tk such that c < d, pc = bc − tk but
pd = bd, then we must have p /∈ OPT.

Proof. We use t to denote tk for convenience. Also we
may assume, without loss of generality, that there is no
index between c and d in Tk; otherwise we can use it to
replace either c or d, depending on its price.

We define two vectors. Let p′ denote the vector
obtained from p by replacing pd = bd by p′d = bd − t;
let p∗ denote the vector obtained from p by replacing
pc = bc − t by p∗c = bc. In other words, the cth and dth
entries of p,p′,p∗ are (bc − t, bd), (bc − t, bd − t), (bc, bd)
respectively, while all other n− 2 entries are the same.
Our plan is to show that if R(p) ≥ R(p′) then R(p∗) >
R(p). This implies that p /∈ OPT.

We need some notation. Let V ′ denote the projec-
tion of V onto all but the cth and dth coordinates, i.e.,
V ′ = ×i∈[n]−{c,d}Vi. We still use [n] − {c, d} to index
entries of vectors u in V ′. Let U ⊆ V ′ denote the set of
u ∈ V ′ such that ui − pi < t for all i > d. (This simply
means that for each i ∈ Tk, if i > d and pi = bi− t then
ui = ai.) Given u ∈ V ′, vc ∈ {ac, bc} and vd ∈ {ad, bd},
we use (u, vc, vd) to denote an n-dimensional price vec-
tor in V . Now we compare the expected revenue R(p),
R(p′), and R(p∗).

First, we claim that, if v = (u, vc, vd) ∈ V satisfies
u /∈ U , then we have R(v,p) = R(v,p′) = R(v,p∗).
This is simply because there exists an item i > d such
that vi − pi = t, so it always dominates both items c
and d. As a result, the difference among p,p′ and p∗

no longer matters. Second, it is easy to show that for
any v = (u, ac, ad) ∈ V , R(v,p) = R(v,p′) = R(v,p∗)
as the utility from c and d are negative.

Now we consider a price vector v = (u, vc, vd) ∈ V
such that u ∈ U and (vc, vd) is either (ac, bd), (bc, ad),
or (bc, bd). For convenience, given any u ∈ U , we use
u+
1 to denote (u, ac, bd); u+

2 to denote (u, bc, ad); and



u+
3 to denote (u, bc, bd). From the definition of U , we

have the following simple equations: For p, we have

R(u+
2 ,p) = bc − t and R(u+

3 ,p) = bc − t;

For p′, we have R(u+
2 ,p

′) = bc − t and

R(u+
1 ,p

′) = R(u+
3 ,p

′) = bd − t.

The following properties are also easy to verify:

R(u+
1 ,p) = R(u+

1 ,p
∗) = R(u+

3 ,p
∗)(4.1)

R(u+
1 ,p

∗)− (bd − bc) ≤ R(u+
2 ,p
∗) ≤ R(u+

1 ,p
∗).

Recall that we use Pr[v] to denote the probability
of the valuation vector being v ∈ V . Given a u ∈ U ,
we also use Pr[u] to denote the probability of the n− 2
items, except items c and d, taking values u. Let

h1 = (1− qc)qd, h2 = qc(1− qd), and h3 = qcqd.

Then we have h1, h2, h3 > 0 and Pr[u+
i ] = Pr[u] · hi.

To compare R(p), R(p′), and R(p∗), we only need
to compare the following three sums:∑
i∈[3]

∑
u∈U

Pr[u+
i ] · R(u+

i ,p),
∑
i∈[3]

∑
u∈U

Pr[u+
i ] · R(u+

i ,p
′),

and
∑
i∈[3]

∑
u∈U

Pr[u+
i ] · R(u+

i ,p
∗)

We can rewrite the first two sums for p and p′ as follows
(here all sums are over u ∈ U):

h1
∑
u

Pr[u] · R(u+
1 ,p) + h2

∑
u

Pr[u] · (bc − t)

+ h3
∑
u

Pr[u] · (bc − t),(4.2)

h1
∑
u

Pr[u] · (bd − t) + h2
∑
u

Pr[u] · (bc − t)

+ h3
∑
u

Pr[u] · (bd − t).(4.3)

As c < d and bc < bd, R(p) ≥ R(p′) would imply that

(4.4)
∑
u

Pr[u] · R(u+
1 ,p) >

∑
u

Pr[u] · (bd − t).

We can also rewrite the sum for R(p∗) as

h1
∑
u

Pr[u] · R(u+
1 ,p

∗) + h2
∑
u

Pr[u] · R(u+
2 ,p

∗)

+ h3
∑
u

Pr[u] · R(u+
3 ,p

∗).(4.5)

The first sum in (4.5) is the same as that of (4.2). By
(4.1) and (4.4), we have∑

u

Pr[u] · R(u+
2 ,p

∗)

≥
∑
u

Pr[u] ·
(
R(u+

1 ,p)− (bd − bc)
)

>
∑
u

Pr[u] · (bc − t).

The third sum in (4.5) is also strictly larger than that of
(4.2) as R(u+

3 ,p
∗) = R(u+

1 ,p
∗) ≥ R(u+

2 ,p
∗), while the

second and third sums in (4.2) are the same, ignoring
h2 and h3. As a result, we have R(p∗) > R(p).

4.2 General Case In this subsection, we deal with
the general case. Let I denote an input instance with n
items, in which |Vi| ≤ 2 for all i. For each i ∈ [n] either
Vi = {ai, bi} with bi > ai ≥ 0, or Vi = {bi} with bi ≥ 0.

Let D ⊆ [n] denote the set of i ∈ [n] such that |Vi| =
2. For each item i ∈ D, we use qi : 0 < qi < 1 to denote
the probability of its value being bi. (Each item i /∈ D
has value bi with probability 1.) Since permuting the
items does not affect the maximum expected revenue,
we assume without loss of generality that b1 ≤ · · · ≤ bn.

The idea is to perturb the instance I (symbolically)
so that the new instances satisfy all the conditions des-
cribed at the beginning of the section, which we know
how to solve efficiently. For this purpose, we define a
new n-item instance Iε from I for any ε > 0: For each
i ∈ D, the support of item i is Vi,ε = {ai + iε, bi + 2iε},
and for each i /∈ D, the support of item i is Vi,ε =
{bi + iε, bi + 2iε}. For each i ∈ D, the probability of
the value being bi + 2iε is still set to be qi, while for
each i /∈ D, the probability of the value being bi + 2iε
is set to be 1/2. In the rest of the section we let R(p)
and Rε(p) denote the revenue with respect to I and Iε,
respectively.

It is easy to verify that, when ε is sufficiently small,
the new instance Iε satisfies all conditions given at the
beginning of Section 4.1, including the non-degeneracy
assumption. Moreover, we show that

Lemma 4.6. The limit of maxpRε(p) exists as ε→ 0,
and can be computed in polynomial time.

Proof. Because Iε satisfies all the conditions, we know
there is a set of O(n2) price vectors, denoted by Aε for
Iε, such that the best vector in Aε is optimal for Iε and
achieves maxpRε(p).

Furthermore, from the construction of Aε, we know
that every pε in Aε has an explicit expression in ε: each
entry of pε is indeed an affine linear function of ε. As a
result, the limit of Rε(pε) as ε approaches 0 exists and



can be computed efficiently. Since limε→0(maxpRε(p))
is just the maximum of these O(n2) limits, it also exists
and can be computed in polynomial time in the input
size of I.

The next lemma shows that this limit is exactly
the maximum expected revenue of I. The proof can be
found in the full version.

Lemma 4.7. maxpR(p) = limε→0

(
maxpRε(p)

)
.

5 NP–Hardness for Support Size 3

In this section we present a polynomial-time reduction
from Partition to Item-Pricing when each distribu-
tion has support (at most) 3. Recall that in the Parti-
tion problem [GJ79] we are given a set C = {c1, . . . , cn}
of n positive integers and wish to determine whether it
is possible to partition C into two subsets with equal
sum. We may assume without loss of generality that
c1 = max (c1, . . . , cn).

Given an instance of Partition, we construct an
instance of Item-Pricing as follows. We have n items.
Each item i ∈ [n] can take three possible integer values
0, a, b, where b > a > 0, i.e., Vi = {0, a, b} for all i ∈ [n].
Let qi = Pr[vi = b ] and ri = Pr[vi = a ]. We also set
qi = ci/M , where M = 2nc31, and

ri =
b− a

a(1− ti)
· qi, where ti =

b

2a
·
∑

j 6=i,j∈[n]

qj .

We will eventually set a = 1 and b = 3, but for the sake
of the presentation, we keep a, b as generic constants till
the end. Note that the definition of ri implies that

(5.6) bqi = a(qi + ri)− ariti.

Let N = 2nc21. Then we have qi, ri = O(1/N) and
ti = O(n/N) for all i. Thus, each distribution assigns
most of its probability mass to the point 0. This is a
crucial property which allows us to get a handle on the
optimal revenue. For an arbitrary general instance of
the pricing problem, the expected revenue is a highly
complex nonlinear function. The fact that most of the
probability mass in our construction is concentrated
at 0 implies that valuation vectors with many nonzero
entries contribute very little to the expected revenue.
As we will argue, the revenue is approximated well by
its 1st and 2nd order terms with respect to poly(n)/N ,
which essentially corresponds to the contribution of all
valuations in which at most two items have nonzero
value. The probabilities qi, ri are chosen carefully so
that the optimization of the expected revenue amounts
to a quadratic optimization problem, which achieves its
maximum possible value when C has a partition into
two parts with equal sums.

Our main claim is that for an appropriate value t∗,
there exists a price vector with expected revenue at least
t∗ if and only if there exists a solution to the original
instance of the Partition problem.

Before we proceed with the proof, we will need some
notation. For T1, T2, ε ∈ R+ we write T1 = T2 ± ε to
denote that |T1 − T2 | ≤ ε. Note that, as both the qi’s
and the ti’s are very small positive quantities, we have
that ri ≈ (b−a)qi/a. Formally with the above notation,
we have ri = (b− a)qi/a±O(n/N2).

Lemma 2.2 and Corollary 3.1 imply that a revenue
maximizing price vector can be assumed to have non-
negative integer coordinates of magnitude at most b.
The following lemma establishes the stronger statement
that for our particular instance, an optimal price vector
p can be assumed to have each pi in the set {a, b}.

Lemma 5.1.There is an optimal price vector in {a, b}n.

So to maximize the expected revenue, it suffices to
consider price vectors in {a, b}n. Given a p ∈ {a, b}n,
we let S = S(p) = {i ∈ [n] : pi = a} and T = T (p) =
{i ∈ [n] : pi = b}. Next, we establish an appropriate
quadratic form approximation to R(p) that is suffi-
ciently accurate for the purposes of our reduction.

Approximating the expected revenue. We appro-
priately partition V into three disjoint events that yield
positive revenue. We then approximate the probability
of each and its contribution to the expected revenue
up to, and including, 2nd order terms, i.e., terms of
order O(poly(n)/N2), and we ignore 3rd order terms,
i.e., terms of order O(ε) where ε = n3/N3. In particular,
we consider the following three disjoint events:

• First Event: E1 = {v ∈ V | ∃ i ∈ S : vi = b}. Note
that R(v,p) = a for any v ∈ E1. We have

Pr[E1] = 1−
∏
i∈S

(1− qi)(5.7)

=
∑
i∈S

qi −
∑
i 6=j∈S

qiqj ±O(ε).

• Second Event: E2 = E1 ∩ {v ∈ V | ∃ i ∈ S : vi =
a and ∀ i ∈ T : vi ∈ {0, a}}. For any v ∈ E2 we
have R(v,p) = a. The probability Pr[E2] is

∏
j∈T

(1− qj)

[∏
i∈S

(1− qi)−
∏
i∈S

(1− qi − ri)

]

=
∑
i∈S

ri −
∑
i∈S

ri
∑
j∈T

qj +
∑
i 6=j∈S

qiqj

−
∑
i 6=j∈S

(qi + ri)(qj + rj)±O(ε).



• Third Event: E3 = E1 ∩ {v ∈ V | ∃ i ∈ T : vi = b}.
We have R(v,p) = b for any valuation v ∈ E3,
and the probability Pr[E3] of this event is

∏
i∈S

(1− qi)

1−
∏
j∈T

(1− qj)


=
∑
j∈T

qj −
∑
i6=j∈T

qiqj −
∑
i∈S

qi
∑
j∈T

qj ±O(ε).

The expected revenue is then

R(p) =
(
Pr[E1] + Pr[E2]

)
· a+ Pr[E3] · b.

With (5.6), after performing a number of rearrange-
ments of the terms and simplifications, and setting

L = b
∑
j∈[n]

qj − b
∑

i6=j∈[n]

qiqj

(notice that L does not depend on the pricing, i.e., the
partition of the items into S and T ), we eventually have
that R(p) is equal to:

L+
∑
i∈S

ri

ati − b

2

∑
j∈S, j 6=i

qj − a
∑
j∈T

qj

±O(ε)

= L+
1

M2

(∑
i∈S

ci

)∑
j∈T

cj

±O(ε),

by setting a = 1, b = 3 in the last expression. Details of
the calculations can be found in the full paper.

At this point, we observe that the sum of the two
factors

∑
i∈S ci and

∑
j∈T cj in the equation above is

a constant (independent of the partition). Thus, their
product is maximized when they are equal. Because
ε = o(1/M2), it follows that the revenue is maximized
when the product of these two factors is maximized. In
particular, if there exists a partition of C = {c1, . . . , cn}
into two sets with equal sums H = (

∑
i∈[n] ci)/2, then

the corresponding partition of the indices into the sets
S and T yields revenue L + 1

M2 · H2 ± O(ε). On the
other hand, if there is no such equipartition of the set
C, then for any partition, the revenue will be at most

L+
(H + 1)(H − 1)

M2
±O(ε) = L+

H2 − 1

M2
±O(ε).

As ε = o(1/M2) it follows that there exists a partition of
the set C = {c1, . . . , cn} into two sets with equal sums
if and only if there exists a price vector p ∈ {a, b}n with

R(p) ≥ t∗ = L+
1

M2

(
H2 − (1/2)

)
.

This completes the proof sketch.

Remark. In the construction above, the support of the
distributions includes the value 0. It is easy to modify
the construction, if desired, so that the support contains
only positive values: Shift all values of the distributions
up by 1 (thus, the supports now become {1, 2, 4}) and
add an additional (n + 1)-th item which has value 1
with probability 1. This transformation increases the
expected revenue by 1. It is easy to see that an optimal
price vector p′ for the new instance will give price
p′n+1 = 1 to the (n + 1)-th item and price p′i = pi + 1
to each other item i ∈ [n], where p is an optimal vector
for the original instance.

6 NP–Hardness for Identical Distributions

In this section we show that Item-Pricing is NP-hard
even for identical distributions. For this purpose, we
reduce from the following (still NP-complete) version of
Integer Knapsack.

Definition 6.1. (Int. Knapsack with repetitions)
Input: n+ 1 positive integers a1 < · · · < an and L.
Problem: Do there exist nonnegative integers
x1, . . . , xn s.t.

∑
i∈[n] xi = n and

∑
i∈[n] xiai = L?

Given an instance of this Knapsack problem, we re-
duce it to an instance of Item-Pricing with n items,
each of which has its value drawn independently from
a suitably constructed distribution Q over nonnegative
integers. Similar to the reduction for support size 3,
Q assigns most of its probability mass to the point 0,
so that valuations with many nonzero values contribute
very little to the expected revenue. We set the support
and probabilities of Q carefully, so that the optimiza-
tion of the expected revenue amounts to a quadratic
optimization problem that mimics the Integer Knap-
sack problem with repetitions. The construction and
the proof are quite involved (see the full paper), so we
will only give an outline here.

Let m = max (n5, an) and N = mn2

. For each i ∈
[n], let vi = mn+i. For each i ∈ [n− 1], let

γi =
1

N

(
1

mn+i
− 1

mn+i+1

)
=

m− 1

Nmn+i+1
.

Let γn = 1/(Nm2n). Let Γi =
∑n
j=i γj = 1/(Nmn+i),

for each i. Note that viΓi = 1/N for all i.
The construction of Q also uses a sequence of pro-

bability distributions q1, . . . ,qn, whose supports are all
subsets of [2n3], as well as a sequence of (not necessarily
positive) numbers t1, . . . , tn with |ti| = O(1/N2) for all
i ∈ [n]. We delay the definition of qi and ti for now and
define Q using vi, γi, ti and qi.



First the support of Q is{
0, vi, vi + j : i ∈ [n] and j ∈ [2n3]

}
.

Next Q has probability (γi/m)+ti at vi for each i ∈ [n];
probability qi(j) · γi(m− 1)/m at vi + j for each i ∈ [n]
and j ∈ [2n3]; and probability 1 − (

∑n
i=1 γi + ti) at 0.

It is easy to verify that Q is a probability distribution
since the probabilities sum to 1.

For convenience, let Ti =
∑n
j=i tj , and

ri =
∑n
j=i(γj + tj) = Γi + Ti, for each i ∈ [n].

The latter quantity, ri, is the probability that the value
is at least vi.

Even though ti and qi have not been specified yet,
as long as |ti| = O(1/N2) for each i ∈ [n], we can prove
the following useful lemma about optimal price vectors.

Lemma 6.1. There is an optimal price vector in
{v1, . . . , vn}n.

Given p ∈ {v1, . . . , vn}n, let xi denote the number
of items priced at vi. Then

∑
i xi = n. We will only

consider the contribution to R(p) of valuation vectors
with at most two positive entries. The following lemma
shows that the contribution from other valuations is of
third order with respect to (roughly) 1/N .

Lemma 6.2. The revenue from valuation vectors with
at least three positive entries is O(n3/(mn+3N3)).

Let ε′ = n3mn−1/N3. Then a careful analysis of the
contribution from valuations with at most two positive
entries yields the following approximation of R(p) after
a number of simplifications, with an error of O(ε′):

n

N
+
∑
i∈[n]

xiviTi −
n− 1

2N

∑
i∈[n]

xiri(6.8)

+
∑

i<j∈[n]

xixj
N
·
(

1

2
− p(i, j)

)
(Γi − Γj),

where, for each pair i < j ∈ [n], we use p(i, j) to denote
the probability that α− vi > β − vj where α and β are
drawn independently from Q, conditioning on α ≥ vi
and β ≥ vj .

Our ultimate goal is to set ti’s and qi’s appropri-
ately so that (6.8) by the end has the following form:

n

N
+

L2

N2m3n
− 1

N2m3n

∑
i∈[n]

xiai − L

2

.(6.9)

If this is the case, we finally obtain a polynomial-time
reduction from the special Knapsack problem to Item

Pricing, since the difference between (6.9) and R(p) is
at most O(ε′) and thus (6.9) is at least

n

N
+

L2

N2m3n
− 1

2N2m3n

if and only if a1, . . . , an and L is a yes-instance of the
special Knapsack problem with repetitions.

Comparing (6.9) and (6.8) and using
∑
i∈[n] xi = n,

we can deduce that our goal is achieved if

(6.10) Ti =
1

vi
·
(

(n− 1)ri
2N

− na2i − 2aiL

N2m3n

)
,

for all i ∈ [n] (note that the absolute value of the right
side of (6.10) is O(n/(m2n+2N2))), and

(6.11)
((1/2)− p(i, j))(Γi − Γj)

N
=

(ai − aj)2

N2m3n
,

for all pairs i < j ∈ [n].
For the first condition, we note that the equations

(6.10), for all i ∈ [n], indeed form a triangular system of
n equations in the n variables t1, . . . , tn, and thus there
exists a unique sequence t1, . . . , tn such that (6.10) holds
for all i ∈ [n]. Moreover, it is easy to show that the ti’s
are O(1/N2) as we promised earlier.

The second condition of (6.11) is more difficult to
satisfy. It specifies a desired value for every p(i, j). It
is easy to see from (6.11) that all the desired values are
very close to 1/2, namely 0 < 1/2 − p(i, j) = o(1/m),
for all i < j ∈ [n]. We let q(i, j) denote the probability
of α > β, where α is drawn from qi and β is drawn
from qj independently. Then one can show that there
is a linear relation between p(i, j) and q(i, j), for every
i < j ∈ [n]; furthermore, 1/2− p(i, j) = o(1/m) implies
that |1/2− q(i, j) | = O(1/m).

As a result, to obtain the desired values of p(i, j),
it suffices to construct the distributions qi, i ∈ [n], so
that q(i, j)’s have the corresponding desired values. For
arbitrary q(i, j) this is not always possible, e.g., consider
n = 3, q(1, 2) = 1, q(2, 3) = 1 and q(1, 3) = 0. But here
we are guaranteed that the q(i, j)’s are all close to 1/2:
|q(i, j) − 1/2 | = O(1/m). We show (constructively) in
this case that the desired distributions qi exist. The
construction is nontrivial and is given in the full paper.
This concludes the sketch of the proof.

7 Conclusions

In this paper we studied the complexity of the Bayesian
Unit-Demand Item-Pricing problem with independent
distributions. We showed that the decision problem is
NP-complete when the distributions are of support size
3 or when they are identical. We presented a polynomial
time algorithm for distributions of support size 2.



Several interesting open questions remain. Is there
a PTAS for general distributions? Note that our NP-
hardness results here do not preclude the existence of an
FPTAS. Actually, by adapting techniques from [CD11]
we can give an FPTAS for the case when the supports
of the distributions are integers in a bounded interval.
Moreover, we conjecture that the IID case can be solved
in polynomial time, when the size of the support is
constant. A related question concerns the complexity
of the randomized case (i.e., lottery pricing). We con-
jecture that this problem is intractable, but new ideas
are needed to prove this.
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