Outline

- Circuit Complexity
- Uniform Circuit Complexity
- P vs. Uniform Poly-size circuits
- P/poly
- BPP \subseteq P/poly
- Monotone problems and circuits
Boolean Circuits and Languages

• Circuit C_n with n inputs x_1, \ldots, x_n, 1 output, gates NOT, OR, AND with fan-in 2. Two parameters of interest:
• **Size** of circuit = # gates
• **Depth** of circuit = maximum # gates in an input-output path
• C **accepts** the set of binary strings $x = (x_1, \ldots, x_n)$ such that $C_n(x) = 1$

• If $L \subseteq \{0,1\}^*$ is a language then for each length n, we need a separate circuit C_n to accept the subset of L of strings of length n (usually denoted as L_n)
• **Family of circuits** $C = (C_1, C_2, \ldots)$ where C_n has n inputs, accepts the language L if for every n and every string x of length n, $C_n(x) = 1 \iff x \in L$
Circuit Complexity

- Size complexity of circuit family $C = (C_1, C_2, ...)$:
 \[s(n) = \text{size}(C_n) \]

- Depth complexity of circuit family $C = (C_1, C_2, ...)$:
 \[d(n) = \text{depth}(C_n) \]

- Circuit size complexity of a language L over $\{0,1\}$ = minimum size complexity of a circuit family that accepts L (i.e. for every n, pick a circuit C_n of minimum size that accepts the strings of L of length n).

- Circuit depth complexity of a language L over $\{0,1\}$ = minimum depth complexity of a circuit family that accepts L.
Circuit complexity and uniformity

- There are undecidable languages that have linear circuit (size) complexity

 - Proof: Take undecidable language L over \{0,1\}. Corresponding unary language unary(L) over \{1\} is also undecidable. Every unary language has a trivial circuit family: C_n outputs 1 (resp. 0) iff $1^n \in L$ (resp. $1^n \notin L$).

- Problem: We can pick a different circuit for every n, but definition of circuit complexity does not reflect the difficulty of finding the circuit for each n

- Uniform circuit family: There is a log-space Turing machine which on input 1^n outputs C_n.

- Uniform circuit size/depth complexity of a language
P vs. Polynomial Circuits

• A language L over $\{0,1\}$ has uniformly polynomial size circuits iff $L \in P$.

• Proof: 1. Suppose $L \in P$. As in the proof that the Circuit-Value Problem is P-complete, for each n we can construct a polynomial size circuit C_n such that for every binary string x of length n, $C_n(x) = 1 \iff x \in L$. The construction is done by a log-space TM.

• 2. Suppose L is accepted by a uniform polynomial size circuit family $C = (C_1, C_2, \ldots)$. Given an input x of length $|x| = n$, construct the circuit C_n and evaluate it on input x. Accept iff $C_n(x) = 1$.

• More carefully, it can be shown that $TIME(f(n)) \subseteq CIRCUIT\text{-}\text{SIZE}(f(n)\log(f(n)))$ for proper $f(n)$.
P/poly

• **Notation:** P/poly = class of languages L that can be accepted by (in general, nonuniform) circuits of polynomial size, i.e., there is a constant c and a circuit family C=(C₁,C₂,…) with size(Cₙ) = O(nᶜ) that accepts L.

• Reason for notation: P/poly = languages that can be accepted by a polynomial time Turing Machine, which for inputs x of length n can access also an *advice string* aₙ of polynomial length (the advice string depends only on the length n, not on the input x).

 - advice = description of the circuit Cₙ.
BPP ⊆ P/poly

• All (binary) languages in BPP have polynomial size circuits.

• Proof:

Suppose \(L \in \text{BPP} \). Recall that we can make the error probability exponentially small, \(\leq 2^{-\text{poly}(n)} \), eg. \(\leq 2^{-(n+1)} \).

In terms of the certificate version of BPP, there is a polynomial \(p() \) and a two-input polynomial-time algorithm \(V(.,.) \) such that for every string \(x \)

\[
\begin{align*}
\square \quad & x \in L \implies | \{ y \in \{0,1\}^{p(|x|)} \mid V(x,y) \text{ rejects} \} | \leq 2^{-(|x|+1)} \cdot 2^{p(|x|)} \\
\square \quad & x \notin L \implies | \{ y \in \{0,1\}^{p(|x|)} \mid V(x,y) \text{ accepts} \} | \leq 2^{-(|x|+1)} \cdot 2^{p(|x|)}
\end{align*}
\]

We will show that for every \(n \), there exists a polynomial size circuit \(C_n \) that accepts a string \(x \) of length \(n \) iff \(x \in L \). The proof is not efficiently constructive.
BPP ⊆ P/poly proof

• **Claim:** There is a certificate y of length $p(n)$ for which V gives the correct answer for all strings x of length n:
 \[x \in L \iff V(x, y) \text{ accepts} \]

 Proof: There are 2^n strings x of length n. For each one of them there are at most $2^{p(n)-(n+1)}$ bad certificates y (i.e. certificates for which V gives the wrong answer). So altogether there are at most $2^{p(n)-1} = 2^{p(n)}/2$ certificates that are bad for some $x \Rightarrow$ at least $\frac{1}{2}$ the certificates are good for all x

 • If we knew such a good certificate y^*, we could decide whether $x \in L$ by running V on input x, y^*.

 • Map V to a circuit and set the input bits corresponding to the certificate according to $y^* \rightarrow \text{ circuit } C_n$
Exponential Circuit Size

- Recall that every Boolean function has an exponential size circuit (in fact, formula) ⇒ every binary language has at most exponential circuit size complexity
 (in contrast to the fact that there are languages that have much higher time complexity)
- There are Boolean functions that require exponential size circuits, in fact almost all of them do.

Proof: There are 2^{2^n} Boolean functions with n inputs and 1 output. A circuit with s gates and wires can be specified by specifying for each gate its type (2 bits), and for each wire the endpoints (2log($n+s$) bits) ⇒ $s(2 + 2\log(n+s))$ bits total ⇒ there are $\leq s2^{s(2 + 2\log(n+s))}$ circuits of size at most s. This is less than 2^{2^n} if s is less than $2^n/2n$.
Conjecture: NP-complete problems cannot be decided by polynomial size circuits, probably require exponential size.

Although we know that most Boolean functions/languages require exponential size circuits, no such bound for any concrete, natural problem; in fact, nothing better than linear lower bounds.

Known: There is a language with exponential space complexity that requires exponential size circuits (Proof by diagonalization – HW exercise).
Monotone Problems

- **Monotone Boolean function** f: If $x \geq x'$ (bitwise comparison) then $f(x) \geq f(x')$

- **Monotone problem**: corresponds to family of monotone Boolean functions.

- **Examples:**
 - **Graph Reachability**, where graph is represented by its adjacency matrix: one input bit for each pair (u,v) of nodes, bit =1 if there is edge, 0 otherwise.
 - **Hamiltonicity**, same representation.
 - **n/2-Clique**: Given graph, does it have a clique with $n/2$ nodes?
 - **Perfect matching in bipartite or in general graphs.**

Represent bipartite graphs with the two parts $L=(l_1,\ldots,l_n)$, $R=(r_1,\ldots,r_n)$ by n^2 input bits, one bit for each pair (l_i,r_j).
Monotone Circuits

- No NOT gates: compute monotone functions
- Does this reduce the power?

- [Razborov] The n/2-Clique problem requires exponential size monotone circuits.
 (Proof: see the book, Chapter 14.4.)

 In fact,
- The bipartite perfect matching problem also requires exponential size monotone circuits.
- The bipartite perfect matching problem $\in P$ \Rightarrow has polynomial size circuits
 \Rightarrow exponential gap between the power of general and monotone circuits