COMS4236: Introduction to Computational Complexity

Summer 2014

Mihalis Yannakakis
Outline

• Hardness and completeness

• Composition of reductions

• Graph Reachability is NL-complete
Hardness and Completeness

• A Language L or decision problem Π is **hard** for a class C, or **C–hard**, under a type of reduction (eg. polynomial or log-space reduction) if every problem in the class C reduces to it.

• It is **complete** for a class C, or **C–complete**, under a type of reduction if
 1. it belongs to C
 2. it is C–hard under the reduction.
Hardness and Completeness

• **NP-complete**: usually we use p-reductions for NP and for classes above P. It turns out that the usual NP-complete problems are complete also under the more restrictive log-space reduction.

• **NL-complete, P-complete**: usually we use log-space reductions for P and classes below it

• **Reason**: All nontrivial problems in P are complete under p-reductions (nontrivial means there is a yes instance and a no instance), so p-reductions do not give any useful information inside P
Properties of completeness

• Intuitively, Complete problems are the hardest in the class

• If L is complete for a class C (e.g. NP) under polynomial reductions then $C \subseteq P \iff L \in P$

• If L is complete for a class C (e.g. P or NL) under logspace reductions then $C \subseteq \text{LOGSPACE} \iff L \in \text{LOGSPACE}$
Polynomial-time reductions compose

- \(L_1 \leq_p L_2 \) and \(L_2 \leq_p L_3 \) \(\implies \) \(L_1 \leq_p L_3 \)

Suppose \(f \) reduces \(L_1 \) to \(L_2 \) and \(g \) reduces \(L_2 \) to \(L_3 \)
- Then \(x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3 \)

- Suppose \(f \) runs in time \(O(n^c) \) and \(g \) runs in time \(O(n^d) \)
- Then the algorithm that first runs \(f \) on input \(x \) and then \(g \) on \(f(x) \) runs in time \(O((n^c)^d) = O(n^{cd}) \)
Log Space reductions compose

- \(L_1 \leq_{\log} L_2 \) and \(L_2 \leq_{\log} L_3 \) \(\Rightarrow \) \(L_1 \leq_{\log} L_3 \)

- Same construction as in the proof that \(L_1 \leq_{\log} L_2 \) and \(L_2 \in \text{LOGSPACE} \) imply \(L_1 \in \text{LOGSPACE} \)

- Combine the log-space TMs \(M_{1 \rightarrow 2} \) and \(M_{2 \rightarrow 3} \) for the two reductions, but do not write explicitly the output of the first reduction but only generate it one symbol at a time, as needed.
Properties of completeness

• Compositions of reductions implies:
 • If \(L_1 \) is hard for a class under \(p \)-reductions and \(L_1 \leq_P L_2 \) then \(L_2 \) is also hard for the class
 • If \(L_1 \) is hard for a class under logspace-reductions and \(L_1 \leq_{\text{log}} L_2 \) then \(L_2 \) is also hard for the class

• Complementation implies:
 • co\(C \)-complete problems = complements of \(C \)-complete problems.
 • eg. co\(\text{NP} \)-complete problems = complements of NP-complete problems.
Reachability is NL-complete (under log reductions)

- Corollary: \(NL=L \iff \text{Reachability} \in L \)

- Must show: For every language \(L \) in NL there is a logspace reduction from \(L \) to \text{Reachability}.
- Take a language \(L \) in NL, let \(M \) be NTM that decides \(L \) in space \(\log n \). Must construct a \(O(\log n) \)-space (deterministic) TM \(M' \) that maps every string \(x \) over the input alphabet \(\Sigma \) of \(L \) to an instance (graph \(G \), nodes \(s,t \)) such that \(x \in L \iff s \) can reach \(t \) in \(G \)
- \(G = \) configuration graph of \(M \) on input \(x \)
- \(s = \) initial configuration
- \(t = \) accepting configuration (assume wlog unique)
- Remains to show how to construct \(G \) in log space.
Construction of Configuration Graph

• Can generate graph for example as a list of nodes, followed by a list of edges
• Nodes: Enumerate systematically all configurations of M (remember, not including the input) that use space $\leq \log n$
• Edges: Generate each $\log n$-space configuration C of M, and for each possible move of M from C, generate the next configuration C' and output edge (C,C')
• Output $s =$ initial configuration, $t =$ accepting configuration

• Only need to keep track of the current configuration C being considered, and generate the next config. C'
• $O(\log n)$ space