Discrete Applied Mathematics 211 (2016) 15-22

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Clustering on k-edge-colored graphs” @cfossMark

E. Angel?, E. Bampis >“*, A. Kononov¢, D. Paparas¢, E. Pountourakis
V. Zissimopoulos ®

2 IBISC, Université d’Evry, France

b Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

¢ CNRS, UMR 7606, LIP6, F-75005, Paris, France

d Sobolev Institute of Mathematics, Novosibirsk, Russia

€ Computer Science Department, Columbia University, USA

fEECS Department, Northwestern University, USA

& Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Greece

ARTICLE INFO ABSTRACT

Artic{e history: We study the Max k-colored clustering problem, where given an edge-colored graph with
Received 23 February 2014 k colors, we seek to color the vertices of the graph so as to find a clustering of the vertices
Received in revised form 25 March 2016 maximizing the number (or the weight) of matched edges, i.e. the edges having the same

Accepted 18 April 2016

Available online 12 May 2016 color as their extremities. We show that the cardinality problem is NP-hard even for edge-

colored bipartite graphs with a chromatic degree equal to two and k > 3. Our main result is
a constant approximation algorithm for the weighted version of the Max k-colored cluster-
Clustering ing problgm which is' based on a rounding of a .natural lingar pfogrammin.g‘relaxation. For
Approximation algorithms graphs with chromatic degree equal to two we improve this ratio by exploiting the relation
Coloring of our problem with the Max 2-AND problem. We also present a reduction to the maximum-
weight independent set (IS) problem in bipartite graphs which leads to a polynomial time
algorithm for the case of two colors.

Keywords:

© 2016 Published by Elsevier B.V.

1. Introduction

We consider the following problem: we are given an edge-colored graph G = (V, E), where every edge e is labeled with
one color among {1, 2, ..., k} and it is associated with a weight w.. We are interested in coloring every vertex of the graph
with one of the k available colors so as to create at most k clusters. Each cluster corresponds to the subgraph induced by the
vertices colored with the same color. Given a coloring of the vertices, an edge is called matched if its color is the same as
the color of both its extremities. Our goal is to find a clustering of the vertices maximizing the total weight of the matched
edges of the graph. We call this problem the Max k-colored clustering problem and we denote it as MAx-k-CC.

Our model has similarities with the centralized version of the information-sharing model introduced by Kleinberg and
Ligett [3,7]. In their model, the edges are not colored and two adjacent nodes share information only if they are colored with
the same color. As they mention, one interesting extension of their model would be the incorporation of different categories
of information. The use of colors in our model goes in this direction. Every edge-color corresponds to a different information

* An extended abstract of this work has been presented in MFCS 2013.
* Corresponding author at: Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France.
E-mail addresses: Eric.Angel@ibisc.fr (E. Angel), Evripidis.Bampis@lip6.fr (E. Bampis), alvenko@math.nsc.ru (A. Kononov), paparas@cs.columbia.edu
(D. Paparas), Emmanouil.Pountourakis@eecs.northwestern.edu (E. Pountourakis), vassilis@di.uoa.gr (V. Zissimopoulos).

http://dx.doi.org/10.1016/j.dam.2016.04.017
0166-218X/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.dam.2016.04.017
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.04.017&domain=pdf
mailto:Eric.Angel@ibisc.fr
mailto:Evripidis.Bampis@lip6.fr
mailto:alvenko@math.nsc.ru
mailto:paparas@cs.columbia.edu
mailto:Emmanouil.Pountourakis@eecs.northwestern.edu
mailto:vassilis@di.uoa.gr
http://dx.doi.org/10.1016/j.dam.2016.04.017

16 E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22

category and two adjacent vertices share information if their color is the same as the color of the edge that connects them.
While the centralized version of the information-sharing problem of Kleinberg and Ligett is easy to solve, we show that the
introduction of colors in the edges of the graph renders the problem NP-hard. In this paper, we focus on the centralized
variant of our problem and we study its approximability. Studying our problem from a game theoretic point of view would
be an interesting direction for future work. Our problem is also related to the classical correlation clustering problem [2,6].

1.1. Related works and our contribution

In Section 2, we formulate the problem as an integer linear program and we propose a 1/e%-approximation ratio
algorithm which is based on a randomized rounding of its linear programming relaxation.! Our problem can be formulated
as the combinatorial allocation problem studied by Feige and Vondrak in [4]. We may consider each color as a player and each
vertex as an item. The items have to be allocated to competing players by a central authority with the goal of maximizing the
total utility provided to the players. Every player (color) has utility functions derived from the different subsets of vertices.
In their work, Feige and Vondrak considered subadditive, fractional subadditive and submodular functions [4]. It is easy to
see that in our case the function is supermodular and hence, their method cannot be directly applied. At the end of Section 2,
we show that in the special case where the chromatic degree? of the graph is equal to two, our problem is a special case
of the MAX 2-AND problem [9]. We show in Section 3 that the cardinality Max k-colored problem is strongly NP-hard by a
reduction from MAX-2-SAT, even for bipartite graphs with chromatic degree equal to two, whenever the number of colors
is any constant number k > 3. In Section 4, we present a reduction to the maximum-weight independent set (IS) problem
in bipartite graphs which a1120W5 us to get an optimal polynomial-time algorithm for the case of two colors. Furthermore,

we exploit this idea to get a 7 -approximation algorithm whose approximation ratio is better than the ratio of the constant-

approximation algorithm presented in Section 3 for any k < 14.
2. A constant approximation algorithm

As the problem is strongly NP-hard (see Section 3), in the first part of this section, we present a constant-factor
approximation algorithm for our problem, while in the second part we focus on graphs with chromatic degree equal to
two.

For every vertex i of the graph and for every available color ¢, we introduce a variable x;. which is equal to one if i is
colored with color ¢ and zero otherwise. Also, for every edge e = [i, j], we introduce a variable z; which is equal to one if
both extremities are colored with the same color as e, and zero otherwise. We obtain the following ILP:

max Z WeZe
e
Ze < Xic, VY c-colorededgeeandice

inczu Vi
c

Xic,Ze € {0, 1}, Vi,c,e.
By relaxing the integrality constraints, we get the linear relaxation of this ILP that we denote by LP.

Our algorithm works in k iterations by considering each color ¢, 1 < ¢ < k, independently from the others, and so the
order in which the colors are considered does not matter. By I(c), we denote the number of c-colored edges in the graph.
When an edge is chosen this means that its two extremities get the color of this edge. Since in general a vertex is adjacent to
edges of different colors, a vertex may get more than one color. We want to avoid such situations and the way the algorithm
assigns colors to vertices is designed to minimize the number of such conflicts.

The algorithm is given below.

Algorithm RR
Phase I:
Solve the linear program LP, and let z; be the values of variables z,.
For each color ¢
Order non decreasingly the c-colored edges e, . . ., e according to
their zJ values.
Let us assume that we have z;‘1 < z;; <...< z;;@.
Let r be a random value in [0, 1].
Choose edges e with z} > r.
End For

1 Recently, Ageev and Kononov [1] improved the analysis of our algorithm and they showed that our algorithm is in fact a 0.25-approximation algorithm.
They have also proposed a new algorithm with a better approximation ratio of 7/23.

2 We define the chromatic degree of a vertex as the number of different colors which appear in its incident edges. The chromatic degree of an edge-colored
graph is the maximum chromatic degree over all its vertices.

E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22 17

Phase II:
For each vertex v
If v gets no color or more than two colors, remove it (together with all its
adjacent edges) from graph G.
End For
Let G’ be the obtained graph.
For each vertex v in G’
If v got one color, then assign this color to it.
If v got two colors, then choose randomly one of them, each one with
probability 1/2.
End For

Notice that the algorithm does not assign colors to all vertices. Indeed, at the end of Phase I some vertex may get no colors
and then in Phase II the algorithm assigns colors only for a subgraph G’ of the initial graph G.
The following two Lemmas are straightforward to prove.

Lemma 1. For any edge e, the probability that e is chosen is z; .

Notice that for a vertex v, it may be the case that none of its adjacent edges are chosen. In that case, v gets no color. But in
general, several of its adjacent edges can be chosen, and the vertex v can get more than one colors. We denote by X, (resp.
X,c) the event that v gets (resp. does not get) color c.

Lemma 2. For any vertex v, if there exists at least one c-colored edge incident to v, we have Pr(X,.) = z;, where e’ is the edge
with the maximal value of z} among all its incident c-colored edges.

Lemma 3. For any vertex v, one has) . Pr(X,.) < 1.

Proof. For any color c, let e(c) be the c-colored edge which is incident to vertex v (if such an edge exists), and with the
maximal value of z; among all such edges. From Lemma 2, one has Pr(X,.) = Z:(c)' Therefore, > . Pr(Xye) < Y, z;‘(c) <

Xe=10
As stated before, a vertex v can get more than one color during the execution of the algorithm. However, in general this
number will be small. We have the following lemmas.

Lemma 4. Given a set of independent events such that the sum of their probabilities is less than or equal to 1, the probability of
getting at most one of them is greater or equal to 2 /e.

Proof. We denote by X; (for 1 < i < [) the events. The probability of getting at most one of themisp = ZL] PrX) [1y ?é,-(l —
!
Pr(Xp)) + [Ti_, (1 — Pr(x).

We are going to show that the minimum of this expression is obtained when each X value is equal to 1/I. To simplify
the presentation we denote by X;,i = 1, 2, ..., [, both the event X; and its probability. Notice that we can assume that
Zf:] X; = 1 (If this is not the case, we can increase the value of one X; in order to obtain the equality, the probability of
getting at most one event will decrease, and if we show that it is at least 2 /e it shows that it is also at least 2 /e for the original
value X;).

Also, without loss of generality, we rename the variables X; such that X; has the biggest value and X, has the smallest
value. If X; = X, then all the values are equal to 1/1. Let us now assume that X; > X,. In that case we have:

[1
p= %[[a-xp+]Ta-x
j=1

i=1 j#i
=X(1-X) [[=X) + X0 —x) [[-X)
j=3 j=3
+A=-X)A=X) Y X[Ja=x)+ 0 =x00=X) [Ja =x)
i>3 J# =3
Jjz3
= (1-XX) [[A=X)+0 =XD0 = X) > x [J1 - x)
=3 i>3 Jjg
A

B
=(1=XX)A+ (1=X)(1—=X;)B
= A+ B+ (B—A)X;Xo — BX; — BX;.

18 E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22

Letg(A) =A+B+ (B—A)(X; — A)(Xy + A) — B(X; — A) — B(X; + A) for some small enough A. Next, we claim that
this expression has a minimum when X; — A = X; + A.
One has
g(4) = A+ B+ (B—A)(X1X; — AXy + AXy — A%) — B(Xq + X2)
= (—AXy + AXy — A?)(B — A) + constant

and thus by getting the derivative, we get g’(A) = (=X, +X; — 2A)(B— A),and g'(A) = 0for A = (X; — X3)/2.
We are going to show thatB — A < 0.

B—A=) x[la-x-[]a-x
i>3 J# j>3
Jj=3
Xi
— (2) e
(123 =X) >3
<0 >0
One has
I Il
i>3 T=Xi — i>3 =X =

since Y"'_, X; = 1, and this concludes the proof of our claim.
Consequently, the minimum value of p is obtained when every X; is equal to 1/L In that case, the probability is
EHPT (5D > Zforany 1> 2. O

Lemma 5. At any time during the execution of the algorithm, for any vertex v, the probability that v gets at most one additional
color until the end of Phase I of the algorithm is greater than or equal to 2/e.

Proof. The events: “v gets color ¢c” for 1 < ¢ < k, are independent, and the sum of their probabilities is less than or equal
to 1 according to Lemma 3. Therefore, the result follows from Lemma 4. O

Proposition 1. At any time during the execution of the algorithm, consider any edge e = [u, v], and let us denote by p,, (resp.
p,) the probability that u (resp. v) gets at most one additional color until the end of Phase I of the algorithm. Let us denote by py,
the probability that both u and v get each one at most one additional color until the end of Phase I of the algorithm. Then, one has

Durv = DPu * Dv-

Proof. We have to prove that p, ., reaches its smallest value when all vertices receive different colors. This is equivalent to
the case where the vertices are colored independently. For the purpose of the proof, let us consider an artificial sequence of
algorithms denoted by Xy, ..., X}, with Xy being our algorithm.

The difference among these algorithms comes from the way in which the vertices get a color. Let us fix a color c. We
consider two different procedures for assigning colors to the vertices. The First procedure, assigns the colors in the same way
as our algorithm does. Let us recall how our algorithm works for just two vertices: Without loss of generality, we assume
that there exist an edge e’ adjacent to u with color ¢ and an edge ¢” adjacent to v with color ¢ (in the case where the edge ¢’
does not exist, the probability that u gets color ¢ in the algorithm is equal to 0). Moreover e’ (resp. €”) is the edge with the
maximal value of z;, (resp. z};,) among all c-colored edges incident to u (resp. v). For convenience, we setp =z}, and q = z},,.
Let us assume that p < q. From the algorithm and Lemma 2, we get that p is the probability that both u and v get color c in
the Phase I of the algorithm. In turn g — p is the probability that v gets color ¢ assuming that u does not get color ¢ and the
probability that both vertices do not get color c is equal to (1 — q). Using the First procedure, we color both vertices u and v
(with color ¢) with probability p, and we color only vertex v with probability g — p. The Second procedure colors the vertices
with color ¢ independently. More precisely, we color vertex u with probability p, and we color vertex v with probability q.

In the algorithm X, for each colorc, 1 < ¢ < k, we use the First procedure for assigning colors to vertices. In the algorithm
X, 1 <i <k, forcolorscsuchthat1 <c <i(resp.i+ 1 < c < k) we use the Second procedure (resp. First procedure) for
assigning those colors to vertices. Thus, in algorithm X, all colors are assigned to vertices using the Second procedure.

Let us fix any iteration (color) t, and let us analyze the behavior of those algorithms from iteration t until the end of
their execution (at the end of Phase I), i.e. when colors t, t + 1, ..., k are assigned to vertices. Let us also consider any edge
e = [u, v]. We denote by p, (%) (resp. p, (X;)) the probability that u (resp. v) gets at most one additional color from iteration
t until the end of iteration k, for the algorithm X;. Moreover, we denote by p, ., (X;) the probability that both u and v get at
most one additional color each from iteration t until the end of iteration k, for the algorithm ;. Notice that one has for any
vertex v, p,(X;) = p,(Xp) for 1 <i < k. Let us now prove that forany 1 < i < k — 1, one has pyx,(Xi) > purv(Zit1)-

Ift > i+ 2, since both algorithms X; and X, use the First procedure to assign colors c to vertices, fori + 2 < ¢ < k,
they behave in the same way during iterations t, t 4+ 1, ..., k, and S0 py,, (X)) = punv(Zit1).

E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22 19

We now assume that 1 < t < i+ 1. Algorithms X; and X, only differ in the way they assign color i + 1 to vertices.
If there is no (i + 1)-colored edge adjacent to either u or v, then again those two algorithms have the same behavior from
iteration t to k and so pyx, (X;) = Pury(Xit1)- Let us assume now w.l.o.g. that there exists at least one (i 4+ 1)-colored edge
which is adjacent to u. Recall that we denote by X, (resp. X,) the event that v gets (resp. does not get) color c. We have the
following probabilities:

When ¥ = X; When ¥ = X,
Prys (Xy,iv1 A Xy,it1) 0 p(1—q)
Pry Xuit1 A Xvit1) qg—p (1-pg
Prs(Xuiv1 A Xp,ix1) 1—q (1-p(1—q)
Prs (Xy,iv1 A Xy,it1) p prq

Let us denote by A (resp. By) the event which corresponds to the situation where vertex u (resp. v) gets no additional
color when considering iterations (colors) in {t, t + 1, ..., k} \ {i + 1}. Let us also denote by A, (resp. By) the event which
corresponds to the situation where vertex u (resp. v) gets one additional color when considering iterations (colors) in
{t,t+1,...,k}\ {i+ 1}. Since these events do not depend on the color i 4 1, they have the same probability for algorithms
X and 2,‘+1.

For X' € {Xy, ..., Xk}, one has py,(X) = Pr(Ag A Bo) + Pr(Ai A Bo) - [Prs(Xuiv1 A Xv,ix1) + PreXuirn A Xoip1)] +
Pr(Ao A By) - [Prs(Xyiv1 A Xv.it1) + Pre Xy i A Xy ip1)] + Pr(Aq A By) - [Pre Xy i A Xy iv1)]-

As stated above, Pr(Ag A By), Pr(A1 ABg), Pr(Ag AB1), Pr(A; A By) are the same for X; and Xy, 1. In the following table, we
give the remaining terms, with A = Pry (Xy i+ 1 AXy,it1) +Prs Xuiv1 AXyiv1), B = Pre(Xuiv1 AXv,iv1) +Pre Xuiv1 AXuiv 1),
and C = Prg Xy iv1 A Xp,it1)-

Y =13 EZEH—]
A @G-p+0—-qg=0-p) q1-p+0-pA—-qg=0-p)
B 1-9 pPA-@+0-pA-q@=>0-9q
C 1-9 (1-p-q

A term-by-term comparison is sufficient for concluding that py., (%;) > puay(Zir1)-

Since in algorithm X, all colors are assigned to vertices using the Second procedure, i.e. in an independent way, one has
Punv(Zk) = pu(Z) - Po(Z1). Then pusy = Purv(Zo) = Punv(Z1) = -+ = Punu(Zi) = Pu(Zi) - Po(Zk) = pu(Zp) - pu(Zo) =
Du * Pv- O

Corollary 1. At any time during the execution of the algorithm, for any edge e = [u, v], the probability that both u and v get at
most one additional color each until the end of the algorithm is greater than or equal to 4/e?.

Proof. It follows directly from Proposition 1 and Lemma 5. O

Definition. An edge e = [u, v] is safe if both extremities u and v are colored with the color of edge e and they get at most
one additional color each.

Theorem 1. The algorithm RR is 1/e* ~ 0.135-approximate for Max-k-CC.

Proof. Let e be any edge of the graph G. We are going to evaluate the probability that edge e is matched in the solution
returned by the algorithm. Let OPT be the sum of weights of the matched edges in an optimal solution. Since the linear
program LP is a linear relaxation, we have), wez; > OPT. Since the colors are considered in an independent way by the
algorithm, we can assume w.l.0.g. that edge e has color 1. This edge needs to be chosen in the first iteration of the algorithm
(i.e. when color 1 is considered). This occurs with the probability z; according to Lemma 1. Then during the remaining
iterations until the end of the Phase I of the algorithm, i.e. when colors from 2 to k are considered, this edge must remain
safe so that it belongs to graph G'. This occurs with a probability greater than or equal to 4/e? according to Corollary 1. Thus,
we have proved that each edge e = [u, v] from G belongs to the graph G’ with a probability greater than or equal to 4z; / e2.
We also know that if e = [u, v] belongs to G’ then each of the two vertices u and v got either one color, in this case it is
the color of edge e, or two colors, and in this case one of them is the color of edge e. So assuming that e belongs to G’ the
probability that e is matched is at least 1/4. Overall, this probability is equal to 4z} /e? x 1/4 = z¥/e®. Thus the expected
cost of the solution returned by the algorithm is at least), , wez; /e* > OPT/e?. O

This algorithm can be derandomized by the method of conditional expectations [8]. To do this, we can represent the
execution of the algorithm with a tree T with k levels. Each node on level i represents a partial solution, in which only the ith
first colors have been assigned. A path from the root of T to a vertex on level i determines the coloring of edges and vertices

20 E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22

v
-1 3

1 R 1.1}6

7“'5_1 B - V4

Fig. 1. An example of labeling.

with colors cq, . . ., ¢;. To apply the derandomization of the algorithm, we need to be able to calculate the exact conditional
expectation of the number of matched edges using our randomized algorithm, in any node of this tree. This can be done
in polynomial time. Then at each level, we follow the next vertex with the highest conditional expectation. We repeat this
procedure, and from the property of the conditional expectations after k iteration, we reach a leaf of this tree and we find
the desired solution.

The algorithm RR can also be used for the case where there are more than one color on the edges. It is sufficient to create
parallel edges, i.e. one edge for each color.

2.1. Graphs with a chromatic degree equal to 2

In this case the Max k-colored clustering problem can be seen as a particular case of the problem MAX 2-AND [9]. Indeed,
for each couple (v, e), with e an edge adjacent to v, we define a label [(v, e) € {—1, 1}. This set of labels must satisfy the
following condition: For any vertex v, if e and e’ are two edges adjacent to v with different colors, then I(v,) # (v, €).
Since we know that in the graph G/, for any vertex v, the set of its adjacent edges are colored with at most 2 colors, it is
easy to define such a set of labels (i.e. for all edges e colored with the first (resp. second) color we set (v, e) = 1 (resp.
I(v, e) = —1). Notice that it is possible to have I(u, e) # I(v, e) for an edge e = [u, v]. An example is given in Fig. 1.

An instance of MAX 2-AND is composed of a collection of clauses (with non-negative weights assigned to them) such that
each clause is either of the form z; or z; A z;, where each z; is either a boolean variable x; or its negation X;. The goal is to find
an assignment of the boolean variables x4, .. ., x,, in order to maximize the weight of the satisfied clauses. It is easy to see
that any instance of our problem can be transformed to an equivalent MAX 2-AND instance for which an algorithm with an
approximation ratio of 0.859 exists [9]. Indeed, for each vertex v; € V we define a variable z; and for each edge e = [v;, vj]
we define a clause z; A zj, where z; is either a boolean variable x; if I(v;,) = 1 or its negationX; if I(v;, e) = —1. For example,
for the instance given in Fig. 1 we obtain the set of clauses: x; A x, (for edge [v, v2]), X1 A X5 (for edge [v1, vs]), X5 A X4 (for
edge [vs, v4]), and so on.

3. Complexity

In this part we show that the problem is NP-complete for bipartite graphs if we allow the initial coloring of the edges to
contain three or more colors. Our reduction is from Max-2-SAT.

Theorem 2. The Max-3-CC problem is NP-complete even for bipartite graphs with chromatic degree two and w, = 1, for every
edge e of the graph.

Proof. Clearly the problem is in NP. Let us now give a polynomial time reduction R that maps any instance of the decision
version of the MAX-2-SAT problem Zyax.2-sat = (X, C, B) where X = {x1, ..., X,} is a set of variables,C = {cy, ..., cp}isa
set of disjunctive clauses with exactly two literals, and B < m is a positive integer, to an instance R(Zyax-2-sat) = Zmax-3-cC =
(G, C, f, 3) for the Max-3-CC problem. For the rest of the proof we assume that C = {R(ed),B(lue),G(reen)}. The reduction
is based on the gadgets presented in Figs. 2 and 3.

The gadgets. The set V is constructed as follows: For each variable x; of the MAX-2-SAT formula we create a new node v; and
for each ¢ € C we construct four nodes vy, Vg,,n. Ve and Vg, Then for each clause, we add six edges based on whether
both of the literals are positive or negative, or one of them is negative and the other positive.
First case: Assume that both of the literals are positive or both are negative i.e. the clause is either ¢, = (x, V xg) or
cx = (Xo V Xg). Then we construct the gadgets in Fig. 2.
Second case: Assume that one literal is positive and the other is negative. That is, the clause is of the form ¢, = (x, V Xg) or
cx = (Xo V xp). Respectively we construct the gadgets in Fig. 3.

Finally we set P = 3B 4 2(m — B), where m is the total number of clauses.

Example. For example, for the formula (X7 Vv x3) A (X1 V x3) the graph that we construct is pictured in Fig. 4.

E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22 21

Va Vo
cx = (za Vag) e ek = (To V Tg) I
G R
G G
B B
R
o
vg vg

Fig. 2. The case when all literals are positive or all literals are negative.

Vo Vo
k= (za VIg) e ek = (Ta V 2g) I
R

Up Up

Fig. 3. The case when one literal is positive and one literal is negative.

U1
/ G
G G
R R
G
L] []
Vo U3

Fig. 4. The graph devised for the formula (x7 V x3) A (X1 V X3).

It is not difficult to check that the constructed graph does not contain any odd cycle and so it is bipartite. Also, for every
vertex of the constructed graph the edges that are incident to this vertex are colored with at most two different colors,
i.e. the chromatic degree of the graph is two. The next lemma follows from a simple case analysis.

Lemma 6. The maximum contribution that any gadget can have is exactly 3 and is obtained when at least one of the nodes v,
and vg has the same color as the edge that connects it with the rest of the gadget. If none of v, and vg has the same color with
the edge that connects it with the rest of the gadget then the maximum contribution that can be achieved is 2.

Lemma 7. For an instance of the MAX-2-SAT problem Tyax.2.sar = (X, C, B), there is a truth-assignment that satisfies at least
B clauses if and only if there is a clustering for the corresponding Max-3-CC problem with contribution greater than or equal to
3. B+ 2(m — B), where m = |C| is the number of clauses.

Proof. To prove the if direction, let T be a truth assignment that satisfies at least B clauses of a 2-SAT formula F. In the
derived graph, color green all the nodes that correspond to variables that are true and red all the nodes that correspond to
false variables. In this way, for each satisfied clause the corresponding gadget in the optimum clustering will have pay-off
three.

Since each of the gadgets representing a satisfied clause will contribute three to the pay-off and the satisfied clauses are
L > B the total optimal contribution of these clauses will be 3 - L. The gadgets of the remaining m — L clauses will have

22 E. Angel et al. / Discrete Applied Mathematics 211 (2016) 15-22

optimal contribution 2 each and the total optimal contribution from the unsatisfied clauses will be 2 - (m — L). Hence the
total pay-off willbe2 - (m—L)+3-L=2-m+L>2-m+B=3-B+2(m— B).

For the opposite direction, suppose that the corresponding graph of a formula F has a partition with pay-off at least
3-B+2(m — B) = 2-m+ B. Since each one of the gadgets contributes to the pay-off either 2 or 3, there must exist at least
B gadgets with pay-off 3.

Let us assign the value true to the variables with green corresponding nodes and the value false to the remaining variables.
Notice now that each one of the gadgets with pay-off three corresponds to a satisfied clause.

Since the gadgets with pay-off 3 are at least B, there are at least B clauses that are satisfied and the only if direction holds
too. O

4. Areduction to the independent set problem

In this section we will show that the colored clustering problem can be reduced to the IS problem in bipartite graphs.

Given an instance of the Max-k-CC problem, we create the line graph Gy, corresponding to the initial graph. We then
construct a new graph G, by deleting the edges between the vertices of Gy, that correspond to neighboring edges of the
same color in G.

/
line

Lemma 8. The Max-k-CC problem has a clustering with pay-off P if and only if the graph G, has an independent set of size P.

Proof. For the if direction, suppose that the initial problem has a partition with pay-off P. For this to happen there must
exist a set £ of P edges with properly colored ends. Each edge e € L is either adjacent to some other edges in £ and all
have the same color or not adjacent with any other edge in £. In either case, the vertex in G, that corresponds to e is
not adjacent to any vertex corresponding to some other edge in £, because in Gj;,, we have eliminated the edges between
vertices corresponding to adjacent edges with the same color. Hence, the nodes of Gj,, that correspond to edges in £ form
an independent set of size P.

To prove the opposite direction, let us examine an instance of the induced problem that has an independent set of size P.
The nodes that form the independent set correspond to edges of the initial graph that either are not adjacent or are adjacent
and have the same color. Therefore it is possible to color the extremities of these edges with the same color as the edges
themselves and hence to produce a solution with pay-off P, because there are P such edges. O

For k = 2, the constructed graph is always bipartite. Indeed, in G};,, we have eliminated the edges between nodes of the

line graph Gjine that correspond to edges of the same color in the initial graph G. So, while traversing any cycle of G}, the
color of the corresponding edge must change from node to node. Since there are only two different colors, any cycle must
have even length and, therefore, the graph is bipartite. Notice that our reduction holds also for the weighted case.

As a result, given that a weighted independent set can be found in polynomial time in a bipartite graph, we get that the
weighted Max-2-CC is polynomially solvable.

For any k > 3 we can also derive from Lemma 8 a % approximation algorithm for the weighted Max-k-CC. Although,

it is not a constant-approximation algorithm its ratio is better than 1/e? for every k < 14. We use the following Theorem,
from [5]: Let G be a weighted graph with n vertices and m edges; let k be an integer greater than one. If it takes only s steps
to color the vertices of G in k colors, then it takes only s + O(nm log(n? /m)) steps to find an independent set whose weight
is at least 2 /k times the weight of an optimal independent set. In our case we have s = 0.

Acknowledgments

This work has been partially supported by the ANR project TODO (09-EMER-010), and by the project ALGONOW of the
research funding program THALIS (co-financed by the European Social Fund-ESF and Greek national funds).

References

[1] A.A. Ageev, A.V. Kononov, Improved Approximations for the Max k-Colored Clustering Problem, in: LNCS, vol. 8952, 2015, pp. 1-10.

[2] N.Bansal, A. Blum, S. Chawla, Correlation Clustering, in: Machine Learning, vol. 56, 2004, pp. 89-113.

[3] G.Ducoffe, D. Mazauric, A. Chaintreau, Convergence of Coloring Games with Collusions. CoRR abs/1212.3782, 2012.

[4] U. Feige, J. Vondrak, Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e. FOCS 2006: 667-676.

[5] Dorit S. Hochbaum, Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems, in: Hochbaum Dorit
S. (Ed.), Approximation Algorithms for NP-hard Problems, PWS Publishing Company, 1997.

[6] AK.]Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, 1981.

[7] J.M. Kleinberg, K. Ligett, Information-Sharing and Privacy in Social Networks. CoRR abs/1003.0469, 2010.

[8] V. Vazirani, Approximation Algorithms, Springer, 2004.

[9] U.Zwick, Analyzing the MAX 2-SAT and MAX DI-CUT approximation algorithms of Feige and Goemans, currently available from http://www.cs.tau.ac.
il/~zwick/online-papers.html.

http://refhub.elsevier.com/S0166-218X(16)30176-7/sbref1
http://refhub.elsevier.com/S0166-218X(16)30176-7/sbref2
http://refhub.elsevier.com/S0166-218X(16)30176-7/sbref5
http://refhub.elsevier.com/S0166-218X(16)30176-7/sbref6
http://refhub.elsevier.com/S0166-218X(16)30176-7/sbref8
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html
http://www.cs.tau.ac.il/~zwick/online-papers.html

	Clustering on k -edge-colored graphs
	Introduction
	Related works and our contribution

	A constant approximation algorithm
	Graphs with a chromatic degree equal to 2

	Complexity
	A reduction to the independent set problem
	Acknowledgments
	References

