
Handling Large Data Sets for High-Performance Embedded
Applications in Heterogeneous Systems-on-Chip

Paolo Mantovani Emilio G. Cota
Christian Pilato Giuseppe Di Guglielmo Luca P. Carloni

Department of Computer Science

Columbia University - New York, NY, USA
{paolo,cota,pilato,giuseppe,luca}@cs.columbia.edu

ABSTRACT

Local memory is a key factor for the performance of accelerators
in SoCs. Despite technology scaling, the gap between on-chip stor-
age and memory footprint of embedded applications keeps widen-
ing. We present a solution to preserve the speedup of accelerators
when scaling from small to large data sets. Combining special-
ized DMA and address translation with a software layer in Linux,
our design is transparent to user applications and broadly appli-
cable to any class of SoCs hosting high-throughput accelerators.
We demonstrate the robustness of our design across many hetero-
geneous workload scenarios and memory allocation policies with
FPGA-based SoC prototypes featuring twelve concurrent accelera-
tors accessing up to 768MB out of 1GB-addressable DRAM.

1. INTRODUCTION
The end of Dennard’s constant-field scaling has led designers

towards heterogeneous system-on-chip (SoC) architectures that ex-
ploit the large number of available transistors to incorporate a va-
riety of customized hardware accelerators along with the proces-
sor cores [3]. To achieve energy-efficient high performance in em-
bedded applications, both academia and industry have developed
many different classes of accelerators and accelerator-rich architec-
tures [5, 7, 8, 13, 18, 24, 28, 31]. A recent analysis of die photos of
three generations of Apple SoCs, which empower the iPhone prod-
uct line, shows that more than half of the chip area is consistently
dedicated to application-specific accelerators [29].

These SoCs integrate high-throughput loosely-coupled accel-
erators [10] to implement complete application kernels, such as
video encoding [23]. Each of these accelerators leverages a
dedicated, highly-customized, Private Local Memory (PLM) and
fetches data from DRAM through DMA. The PLM is key to achiev-
ing high data-processing throughput: by integrating many inde-
pendent SRAM banks whose ports can sustain multiple memory
operations per cycle, it enables concurrent accesses from both the
highly-parallelized logic of the accelerator datapath and the DMA
interface to main memory. Recent studies confirm the importance
of the PLM, which occupies 40 to 90% of the accelerator area [10,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CASES ’16, October 01-07 2016, Pittsburgh, PA, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4482-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968455.2968509

iPhone 3G
iPhone 3GS

iPhone 4
iPhone 4S

iPhone 5
iPhone 5S

iPhone 6
iPhone 6S

Aggregate SoC Cache
Main Memory

32KB 320KB 576KB 1064KB 1064KB

5128KB 5128KB 5128KB
128MB

256MB 256MB

512MB 512MB

1024MB 1024MB

2048MB

Figure 1: The growing gap between the aggregate size of the

SoC on-chip caches and the main-memory size, across seven

years of Apple iPhone products.

21] and contributes, together with the processors’ caches, to the
growing fraction of chip area dedicated to memory.

However, despite this trend, the data-set sizes of embedded ap-
plications are increasing much faster than the available on-chip
memory. As an example, Fig. 1 illustrates the growing gap be-
tween the aggregate size of the SoC on-chip caches (accounting for
L1 and L2 caches, and, starting with iPhone 5s, a 4MB L3 cache)
and DRAM size, across seven years of Apple iPhone generations.
Relative to the first product generation, the difference between the
two sizes has grown by a factor of 16×, to reach almost 2GB1. The
growth in DRAM size reflects the need for supporting applications
with increasingly large footprints, which pose new challenges for
high-throughput accelerators.

A loosely-coupled accelerator has a twofold nature: while it is
similar to an on-board peripheral, in that the processor core can
offload a specific task to it, the accelerator does not have a large
and private storage system (e.g. a dedicated off-chip memory), and
therefore shares the external memory with the processor core. At
the same time, the accelerator’s computation modules are unaware
of the physical memory allocation, which can be even on multi-
ple physically-separated DRAM banks [34]. Thus, an accelerator
can be likened to a software thread, where physical memory is ab-
stracted by virtual memory and multiple levels of caches. In an ac-
celerator, the PLM gives the illusion of a contiguous address space,
allowing the accelerator to perform concurrent random accesses on
data structures. This contiguous address space, however, is limited
by the size of the PLM, and processing large data sets necessarily
involves multiple data transfers between DRAM and PLM.

1Admittedly, the cache numbers do not include the aggregate sizes of the PLMs of the
Apple SoC accelerators, which are likely to be large but are not publicly known. Still,
even if we assume that their contributions could double or triple the reported figures,
the on-chip memory sizes would remain very small compared to DRAM.



Accelerator Tile

DMAC

Input

Computation 1

Output

Computation nd
e

b
a

y
e

r(
)

Private Local Memory

(a)

(b)

out[1] = 

debayer

(in[1,5])

out[2] = 

debayer

(in[2,6])

out[1] = 

debayer

(in[3,7])

✄

1 2 3 4 5 6 �

1 2 �

clock

Input

Computation

Output

PLM ports

ping-pong buffer

read

write
circular buffer

1
2

3
45

6

✁

1 2

in

out

Figure 2: (a) The DEBAYER accelerator structure. (b) Overlap-

ping of computation and communication.

We define the Large Data Set (LDS) Problem for SoC Accel-

erators as the problem of finding a high-performance and low-
overhead mechanism that allows hardware accelerators to process
large data sets without incurring penalties for data transfers. A
possible solution to the LDS Problem is to have the accelerators
share the virtual address space of the processor in a fully coherent
way. This is obtained by replacing the PLM with a standard private
L1-cache and sharing the higher levels of the memory hierarchy
and the memory-management unit with general-purpose cores [34].
This approach, however, is not effective for high-throughput accel-
erators because it degrades their performance by depriving them
from their customized PLMs. Moreover, as the data set grows, the
overhead of maintaining coherence further limits the accelerator
speedup over software [10]. Alternatively, one could expose the
PLM to the processor and let it manage data transfers across sepa-
rate address spaces in suitable small chunks [16]. However, as we
show in Section 2, this increases software complexity and forces ac-
celerators to stall waiting for the software-managed transfers, thus
wasting most of the speedup offered by the dedicated hardware.

In this paper, we present an effective hardware-software solu-
tion to the LDS Problem that avoids most common shortcomings
of accelerators coupled with embedded processors. Our solution
achieves this by combining the following features:

• a low-overhead accelerator virtual address space, which is dis-
tinct from the processor virtual address space (to reduce the
processor-accelerator interaction);

• direct sharing of physical memory across processors and accel-
erators (to avoid redundant copies of data);

• a dedicated DMA controller with specialized translation-
lookaside buffer (TLB) per accelerator (to support many het-
erogeneous accelerators coexisting in the same SoC, each with
its specific memory-access pattern);

• hardware and software support for implementing run-time poli-
cies to balance traffic among available DRAM channels.

After motivating our work in Section 2, we describe our approach
in Section 3 and its system-level integration in Section 4. Section 5
shows a full-system evaluation on FPGA. Our experiments demon-
strate that we are able to preserve the accelerators’ speedup as the
number of concurrent workloads and the size of the data sets scale.

2. PRESERVING THE SPEEDUP
A loosely-coupled accelerator executes very efficiently as long

as it keeps its computation and communication phases balanced.

Accelerator
with PLM

physical
address

4KB

user virtual
address 0x40000000

0x80000000

1MB - 8MB

3GB

malloc()

mmap()

1GB
(DRAM)

The processor
copies data
to/from the
DMA buffer

CPU

The accelerator
elaborates one
block of data,
then wakes up
the processor

memcpy()

Computation

DMA

Application
Dataset

DMA Buffer

Page

Figure 3: Traditional software-managed DMA.

As an example, Fig. 2(a) shows the high-level block diagram of a
high-throughput accelerator for the DEBAYER kernel [2]. This ker-
nel takes as input a Bayer-array image with one color sample per
pixel and returns an image with three-color samples (red, green and
blue) per pixel, where the missing colors are estimated via interpo-
lation. The accelerator consists of a load module (to fetch data from
DRAM), one or more computation modules, and a store module
(to send results to DRAM). These modules communicate through a
PLM, which is composed of multiple banks and ports. Such PLM
architecture allows the computational modules to process multiple
pixels per clock cycle. Additionally, circular and ping-pong data
buffers support the pipelining of computation and DMA transfers
with the off-chip DRAM. This choice derives directly from the
functional specification of the kernel: the DEBAYER interpolates
pixels row-by-row and uses 5×5-interpolation masks centered in
the pixel of interest. To start the computation, the accelerator needs
at least the first five rows of the input image in the circular buffer
(input bursts from 1 to 5 in Fig. 2(b)). Then, while the computa-
tion modules work, the input module can prefetch more rows for
future processing (input burst 6 in Fig. 2(b)). As soon as a compu-
tation step completes, an interpolated row is stored in the first half
of the ping-pong buffer so that it can be transferred back to DRAM
(output burst 1). Meanwhile, the computation modules can start
processing the additional row in the circular buffer and storing the
result in the second half of the ping-pong buffer (output burst 2).

This behavior represents well many high-throughput accelera-
tors. However, the specifics of the micro-architecture of any given
accelerator, including the PLM organization, may vary consider-
ably depending on the particular computation kernel. The timing
diagram in Fig. 2(b) shows a hypothetical scenario, where the com-
munication (i.e. input and output) and computation phases are over-
lapping, and the latency of DMA transfers is hidden by the local
buffers. Intuitively, if such latency becomes larger than processing
time, then the accelerator must be stalled until new data are avail-
able for computation. This can limit the efficiency of the accel-
erator, reducing its advantages over software execution. Next, we
present an experiment demonstrating that, when loosely-coupled
accelerators process large data sets, traditional memory handling
for non-coherent devices leads to such undesirable scenario.

By using an FPGA board, we realized a simple SoC that inte-
grates one embedded processor with a 32-bit architecture, which
runs the Linux Operating System (OS), and two loosely-coupled
accelerators. These two accelerators implement the DEBAYER and
SORT computational kernels [2]. The virtual memory available to
user-level applications is 3GB, while the actual physical memory



debayer-HW

sort-HW

debayer-SW-8MB

sort-SW-8MB

debayer-SW-4MB

sort-SW-4MB

debayer-SW-2MB

sort-SW-2MB

debayer-SW-1MB

sort-SW-1MB

 0  2x10
9

 4x10
9

 6x10
9

 8x10
9

 1x10
10

 1.2x10
10

 1.4x10
10

time (ns)

Figure 4: Software-managed DMA versus hardware-only

DMA execution time breakdown. Orange segments correspond

to accelerator DMA and computation, while purple segments

represent software-handled data transfers.

is 1GB. For this experiment we considered a memory footprint
of 32MB for DEBAYER, which elaborates one 2048×2048-pixel
Bayer-array and the corresponding bitmap image (16-bit colors),
and of 4MB for SORT, which processes in place 1024 vectors each
containing 1024 single-precision floating point numbers. The two
accelerated applications share the processor in time multiplexing
according to the Linux scheduler. Each of them can invoke the ap-
propriate accelerator through the API provided by a device driver.

Fig. 3 shows the memory layout of one application: the physi-
cal memory is usually allocated in 4KB pages and remapped to a
contiguous virtual memory area where the program stores the appli-
cation’s data. To allow a non-coherent device to access these data,
the driver typically implements a memory-mapping function that
serves three main tasks. First, it requests the OS to reserve a con-
tiguous area in physical memory for DMA and pins the correspond-
ing pages (orange-shaded memory area in Fig. 3). Then, it passes
the physical address to the device, referred to as dma_handle of
the allocated buffer. Finally, it remaps the DMA buffer to the virtual
memory (purple-shaded area) and returns a pointer to the user-level
application. The exact amount of contiguous memory that the OS
can allocate depends on the target processor architecture, but it is
usually limited to a few megabytes. If we set the size of the DMA
buffer to 1MB, the DEBAYER computation can be easily split into
32 parts, each processing a different portion of the input image.
Similarly the input vectors for SORT can be divided into 4 sets of
256 vectors each. The bars of Fig. 4 show how hardware accelera-
tion (orange) and software execution (purple) interleave over time.
The orange segments include the time for fetching the input data
from DRAM via DMA, elaborating them, and transferring results
back to DRAM also via DMA. The purple segments, instead, cor-
respond to the time spent by the user application in saving results
from the DMA buffer to another virtual memory area and copying
the next block of input data into the DMA buffer. Note that the first
and the last segments of each bar are always orange since we are
not considering the application setup and wrap-up phases, which
are constant across all scenarios. We repeated the experiment four
times, varying the size of the DMA buffer from 1MB up to 8MB.
As the size of the DMA buffer increases, the data processed by the
accelerators are split into fewer blocks and the overhead of inter-
leaving hardware and software decreases. Further, the execution
of SORT benefits from having a DMA buffer large enough for its

Accelerator
with PLM

user virtual
address 0x40000000

0x80000000

3GB

1GB
(DRAM)

CPU

mmap() Computation

The accelerator
elaborates ALL
DATA, then
wakes up the
processor

Application
Dataset

physical
address

DMA

up to tens
of MB

Bigphysarea

(using Linux
big-physical
area patch)

Figure 5: Hardware-only DMA using Linux big-physical area

patch to reserve up to tens of MB of contiguous memory.

memory footprint: the accelerator is able to complete the entire task
without the intervention of the processor, thus obtaining a speedup
of 21× over the test case with a 2MB DMA buffer. For DEBAYER,
however, the software-based data management is always responsi-
ble for the largest part of the execution time, because its memory
footprint never fits into the DMA buffer. Additionally, the exe-
cution of multiple accelerators creates contention on the proces-
sor, which must handle multiple concurrent transfers between each
DMA buffer and the virtual memory of the corresponding applica-
tion. This is shown by the purple bars that become longer when the
two accelerators execute at the same time.

Following the intuition that avoiding the intervention of the pro-
cessor core in DMA transfers (except from the initial setup) bene-
fits the accelerated application, we executed again the experiment
leveraging a Linux patch known as big-physical area. When en-
abled, this patch forces the Linux OS to reserve a region of con-
tiguous memory configurable in size up to a few tens of megabytes.
Fig. 5 shows the updated memory layout made possible by the
patch: the entire application data set for both SORT and DEBAYER

can be mapped to contiguous physical memory. Hence, the accel-
erator needs only the base address of the buffer to process all data,
while the processor can remain idle or perform other tasks. The
result is reported in the last two bars at the bottom of Fig. 4: the
accelerator for DEBAYER achieves a speedup of 8× with respect to
the scenario with an 8MB DMA buffer.

This experiment proves the benefits of reducing the processor
intervention when loosely-coupled accelerators move data with
DMA transactions. The big-physical area patch, however, is only
viable for applications with medium-sized memory footprints. As
the number of accelerators and the size of data sets grow, it is nec-
essary to adopt a more scalable and flexible approach.

3. HANDLING LARGE DATA SETS
In the context of general purpose processors, cache hierarchy and

virtual memory are typically used to give user applications the illu-
sion of accessing the entire address space with low-latency. As the
number of accelerators integrated in SoCs keeps growing, design-
ers need a similar efficient solution dedicated to special-purpose
hardware components. In this section we describe a combination
of hardware and software techniques that gives accelerators the il-
lusion of accessing contiguous physical memory. Each accelerator
can therefore issue memory references using an accelerator-virtual

address (AVA), equivalent to a simple offset with respect to its data



/* Data structure for contig_alloc */
struct contig_alloc_req {
unsigned long size; /* aggregate size required */
unsigned long block_size; /* size of one block */
struct contig_alloc_params params; /* DRAM allocation policy */
unsigned int n_blocks; /* number of contiguous blocks */
contig_khandle_t khandle; /* handle for the device driver */
unsigned long __user *arr; /* blocks physical addresses (PT) */
void __user **mm; /* user-space mapping of the blocks */

};

Figure 6: Data structure to request an accelerator buffer.

structures, without requiring any information about the underlying
system memory hierarchy. Combined with a lightweight dedicated
DMA controller, this makes all transactions occur across the entire
data set without intervention of the processor, thus allowing the ac-
celerators to preserve the speedup they were initially designed for.

Scatter-Gather DMA and accelerators. For off-chip peripher-
als and non-coherent devices, the standard Linux API provides rou-
tines to create a list of pages reserved for any virtual buffer. This
list, called scatterlist, represents the page table (PT) for the buffer.
This name refers to scatter-gather DMA, which is a common tech-
nique mostly applied to move data between main memory and the
dedicated DRAM of on-board peripherals. To reduce the size of
the PT, Linux tends to reserve blocks of contiguous pages whenever
possible so that it is sufficient to store the base address and length of
each block. A typical transaction to an external peripheral implies
transferring all data stored in the area pointed by the PT. Hence,
the scatter-gather DMA controller must simply walk the PT and
gather data from all memory areas in order. Conversely, on-chip
accelerators must deal with PLMs having limited size. Therefore,
they have to issue several random accesses to memory, following
a pattern that is highly-dependent on the implemented algorithm.
Since the blocks may have different sizes, the access to a scattered
memory buffer with a random offset requires the addition of every
block length until the requested data is effectively reached. More-
over, long DMA transfers may easily span across multiple blocks,
incurring further overhead to complete the transaction.

Alternatively, Linux can guarantee a set of equally-sized blocks,
each consisting of one page (typically 4KB). However, if we con-
sider a data set of 300MB, we need 76,800 entries in the PT, equiv-
alent to 300KB on a 32-bit address space. A traditional TLB, hold-
ing only a few of these PT entries, would incur high miss rates. In
fact, high-throughput accelerators do not typically reuse the same
data multiple times and very little spatial locality can be exploited.
To overcome this issue, we implemented a kernel module, named
contig_alloc, and a companion user-space library to replace the
standard malloc interface. Fig 6 shows the request data structure
for our module. A request to contig_alloc includes the size of
the requested memory area (size), the desired size of each contigu-
ous physical block (block_size) into which the memory region will
be divided, and some allocation policy parameters. These param-
eters are intended for load balancing in case of multiple DRAM
banks. If we specify only the parameter size, as typically done for
malloc, then default values are used for the other parameters.

The kernel module generates a DMA handle for the accelerator’s
driver, the resulting number of equally-sized blocks (also called
accelerator pages), the corresponding PT, and the virtual-memory
mapping for the user-space application. Fig. 7 shows the mem-
ory layout after calling contig_alloc. Note that only the calling
process is allowed to access the allocated memory region and the
user-level application can still operate transparently on the data in
its virtual address space (purple-shaded area). However, differently
from standard allocation mechanisms, the corresponding physical

Accelerator
with PLM

user virtual
address 0x40000000

0x80000000

3GB

1GB
(DRAM)

CPU

contig alloc()
Computation

The accelerator
elaborates ALL
DATA, then
wakes up the
processor

Application
Dataset

physical
address

Accelerator
Page

configurable
size

DMAPage-Table

Figure 7: Memory layout after calling contig_alloc to enable

low-overhead scatter-gather DMA for accelerators.

pages have larger size (orange-shaded regions in physical memory).
For very large data-sets, we can set a medium size for the accelera-
tor pages (e.g. 1MB) so that the resulting PT has a size on the order
of a few KBs and can be thus stored contiguously in memory, as
shown in Fig. 7.

This approach enables a low-overhead version of scatter-gather
DMA specialized for loosely-coupled accelerators, while maintain-
ing shared memory across processors and accelerators2, without
requiring coherence with the PLMs.

TLB and DMA controller for accelerators. Once the data are
ready in memory, laid out as shown in Fig. 7, the application can
run the accelerator by invoking the device driver through the tra-
ditional ioctl system call. The driver takes the configuration pa-
rameters from the user application and passes them to the acceler-
ator through memory-mapped registers. Such parameters include
application-specific variables to be used directly by the accelerator
kernel (e.g. the size of the image for the DEBAYER application),
and the information for the DMA controller (e.g. the memory ad-
dress where the PT is stored). To guarantee memory consistency
without coherence, the device driver performs a simple flush of the
cache lines holding data from the shared buffers right before send-
ing the start command to the accelerator. This operation is com-
pletely transparent to the user-level applications and incurs negligi-
ble performance overhead.

At this stage, DMA and computation are entirely managed by
the accelerator. The accelerator requests are composed of a set of
control signals to: distinguish memory-to-device from device-to-
memory transfers, set an offset with respect to the data structure
to process (corresponding to the AVA), and determine the trans-
action length. To serve such requests we equip every accelerator
with a DMA controller (DMAC) and a parametrized TLB. These
components autonomously fetch the PT through a single memory-
to-device transaction, and store it inside the TLB. Once the TLB
is initialized, every accelerator request is translated in only four
cycles. When operating on large data sets with very long DMA
transfers, this address translation overhead is negligible. The TLB
is configured to match the requirements of a given accelerator in
terms of number of supported physical memory pages and their
size. In fact, thanks to contig_alloc, the number of pages is kept
under control and set according to the size of the required mem-

2Differently from Linux huge_pages, our module supports dynamic allocation of
blocks; the latter can have variable sizes, trading off PT size for memory fragmenta-
tion; and it is supported across all architectures.



Accelerator
with PLM

DRAM

Accelerator
Page 0

PT0
PT1

PTN

Accelerator
Page 1

Accelerator
Page N

PT

R0

R1

status

R2

TLBDMAC

config

AVA

Length

Data

Ack

DMA transactions

Figure 8: DMA controller interface.

idle

start

config reset wait

running

wr handshake rd handshake

send address

send data rcv data

new PT
(tlb empty → 1)

end rcv and tlb empty
(tlb empty → 0)

end send
(dma done→ 1)

end rcv
(dma done→ 1)

DEV TO MEM MEM TO DEV

go and
!tlb empty

(tlb empty → 1)

3. acc done

5. wr request 4. rd request

2. rst

tlb ready tlb ready

tlb init

start

idle

AVA2PA

wait addr

wait data

(a) (b)

!tlb empty

rd/wr request
(pend dma → 1)

(tlb ready → 1)

addr sent

dma done &&
length == 0
(pend dma → 0)

dma done &&
length != 0

rst

1
.
p
en

d
d
m
a
a
n
d
tlb

rea
d
y

(tlb ready → 0)

Figure 9: DMA Controller (a) and TLB (b) finite state machines.

ory area. Therefore it is possible to have the number of PT entries
match the TLB size. This not only simplifies the design, but it
also minimizes the performance degradation due to scatter-gather
DMA. Indeed, filling in the TLB can be done with one single trans-
fer before activating the computational blocks. Results reported in
Section 5 confirm that preparing and using the TLB has a negligi-
ble impact on the overall execution time of the accelerators. Across
the analyzed workloads, we set the accelerator page size to 1MB,
which is a reasonable trade-off between the complexity of the mem-
ory allocation performed by the operating system and the PT size,
resulting in few hundreds entries. Should an application require
more entries, in order to handle even larger data sets, the TLB can
be parametrized to hold more pointers in exchange for silicon area.
Note that the relative performance overhead would not increase, be-
cause transactions and computation would also scale with the data
set.

Fig. 8 shows the organization of the accelerator, the DMAC,
the dedicated TLB, and the bank of configuration registers. Note
that one of the registers stores the DMA handle generated by con-

tig_alloc. This corresponds to the PT base address and is used
to initialize the TLB. The DMAC and TLB behaviors are described
by the finite state machine in Fig. 9(a) and Fig. 9(b), respec-
tively. As soon as the PT register is written by the device driver,
the DMAC engine initiates an autonomous transaction to retrieve
the PT, as shown by the transition from idle to send_address in
Fig. 9(a). The request includes the PT address and the number of
entries to fetch. Then, following the control flow of read requests
(i.e. MEM_TO_DEV path), the DMA waits for the response of
the memory controller before transferring the received pointers to
the physical blocks into the TLB. The operation terminates when
all entries are received: this corresponds to the transaction from
rcv_data to idle in Fig. 9(a), where the signal tlb_empty is de-
asserted. This also corresponds to the transition from tlb_init to
idle in Fig. 9(b).

After this TLB initialization, the DMAC steps through the states
config and running, and starts its execution. Whenever the accel-
erator needs to perform a read or write request to DRAM, it sends
a request to the DMAC through its DMA interface, as shown in
Fig. 8. Specifically, the AVA and the length of the data transfer are
sent to the TLB, which initiates the address translation, while the
DMAC starts a handshake protocol with the DMA interface of the

accelerator. The TLB determines whether the transaction needs to
access one or multiple pages in memory, and computes the length
of the transfer for the first accelerator page. In four cycles the TLB
is ready to provide the physical address and the DMAC initiates
a transaction over the interconnection system, following either the
MEM_TO_DEV or the DEV_TO_MEM paths, for read or write op-
erations, respectively. In the case of read requests, the acknowl-
edge signal (Ack) shown in Fig. 8 is set when valid data are avail-
able. Conversely, in the case of write requests, the signal Ack is
set when an output value (Data) has been sent to the DMAC. This
simple latency-insensitive protocol [4] ensures functional correct-
ness, while coping with congestion and DRAM latency. After the
request has been sent to the interconnect, the TLB controller steps
to a second waiting state (i.e. wait_data in Fig. 9(b)). In this state,
if the current transfer length does not match the actual length re-
quested by the accelerator, the controller reads the physical address
of the next page in the TLB and initiates another transaction skip-
ping the handshake with the accelerator. When the DMAC returns
to the state running, it checks first for pending transactions, then
it reads the command register to check for a reset from software,
and finally waits for the accelerator to raise another request or for
completion (i.e. signal acc_done). Note that, even considering the
DMAC initialization, the delay introduced by each accelerator re-
quest is negligible when compared to the lengths of typical burst
data transfers (thousands of words).

Main memory load balancing. As the number of accelerators
grows, the system interconnect and the I/O channels to the external
memory are responsible for sustaining the increasing traffic gener-
ated by many long DMA transactions. A system interconnect based
on a network-on-chip (NoC) offers larger throughput and has better
scalability than traditional bus-based interconnects [12]. However,
since all accelerators need access to external memory, it is neces-
sary to improve the traffic on the NoC to minimize congestion. The
availability of multiple memory channels and DDR controllers on
modern systems improves the NoC traffic by balancing the data al-
location among such controllers. The optional parameters of con-
tig_alloc enable the user to distribute traffic through different
paths to the DRAM banks. In addition to such parameters, when
loading the kernel module, it is possible to specify the region of the
physical address space where contig_alloc is allowed to request
accelerator pages. The presence of multiple channels to the exter-



nal memory allows additional control of the interconnect traffic. In
order to perform a sensitivity analysis of the proposed design with
respect to load balancing, we devised three allocation policies:

1. POLICY PREFERRED returns the first available accelerator pages
starting from the most affine DDR controller (i.e. the closest one
in the SoC layout to the accelerator owning this set of pages).

2. POLICY LEAST-LOADED returns all pages from the least loaded
DDR. This policy can be tuned with a user-defined threshold
parameter that biases the priority among DDR controllers. For
example, if the kernel module is allowed to allocate pages on
half of the address space corresponding to the first DDR con-
troller (namely DDR0), it is convenient to set a threshold for this
policy. For instance, by setting the threshold to 16, the policy
will allocate the requested pages to DDR0 only if all other DDR
nodes have at least 16 more allocated pages than DDR0. Note,
in fact, that the region of memory exclusively dedicated to the
standard operating system memory allocation mechanism is ac-
cessed more frequently by the processors. Hence, the system
incurs higher contention between accelerators and processors
when many accelerator pages are located on DDR0.

3. POLICY BALANCED returns sets of pages with specified cardinal-
ity. Each set of pages is alternatively allocated on the available
DDR controllers. This policy accepts the same threshold as POL-
ICY LEAST-LOADED to select the first DDR controller. Addition-
ally, the number of pages per set is also specified by the user and
determines the granularity for balancing the allocation.

4. SOC INTEGRATION
To evaluate our solution to the LDS Problem, we implemented

loosely-coupled accelerators for a set of computing kernels from
the PERFECT Benchmark Suite [2]. This is a collection of applica-
tions and kernels targeting energy-efficient high-performance em-
bedded computing. In particular, we selected eight kernels that are
very heterogeneous as they process a variety of input/output data
sets, with different memory-access patterns and communication vs.
computation ratios. Consequently, we design a corresponding set
of accelerators that share the general structure shown in Fig. 2 but
have major differences in terms of the micro-architecture of the
computational blocks and the PLM structure.

Accelerated kernels. The eight selected computational kernels
operate on input data sets that are provided as part of the PERFECT

suite in three different sizes: SMALL, MEDIUM and LARGE. The
actual sizes vary across kernels and range from 1MB to 300MB.
Except for SORT, which is executed in-place, the applications must
allocate additional data structures to store output and temporary
data. Thus, their memory footprint grows up to 345MB, as shown
in Table 1. Also, our kernel implementations confirm the impact of
the PLM on the overall design of an accelerator: the PLM ranges
from 75% up to 98% of the accelerator area, when targeting an
industrial 32nm CMOS technology.

All the selected kernels execute heavy computation tasks, but
they are very heterogeneous in terms of data access patterns. SORT,
for instance, reorders iteratively and in-place N arrays of 1024
floating-point elements, where N can be 256, 512 or 1024, depend-
ing on the data set. FFT2D performs the Fast Fourier Transform
(FFT) on each of the input rows of length 2N , then it transposes
the resulting matrix and finally it performs FFT on the transposed-
matrix rows. Thus, it requires an additional workspace of the same
size of the input matrix, i.e. 2N

×2N , where N is at most 12. The
DEBAYER kernel takes as an input an N×N-pixel Bayer-array im-
age (with N ranging from 512 to 2048 pixels) with one color sam-
ple per pixel and returns an image with three-color samples per

KERNEL

SW APP. PLM FPGA CMOS
FOOTPRINT RESOURCES AREA

MB KB LUT FF BRAM µm2

Sort 36,868 31,300 281,045
−Mem. 18.2 24.00 6 74.95%

FFT2D 3,965 2,190 834,147
−Mem. 292.3 128.00 48 94.13%

Debayer 4,446 1,968 796,920
−Mem. 42.3 95.86 32 98.53%

Lucas-Kan 5,329 3,210 319,109
−Mem. 173.4 20.28 8 84.42%

Change-Det. 16,274 6,378 596,029
−Mem. 345.4 63.00 18 90.57%

Interp.1 20,836 9,119 492,647
−Mem. 109.4 48.05 12 69.65%

Interp.2 20,908 8,623 575,561
−Mem. 137.2 64.05 16 76.67%

Backproj. 14,040 5,588 782,263
−Mem. 329.3 99.00 81 91.61%

Table 1: Characterization of the implemented accelerators.

pixel. Thus, the resulting output is three times bigger than the in-
put. Moreover, the algorithm interpolates pixels row-by-row and
uses 5×5-interpolation masks centered on the pixel of interest. LU-
CAS KANADE performs image alignment. The algorithm has a
multiply-accumulate nature that stores the results in the Hessian
output matrix. This has a fixed size (6×6) independently from the
size of the input images. Its memory footprint grows significantly
with the larger data sets due to the amount of intermediate results
that the algorithm allocates on the memory stack. Indeed, it has
the highest growth rate among all kernels. Furthermore, each iter-
ation of its computation phase requires two independent memory-
read operations: the access pattern of the first one is data depen-
dent, while the second transaction has a behavior known ahead
of computation. Since the accelerator can be implemented with-
out considering the SoC memory subsystem, these irregular mem-
ory accesses do not exacerbate the complexity of the accelerator.
CHANGE DETECTION takes as input a sequence of frames and an
initial training set, and it returns a new training set and a “ground-
truth mask”: certain portions of each frame are labeled as back-
ground. Both frames and training set are represented as a set of
N×N-pixel matrices where N is at most 2048. This results in the
biggest data set among the kernels (300MB). On the target plat-
form, this application has a memory footprint of 345.4MB. The
other three kernels are part of a radar-based imaging application
that produces high-resolution imagery by composing data from rel-
atively small images. Two alternative methods of image forma-
tion exist: polar format algorithm (PFA) and backprojection algo-
rithm. The INTERPOLATION-1 and INTERPOLATION-2 kernels are
the most computational intensive portions of PFA. All three operate
on large matrices, but INTERPOLATION-1 reads them row-by-row,
INTERPOLATION-2 accesses them column-by-column, and BACK-
PROJECTION has a data-dependent access pattern.

SoC architecture. We integrated this variety of accelerators in
multiple SoCs that we designed with the embedded scalable plat-

forms methodology [5]. Each SoC has a tile-based architecture and
features four types of tiles. A CPU tile integrates a LEON3 em-
bedded processor [15] that runs the Linux OS and the embedded
software stack, including the contig_alloc module, the device
drivers, and the user applications. Each DDRx tile has a memory
controller offering one independent channel to the external mem-
ory. A MISC tile implements all other I/O channels and peripherals
that are responsible for booting the system and supporting a debug



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Sort
FFT2D

Debayer
Lucas-Kan.

Change-Det.

Interp.1
Interp.2

Backproj.

S
p
e
e
d
u
p

Accelerator

Accelerators Speedup Over Software Execution

small

1
1
1
.4

3

1
3
.6

8

2
7
.5

9

4
3
.0

1 1
1
.0

0

1
7
5
.1

0

7
0
.9

2

1
2
2
.2

9

medium

9
5
.4

0

1
5
.1

8

2
7
.9

3

4
7
.4

7 1
1
.0

0

1
7
5
.1

0

7
2
.9

5

1
2
1
.4

7

large

1
0
3
.6

6

2
0
.0

0

3
4
.2

4

5
3
.0

7 1
1
.0

0

1
7
6
.0

9

7
6
.8

7

1
2
2
.0

3

Figure 10: Speed-up of each accelerator with respect the corre-

sponding software executions for three data-set sizes.

 0

 5

 10

 15

 20

 25

 30

 35

Sort
FFT2D

Debayer
Lucas-Kan.

Change-Det.

Interp.1
Interp.2

Backproj.

T
im

e
 %

Accelerator

DMA Transactions Time Over Execution Time

small

3
1
.0

%

7
.0

%

8
.0

%

9
.0

%

9
.0

%

1
6
.0

% 1
2
.0

%

0
.1

%

medium

3
1
.0

%

6
.0

%

8
.0

%

8
.0

%

9
.0

%

1
6
.0

% 1
2
.0

%

0
.1

%
large

3
1
.0

%

6
.0

%

8
.0

%

8
.0

%

9
.0

%

1
6
.0

% 1
2
.0

%

0
.1

%

Figure 11: Time spent in data transfers expressed as a fraction

of the total execution time for each accelerator.

interface. Lastly, each accelerator tile encapsulates a given accel-
erator together with an instance of the components of Fig. 8, which
provide a simple network interface between the guest accelerator
and the system interconnect. The flexibility of this interface allows
us to easily swap or replace tiles to create different memory map-
pings and test scenarios. The corresponding routing tables are au-
tomatically generated [22]. Hence, we are able to quickly evaluate
the impact of changing the set of accelerators and the SoC layout.

The tiles are interconnected through a packet-switched multi-
plane NoC. Combined with multiple DDR controllers, the NoC
supports more concurrent transactions than a bus-based architec-
ture. Accelerators rely on two NoC planes that are dedicated to
DMA transactions (one for memory-read and one for memory-
write transfers) and guarantee deadlock avoidance. The accelerator
DMA does not interfere with the NoC planes dedicated to the pro-
cessor cache request-and-response transfers until the packets reach
the memory. Non-cacheable register operations, control messages,
and interrupts are delivered through a fifth plane, which is accessed
by all tiles. While the size of the SoC instances are ultimately lim-
ited by the available resources on the target FPGA, our infrastruc-
ture is inherently modular and scalable: it allows for more tile and
NoC planes as the number of integrated accelerators and memory
controllers increases.

Probes and performance counters. A set of accurate perfor-
mance counters are placed at the interface of each DMAC and NoC
router. They serve as probes to gather statistics during system exe-
cution. In particular, probes placed between each accelerator and its
DMAC measure the total number of cycles in which the accelerator
is active, along with the cycles spent in communication (i.e. when
DMA transfers are occurring) and in TLB access. Probes placed at
each router port measure the number of cycles when a flit traverses
each link. This information helps us quantify the contention for
shared resources across the different scenarios.

Implementation details. We performed logic synthesis of all
SoC instances for a target frequency of 80MHz and mapped them
on a proFPGA Prototyping System [27], equipped with a Xilinx
Virtex-7 XC7V2000T FPGA and two DDR-3 extension boards.
This provides the system with dual-channel access to memory
(namely DDR0 and DDR1). The total addressable off-chip memory is
limited to only 1GB by the LEON3 default mapping, which is how-
ever sufficient to execute all our workloads. We split this address
space into two partitions, each of size 512MB. The lower portion
is mapped to DDR0 and includes 128MB of memory exclusively re-
served for the OS that cannot be used by contig_alloc. The rest
of the address space, instead, is dynamically shared between the
processor and the accelerators.

5. FPGA-BASED EVALUATION
We evaluate our approach for solving the LDS problem with a

set of experiments across four SoC instances mapped to FPGA.

Hardware solution overhead. The components for translating
the requests from each accelerator to the corresponding NoC in-
terface require about 600 look-up-tables (LUT) and 600 flip-flops
(FF). Without the logic to support contig_alloc, the same DMA
engine would require 350 LUTs and 400 FFs. One additional block
RAM (BRAM) is needed to store the TLB for each accelerator.
However, this difference in terms of resources is negligible when
compared to accelerators (see Table 1). We also evaluated the per-
formance overhead to access the TLB, which in aggregate corre-
sponds to a few hundred cycles and is negligible across all work-
load scenarios if compared to a total execution time that ranges in
the hundreds of millions cycles. Address translation and TLB ini-
tialization time is indeed eight orders of magnitude smaller than the
total accelerator execution time.

DDR0

DB

INT1

CPU

INT2

MISC

LK

BP

FFT2D CD SORT DDR1

Figure 12: Test scenario (a): eight hetero-

geneous accelerators with two memory con-

trollers located at opposite corners. The chart

shows the execution time when running two,

four and eight concurrent accelerators, nor-

malized to single-accelerator workload.

 0

 1

 2

 3

 4

 5

 6

 7

Sort
D
ebayer

Sort
D
ebayer

Interp.1

Interp.2

Sort
D
ebayer

Interp.1

Interp.2

Lucas-Kan.

C
hange-D

et.

FFT2D

Backproj.

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Preferred
Least-Loaded

Balanced (1MB)
Balanced (4MB)

Balanced (16MB)

8 Accelerators4 Accelerators2 Accelerators



LK

DB

INT1

DDR0

INT2

DDR1

CPU

BP

FFT2D CD SORT MISC

Figure 13: Test scenario (b): eight hetero-

geneous accelerators with two memory con-

trollers located in the central tiles. The chart

shows the execution time when running two,

four and eight concurrent accelerators, nor-

malized to single-accelerator workload.

 0

 1

 2

 3

 4

 5

 6

 7

Sort
D
ebayer

Sort
D
ebayer

Interp.1

Interp.2

Sort
D
ebayer

Interp.1

Interp.2

Lucas-Kan.

C
hange-D

et.

FFT2D

Backproj.

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Preferred
Least-Loaded

Balanced (1MB)
Balanced (4MB)

Balanced (16MB)

8 Accelerators4 Accelerators2 Accelerators

Evaluation of single accelerators. Given the accelerators pre-
sented in Section 4, we start testing our architecture by running
each of them standalone in order to asses its speedup over the cor-
responding original software implementation. For this set of exper-
iments, data are allocated on DDR1, while DDR0 is reserved for the
processor. This allocation minimizes the contention between the
processor and the accelerator. The results are reported in Fig. 10.
The speedups range from 11× (for CHANGE DETECTION) to 175×
(for INTERPOLATION-1). These tests were run on all data sets and
show the scalability of our solution for up to 300MB of input data.
The speedup is almost constant for five accelerators out of eight,
while it shows a slight increase on larger data sets for the others.
Average speedup across all input data sizes is about 70× and grows
to almost 75×, when excluding smaller test sizes.

Fig. 11 reports the percentage of execution time during which
each accelerator is involved in a data transfer. For example, the
DMA controller for SORT is active for more than 30% of the exe-
cution time. This percentage includes both the time where useful
data reach or leave the accelerator tile and the waiting time caused
by DDR latency. Such metric is a key characteristic of the accel-
erator, which depends primarily on the ratio between computation
time and communication time and on how much these two phases
are allowed to overlap. Higher percentages of communication time
correspond to a larger sensitivity to system congestion and memory
bandwidth, because the accelerator tends to perform less operations
on each byte of data brought to the PLM. For this reason, it can be
easily stalled when varying the latency of memory transfers. Note
that applications performing very little computation on each data
token are not suitable for loosely-coupled accelerators[10].

Multi-accelerator workloads. We analyze the interaction of
multiple accelerators by sweeping the number of concurrent accel-
erators and changing the memory allocation policy, chosen among
those described in Section 3. The limited amount of addressable
DDR does not allow us to execute concurrently all accelerators
with large data sets at the same time. However, throughout the

experiments we are able to allocate up to 768 MB, corresponding
to as many accelerator pages. The first SoC instance integrates one
copy of each accelerator implemented, and has two memory chan-
nels located at the corners of the NoC, as shown in Fig. 12. The
second test case, reported in Fig. 13, is similar to the previous one,
except for the location of the memory controllers. These are now
positioned in the central tiles to investigate the sensitivity of our
design to the placement of the most contended shared resources.
The third SoC, shown in Fig. 14, integrates two copies of five dif-
ferent accelerators, for a total of ten accelerator tiles. Having two
copies of each accelerator reduces the degree of heterogeneity and
affects the traffic over the interconnect because there are more com-
ponents having the same access patterns to memory. The last test
case integrates twelve accelerators for the FFT2D kernel (Fig. 15)
and stresses the system with homogeneous traffic patterns gener-
ated from all accelerator tiles. The bar charts next to each SoC
layout report the execution time for every accelerator, across sev-
eral experiments. Each bar is normalized against the corresponding
single-accelerator execution time. Each group of clustered bars cor-
responds to a workload scenario with multiple accelerators running
at the same time. For instance, the chart in Fig. 12 reports three
workloads, running two, four and eight accelerators, respectively.
For every workload, we repeated the experiment for five different
allocation policies. The leftmost bar in each cluster corresponds
to POLICY PREFERRED, which has no configuration parameters. The
second bar (in yellow) shows the results for POLICY LEAST-LOADED

configured with a penalty of 32MB for DDR0, so that DDR1 is pre-
ferred when both banks are similarly loaded. Finally, the three bars
in different shades of purple correspond to POLICY BALANCED with
sets of 1, 4 and 16 pages, sized 1MB each.

The first conclusion we can draw is that for small sets of ac-
celerators the execution time is mostly unaffected by concurrency.
This is shown for heterogeneous workloads with two accelerators in
Fig. 12, 13 and 14, and for the case of four FFT2D in Fig. 15. The
little fluctuations reported are due to unpredictable behavior of the

DDR0

FFT2D

MISC

FFT2D

CPU

DB DB

LK LK INT1 INT1

INT2 INT2 DDR1

Figure 14: Test scenario (c): five couples of

heterogeneous accelerators with two memory

controllers located at opposite corners. The

chart shows the execution time when running

two, six and ten concurrent accelerators, nor-

malized to single-accelerator workload.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

D
ebayer

D
ebayer

D
ebayer

D
ebayer

Interp.1

Interp.1

Interp.2

Interp.2

D
ebayer

D
ebayer

Interp.1

Interp.1

Interp.2

Interp.2

Lucas-Kan.

Lucas-Kan.

FFT2D

FFT2D

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Preferred
Least-Loaded

Balanced (1MB)
Balanced (4MB)

Balanced (16MB)

10 Accelerators6 Accelerators2 Accelerators



DDR0

FFT2D

MISC

FFT2D

CPU

FFT2D

FFT2D

FFT2D

FFT2D FFT2D FFT2D FFT2D

FFT2D FFT2D FFT2D DDR1

Figure 15: Test scenario (d): twelve homo-

geneous accelerators with two memory con-

trollers located at opposite corners. The chart

shows the execution time when running four,

eight and twelve concurrent accelerators, nor-

malized to single-accelerator workload.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

FFT2D

FFT2D
    

FFT2D

FFT2D

FFT2D

FFT2D
    

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D
    

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Preferred
Least-Loaded

Balanced (1MB)
Balanced (4MB)

Balanced (16MB)

12 Accelerators8 Accelerators4 Accelerators

system, where the OS is constantly running and generating “noise”
in terms of memory utilization. As we increase the number of ac-
celerators running concurrently, the effects of contention for the
shared resources starts affecting the execution time. For instance,
SORT is heavily penalized by the higher ratio between communica-
tion and total execution time, as already noted for Fig 11. Neverthe-
less, the aggregate performance of multiple concurrent accelerators
keeps improving, even if with diminishing returns. For example,
if we consider the second group of bars in Fig. 15, we distinguish
eight clusters for as many instances of parallel FFT2D accelera-
tors. As we can see from the chart, they not only perform better
than a single accelerator running in series, but they also exceed the
performance of the scenario with four FFT2D. The average execu-
tion time, across all policies, for eight FFT2D, in fact, is below the
break-even point of 2×. From this viewpoint, even better results are
shown for the heterogeneous SoCs. Having different accelerators,
in fact, leads to the interaction of heterogeneous data access pat-
terns, which tend to reduce contention for shared resources. These
results show that, as long as the interconnect can sustain the band-
width requirements of the accelerators, our design scales well with
limited impact on performance. Furthermore, if we compare Fig.12
and 13, we can conclude that our technique is robust to variations
of the SoC layout (i.e. position of tiles). In particular, moving the
memory controllers from the corners to the central tiles has no im-
pact on the system behavior, even though the traffic distribution on
the NoC changes significantly.

Finally, by looking at the results for all workloads, we notice that
the allocation policy has little to no impact on the performance in
most cases and for most accelerators. Such behavior is highly desir-
able, because it does not constrain the operating system to use one
specific load balancing technique for memory. Note that there are
few exceptions to this observation. For instance, results for SORT

in Fig. 12 and 13 show significant variations in the execution time
based on the allocation policy. Indeed, on one hand, accelerators
like SORT that have a higher ratio between communication and to-
tal execution time (see Fig. 11) require higher bandwidth with the
memory. On the other hand, when multiple accelerators’ buffers
are scattered across the two DDR controllers, there are on average
more packets colliding on the NoC and this can affect the perfor-
mance. In fact, the probes located inside the NoC routers measured
on average 3× more packets traversing the links around the tile for
SORT when changing allocation policy from PREFERRED to 1MB-

BALANCED. Hence, we can conclude that the reported performance
loss is not directly correlated with our DMA and address translation
logic. Instead, it is a natural consequence of a higher NoC traffic.

6. RELATED WORK
Accelerator Memory. Addressing memory aspects of special-

ized accelerators is fundamental to design efficient SoCs. In fact,
even if the PLM could reach 90% of the chip area, the amount of

data that can be stored on-chip is usually limited to few MBs [21].
Efficient methods have been proposed to reduce the footprint of the
on-chip memory by exploiting sharing techniques [8, 21, 26], to
perform data prefetch and reduce the latency in accessing the ex-
ternal memory [33], and to improve utilization of the silicon area
dedicated to memory [11, 9, 14]. However, before this paper, there
has been no comprehensive analysis of the effects of multiple ac-
celerators processing concurrently large amounts of data accessed
through off-chip memory. The effects of multiple accelerators ac-
cessing the same memory controller has been studied before as part
of a work that proposes a configurable module to manage many ac-
cess patterns [17]. This module, however, is tightly coupled with
the controller and the extension to multiple memory controllers is
not straightforward. Further, in this case the accelerators need to
know where the data are allocated in order to perform the request
to the proper controller. Instead, we address a more general case:
non-contiguous buffers are not determined by the algorithms (or
the implementation of the accelerators), but they may be generated
by the OS based on the current workload (i.e. the interaction with
other accelerators and the size of their data sets); hence the ac-
celerators cannot know in advance how the data will be allocated.
Other approaches where accelerators are unaware of the memory
subsystem [34, 32] address a type of accelerator accessing memory
with small transactions. This is similar to what general or special
purpose processors do when loading cache lines. High-throughput
loosely-coupled accelerators, instead, tend to process larger data
sets and access them at a coarser granularity and need long DMA
transfers with DRAM [10]. Various solutions have been proposed
to expose accelerator memory to the OS and transfer large data [30]
through scatter-gather DMA mechanisms. However, these solu-
tions are usually implemented inside the OS and performed by the
processor. Further, data are transferred to the FPGA memory that is
managed as a peripheral; the transfers are thus serialized. Instead,
we allow the accelerators to autonomously manage the memory ac-
cesses, even in case of non-contiguous buffers.

Architectures with Multiple Memory Controllers. The im-
pact of multiple memory controllers has been studied for multi-
core architectures [1], especially to manage data placement, han-
dle the effects on memory-access latency, and avoid conflicts while
scheduling accesses to the same physical memory [19]. In con-
trast, we build a dual-channel memory system that, combined with
data placement techniques, can effectively parallelize the accesses
to different physical memories. Techniques based on application
profiling to place data across many memory channels [25] are or-
thogonal to our work and can be integrated in our infrastructure.

Architectural solutions for heterogeneous architectures are usu-
ally evaluated by simulation [8, 17, 21]. However, as the com-
plexity of these architectures increases, this approach is becoming
unfeasible. In fact, simulators developers usually need to abstract
some behaviors to reduce the simulation time. Hence, it is impos-



sible to have an accurate analysis of the interaction between pro-
cessor, operating system, and accelerators, especially in the case of
contention on resources (i.e. off-chip memory). On the other hand,
FPGAs have been used to emulate specific aspects of the design
such as NoC behavior [20], to evaluate the optimization of accel-
erator PLMs [26], and also to implement accelerator-rich architec-
tures [6]. However, our work is the first to use FPGAs to study
the interaction between on-chip and off-chip memories in complex
SoCs when many accelerators are processing simultaneously very
large data sets.

Accelerators and OS. Programmability of accelerators is an-
other critical issue in the design of heterogeneous SoCs. Device
drivers are usually adopted to configure the accelerators with spe-
cific parameters and to control the execution. However, there is a
domain disparity between processor cores and hardware accelera-
tors [30]. The processor core is usually responsible for the data
allocation by leveraging the specific API of the OS, which may
result in non-contiguous buffers that are not usually support by ac-
celerators. When handling large data, however, the OS needs to
adopt specific techniques to manage these large buffers, e.g. virtual
pages. The solution we propose reduces this disparity.

7. CONCLUSIONS
We presented a combined hardware-software solution and eval-

uation for the Large Data Set Problem in accelerator-based SoCs.
Our design includes dedicated hardware and a software stack to
efficiently support the execution of high-throughput accelerators
processing large data sets. We evaluated our design through a
full-system FPGA-based implementation, demonstrating four main
properties: (1) feasibility of our solution; (2) low sensitivity to
workload characteristics and accelerator-specific behaviors; (3) low
sensitivity to placement of accelerators with respect to the location
of DDR controllers and the load-balancing policies; and (4) scala-
bility across data sets and number of concurrent accelerators.

Acknowledgments. This work is supported in part by DARPA PER-
FECT (C#: R0011-13-C-0003), the NSF (A#: 1219001), and C-FAR (C#:
2013-MA-2384), an SRC STARnet center.

8. REFERENCES
[1] M. Awasthi, et al. Handling the problems and opportunities posed by multiple

on-chip memory controllers. In Proceedings of the International Conference on

Parallel architectures and compilation techniques (PACT), pages 319–330,
Sept. 2010.

[2] K. Barker, et al. PERFECT (Power Efficiency Revolution For Embedded

Computing Technologies) Benchmark Suite Manual. Pacific Northwest National
Laboratory and Georgia Tech Research Institute, December 2013.
http://hpc.pnnl.gov/projects/PERFECT/.

[3] S. Borkar and A. A. Chien. The future of microprocessors. Communication of

the ACM, 54:67–77, May 2011.

[4] L. P. Carloni. From latency insensitive design to communication-based
system-level design. Proceedings of the IEEE, 103(11):2133–2151, Nov. 2015.

[5] L. P. Carloni. The case for embedded scalable platforms. In Proceedings of

ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016.

[6] Y.-T. Chen, et al. Accelerator-rich CMPs: From concept to real hardware. In
Proceedings of IEEE International Conference on Computer Design (ICCD),
pages 169–176, Oct. 2013.

[7] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai. Single-chip heterogeneous
computing: Does the future include custom logic, FPGAs, and GPGPUs? In
Proceedings of Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 225–236, 2010.

[8] J. Cong, et al. Accelerator-rich architectures: Opportunities and progresses. In
Proceedings of ACM/EDAC/IEEE Design Automation Conference (DAC), June
2014.

[9] E. G. Cota, P. Mantovani, and L. P. Carloni. Exploiting private local memories
to reduce the opportunity cost of accelerator integration. In Proceedings of the

International Conference on Supercomputing (ICS), June 2016.

[10] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An analysis of
accelerator coupling in heterogeneous architectures. In Proceedings of

ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015.

[11] E. G. Cota, et al. Accelerator memory reuse in the dark silicon era. Computer

Architecture Letters, 13(1):9–12, Jan-Jun 2014.

[12] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. In Proceedings of ACM/EDAC/IEEE Design Automation Conference

(DAC), pages 684–689, 2001.

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for
general-purpose approximate programs. In Proceedings of Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 449–460, 2012.

[14] C. F. Fajardo, et al. Buffer-integrated-cache: A cost-effective SRAM
architecture for handheld and embedded platforms. In Proceedings of

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 966–971, June
2011.

[15] J. Gaisler. An open-source VHDL IP library with plug & play configuration.
Building the Information Society, pages 711–717, 2004.

[16] R. Komuravelli, et al. Stash: Have your scratchpad and cache it too. In
Proceedings of International Symposium on Computer Architecture (ISCA),
pages 707–719.

[17] B. Li, Z. Fang, and R. Iyer. Template-based memory access engine for
accelerators in SoCs. In Proceedings of Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 147–153, Jan. 2011.

[18] K. Lim, et al. Thin servers with smart pipes: Designing SoC accelerators for
Memcached. SIGARCH Comput. Archit. News, 41(3):36–47, June 2013.

[19] L. Liu, et al. A software memory partition approach for eliminating bank-level
interference in multicore systems. In Proceedings of the International

Conference on Parallel architectures and compilation techniques (PACT), pages
367–376, 2012.

[20] S. Lotlikar, V. Pai, and P. V. Gratz. AcENoCs: A Configurable HW/SW
Platform for FPGA Accelerated NoC Emulation. In Proceedings of Annual

Conference on VLSI Design, pages 147–152, Jan. 2011.

[21] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks. The accelerator store: A
shared memory framework for accelerator-based systems. ACM Transactions

on Architecture and Code Optimization (TACO), 8(4):48:1–48:22, Jan. 2012.

[22] P. Mantovani, G. D. Guglielmo, and L. P. Carloni. High-level synthesis of
accelerators in embedded scalable platforms. In Proceedings of Asia and South

Pacific Design Automation Conference (ASP-DAC), Jan. 2016.

[23] M. Mehendale, et al. A true multistandard, programmable, low-power, full HD
video-codec engine for smartphone SoC. In ISSCC Digest of Technical Papers,
pages 226–228, Feb. 2012.

[24] D. Melpignano, et al. Platform 2012, a many-core computing accelerator for
embedded SoCs: Performance evaluation of visual analytics applications. In
Proceedings of ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1137–1142, June 2012.

[25] S. P. Muralidhara, et al. Reducing memory interference in multicore systems via
application-aware memory channel partitioning. In Proceedings of Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
374–385, Dec. 2011.

[26] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-level
Memory Optimization for High-level Synthesis of Component-based SoCs. In
Proceedings of International Conference on Hardware/Software Codesign and

System Synthesis (CODES+ISSS), pages 1–10, Oct. 2014.

[27] proFPGA Prototyping Systems. http://www.prodesign-europe.com/profpga.

[28] W. Qadeer, et al. Convolution engine: balancing efficiency & flexibility in
specialized computing. In Proceedings of International Symposium on

Computer Architecture (ISCA), pages 24–35, June 2013.

[29] Y. S. Shao, et al. Toward cache-friendly hardware accelerators. In HPCA

Sensors and Cloud Architectures Workshop (SCAW), pages 1–6, Feb. 2015.

[30] S. K. Shukla, Y. Yang, L. N. Bhuyan, and P. Brisk. Shared memory
heterogeneous computation on PCIe-supported platforms. In Proceedings of

International Conference on Field Programmable Logic and Applications

(FPL), pages 1–4, Sept. 2013.

[31] G. Venkatesh, et al. Conservation cores: reducing the energy of mature
computations. In Proceedings of Conference on Architectural support for

programming languages and operating systems (ASPLOS), pages 205–218,
Mar. 2010.

[32] P. Vogel, A. Marongiu, and L. Benini. Lightweight virtual memory support for
many-core accelerators in heterogeneous embedded socs. In Proceedings of

International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), pages 45–54, Oct 2015.

[33] F. Winterstein, et al. MATCHUP: Memory abstractions for heap manipulating
programs. In Proceedings of ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 136–145, Feb. 2015.

[34] H.-J. Yang, et al. LMC: Automatic resource-aware program-optimized memory
partitioning. In Proceedings of ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 128–137, 2016.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     10
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



