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Abstract—The open-source hardware community contributes a variety of processors and
accelerators, but combining them effectively into a complete SoC remains a difficult task.
We present a design flow for the seamless hardware and software integration of accelerators
into a complete SoC and for its evaluation through rapid FPGA-based prototyping. By leveraging
ESP, an open-source platform for agile heterogeneous SoC design, we demonstrate FPGA
prototypes of various SoC designs, featuring the NVIDIA Deep Learning Accelerator and the
Ariane RISC-V 64-bit processor core.

INTRODUCTION

Heterogeneous system-on-chip (SoC) archi-
tectures are pervasive across computing domains,
from supercomputers to smartphones [1]. To meet
energy efficiency and performance goals, they
rely on an increasing variety of specialized hard-
ware accelerators [2]. High degrees of component
heterogeneity, however, complicate SoC design
and evaluation. As SoC complexity grows with
each generation, the addition of new capabilities
is increasingly limited by the engineering effort
and team sizes [3].

Open-source hardware (OSH) holds the
promise of boosting the SoC design and evalua-
tion process by enabling the reuse of pre-designed
and pre-validated components across different
SoC projects [4]. Most OSH contributions consist
of individual components. While these are obvi-
ously important, the ultimate goal is to integrate
and evaluate them as part of a complete SoC.
Hardware accelerators, in particular, are typically
designed with limited consideration of the impli-
cations of their integration in an SoC.

The hardware and software integration of ac-
celerators in an SoC is a complex task that is
critical to the performance of the overall system.
More generally, evaluating SoC architectures is
becoming harder because it requires accounting
for complex interactions among many heteroge-
neous components. Unlike slow RTL simulations,
FPGA prototyping enables the execution of real
workloads on top of the operating system and the
full software stack. Unlike fast simulation models,
FPGA prototypes can realistically reproduce the
complex interactions among SoC components and
with external memory. By simplifying the SoC
design effort, agile methodologies for accelerator
integration and evaluation with FPGA-based pro-
totypes support the OSH community and promote
architecture innovation.

We present an integration flow for third-party
accelerators that enables the seamless design and
FPGA-prototyping of complete SoCs from multi-
ple OSH components. The integration flow is now
part of ESP1, our open-source platform for SoC

1www.esp.cs.columbia.edu/
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Figure (1) Steps of the ESP design methodology.

design [5], [6]. Figure 1 shows the main steps
of the enhanced ESP methodology that we used
to integrate many third-party intellectual property
(IP) blocks, including accelerators for video en-
coding, deep learning and natural-language pro-
cessing. We demonstrate the new capabilities of
ESP with two exemplary OSH contributions: the
NVIDIA Deep Learning Accelerator (NVDLA)2

and the Ariane RISC-V 64-bit processor [7]. With
the new flow, we enable ESP users to integrate
these and other components into complete SoC
architectures, which we prototype with FPGAs
and evaluate by accelerating the computation of
various neural networks.

The Architecture
The ESP platform combines a scalable archi-

tecture and a flexible methodology [5], [6].
The ESP architecture is structured as a tile

grid. For a given application domain, the architect
decides the structure of the SoC by determining
the number and mix of tiles with the help of
the ESP graphical user interface. For example,
Figure 2 shows an SoC instance with 16 tiles
organized in a 4×4 grid with a set of processor,
accelerator and memory tiles. There are four
main types of tiles: processor tile, accelerator tile,
memory tile for the communication with main
memory, and auxiliary tile for peripherals (e.g.
UART or Ethernet) or system utilities (e.g. the
interrupt controller).

2www.nvdla.org

Sockets and Services. Each tile is encap-
sulated into a modular socket that interfaces it
to a packet-switched network-on-chip (NoC). In
addition, the socket implements a set of platform
services that provide pre-validated solutions for
IP configuration and memory access. These are
key to enable rapid integration and prototyping
of heterogeneous SoCs. The platform services
are one of the keys to rapid prototyping of full
SoCs. At design time, it is possible to choose the
combination of services for each tile. At runtime,
many of these services offer reconfigurability
options.

Tiles can access six independent NoC planes
through a set of queues that handle requests and
responses for each service. The router micro-
architecture is based on a simple control flow
and lookahead routing scheme, which enables the
overlap of routing and port arbitration in a single
cycle per hop.

Processor Tile. By integrating the 64-bit
RISC-V Ariane core3, we enhance ESP to allow
designers to choose between two open-source
processors: Ariane and the 32-bit SPARC-V8
LEON3 core4. Both processors can run Linux and
come with private L1 caches. The modular socket
of the processor tile augments them with a private
L2 cache of configurable size. The processor
integration into the distributed ESP system is
transparent, i.e. no ESP-specific software patches
are needed to boot Linux. A MESI directory-
based protocol provides support for system-level
coherence on top of three dedicated planes in a
multiplane packet-switched NoC [8].

Memory Tile. Each memory tile contains a
DDR channel to external DRAM and a partition
of configurable size of the last-level cache (LLC)
and corresponding directory. The maximum num-
ber of memory tiles for a given FPGA board is
determined by the available DDR channels.

Accelerator Tile. Each accelerator tile con-
tains the specialized hardware for a loosely-
coupled accelerator that executes a coarse-grained
task. The modular socket for a native ESP acceler-
ator decouples the design of the accelerator from
the rest of the SoC by providing components that
handle memory mapped registers, interrupt re-

3www.github.com/pulp-platform/ariane
4www.gaisler.com/index.php/products/processors/leon3
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Figure (2) An instance of an ESP SoC architecture with a 4×4 tile grid.

quests, DMA, virtual memory and various levels
of hardware-coherent transactions. The concept
of socket plays a key role in supporting the
flexibility of the ESP methodology because it
accommodates accelerators designed with many
different design flows. Figure 2 contrasts the
socket for an accelerator designed with the ESP

accelerator flows with our new socket for the
integration of accelerators that are available as
third-party IP blocks.

Accelerator Programming. The invocation
of native ESP accelerators leverages a software
stack and an application programming interface
(API) to allocate shared data and configure accel-
erators both in bare metal and on top of Linux.
Conversely, thanks to our new socket, third-party
accelerators can be controlled using their own
unmodified software stack. The lightweight API,
which can be easily targeted from applications or
by a compiler, invokes the accelerators through
Linux device drivers, which are automatically
generated.

Accelerator Integration Flow
We present first the ESP flows to design new

accelerators, then the integration flow for third-
party accelerators.

Accelerator Design Flows
The ESP flexible methodology embraces the

use of a variety of languages for component de-
velopment. Users can choose to specify a new ac-
celerator at different abstraction levels, including
cycle-accurate RTL descriptions like SystemVer-
ilog or Chisel, loosely-timed or untimed be-

havioral descriptions with C/C++/SystemC, and
domain-specific languages for deep-learning ap-
plications [9].

For accelerators specified with high-level lan-
guages, ESP provides a set of accelerator design
flows that consist of a mix of automated and
manual steps, as shown in Figure 1. In particular,
these flows simplify the design of new loosely
coupled accelerators and their integration into the
architecture. ESP supports all main commercial
high-level synthesis (HLS) tools.

Generate Skeleton. Designers can automat-
ically generate a fully-working and HLS-ready
accelerator skeleton by providing a small set of
parameters. These include: unique name and ID,
desired HLS tool, a list of application-specific
configuration registers, and some information
about the accelerator input and output data. The
skeleton comes with a unit testbench, synthesis
and simulation scripts, a bare-metal test appli-
cation, and a Linux device driver with a test
application. The skeleton is a basic specification
that uses a set of configurable templates provided
by ESP.

Customization. Starting from the automat-
ically generated skeleton, designers must cus-
tomize the accelerator computation part. In ad-
dition, they are responsible for customizing the
input-generation and output-validation functions
in the unit testbench and in the bare-metal and
Linux test applications. Finally, in case of com-
plex data access patterns, they may need to extend
the communication part of the accelerator. The
resulting specification is the HLS-ready code,
which is the entry point of the design automa-
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tion process for both the SystemC and C/C++
flows. For deep learning accelerators, ESP pro-
vides a fully automated flow that does not require
any manual customization. This flow leverages
HLS4ML5, an open-source compiler that translates
trained machine-learning models created with
Keras, ONNX or PyTorch into accelerator spec-
ifications in C/C++ that can be synthesized with
Xilinx Vivado HLS. After completing the HLS-
ready code, all types of ESP accelerator flows
follow the same automated steps, regardless of the
particular language chosen for the specification.

Generate RTL with HLS. Designers can
automatically generate one or multiple RTL im-
plementations of an accelerator with a simple
command that runs the selected HLS tool. The
HLS-generated RTL code is automatically added
to the ESP library of IP blocks for integration.

Validation. The validation step runs the accel-
erator unit testbench, which models the behavior
of the accelerator tile socket.

Third-party Accelerator Integration Flow
When designing an accelerator, the obvious

choice is to comply with one or more SoC in-
terface standards. We implemented adapters for
the AXI, AXI-Lite, AHB and APB standards
from ARM, which are among the most widely
adopted. Then, we designed a new tile socket for
third-party accelerator integration in a modular
way such that at design time the SoC architect
may select a different adapter for each specific
accelerator tile.

The idea behind our design of the new socket
is simple: We modified the accelerator tile socket
by relying on its modularity to have a set of bus-
standard interfaces between a generic accelerator
and the NoC, as illustrated by the block diagrams
of the two accelerator tiles in Figure 2.

Third-Party IP Socket. ESP accelerators are
normally simpler than a generic third-party IP
accelerator because they rely on all the services
provided by the accelerator tile socket. Instead,
third-party accelerators and their software stack
typically embed their own solutions for aspects
like accelerator configuration and address transla-
tion. For this reason, we stripped the accelerator
socket of some components that would not be

5fastmachinelearning.org/hls4ml

used by a third-party accelerator. We replaced
the DMA engine and the accelerator TLB with
an AXI-to-NoC bridge to handle the accelerator
memory transactions. We replaced the accelerator
configuration registers with a NoC-to-APB bridge
to connect to the accelerator configuration port.
For flexibility, we added an optional adapter to
convert APB transactions to AXI or AXI-Lite.
We also enhanced the module responsible for
interrupt delivery to support both level-sensitive
interrupts and edge-sensitive interrupts.

After implementing the third-party socket, we
augmented the ESP infrastructure to implement
a third-party accelerator integration flow (TPF).
With TPF, users can integrate existing accelera-
tors in a few steps (Figure 1).

1) Accelerator definition. Fill in a short XML
file with some key information. This in-
cludes a unique accelerator name and ID,
and the names of the reset, clock, and
accelerator-interrupt signals.

2) Makefile targets. Create a Makefile with all
targets that apply among RTL generation,
and device-driver compilation, user-space
runtime, and bare-metal driver. The soft-
ware compilation targets cross-compile the
original accelerator software for the target
processor among the ones available in ESP.
This allows running the original accelerator
software as is.

3) RTL sources. List all RTL source files by
hardware-description language.

4) Software objects. Create a list file for driver
modules, software executables, libraries,
and any other binary required by the accel-
erator original software. List the processors
available in ESP that can run the accelerator
software.

5) RTL wrapper. Write a Verilog top-level
wrapper to expose the standard bus inter-
faces for the new ESP socket. This step
consists in connecting wires without imple-
menting any logic.

These simple manual steps make the new
integration flow flexible and general. As shown
in Figure 1, both the TPF and the flow for new
accelerator designs converge into the same agile
SoC design flow.
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SoC Design Flow
All the accelerators designed and integrated

with the accelerator flows can be automatically
instantiated in an SoC and their software can be
automatically compiled.

Software Build. ESP automates building both
the bare-metal binaries and the Linux image for
testing. The accelerator RTL is discovered by the
graphical user interface (GUI) for SoC configura-
tion. A set of Make targets is generated to com-
pile the bare-metal test applications. These can
leverage some ESP utility functions to discover,
configure and invoke accelerators and control the
socket services. A single Make target compiles
Linux, the accelerator device drivers and the test
applications. After the Linux boot completes, an
initialization script loads all appropriate drivers,
so that accelerators are registered and ready to
use.

SoC Configuration. The ESP GUI helps de-
signers configure an SoC design by selecting
number, mix and position of the tiles, as well
as many other design options, such us processor
type or caches size. Based on the configuration,
ESP generates the full RTL implementation of the
SoC, including the tile socket required by each
accelerator.

FPGA Prototyping Flow
The last steps of the SoC flow in Figure 1

concern the SoC evaluation. Full-system RTL
simulation is accurate, but it is practical only
for the simulation of short programs. Instead,
FPGA prototyping enables the execution of real
applications on top of an operating system, while
reproducing the complex interactions among all
SoC components.

Full-System Simulation. For each supported
target FPGA board, ESP provides a simple com-
mand to simulate the complete execution of the
accelerators bare-metal test programs, including
bootloader and interaction with peripherals.

FPGA Prototyping. When targeting one of
the supported many boards, ESP users can pro-
totype their SoC without prior FPGA experi-
ence. The generation of the bitstream file, the
programming script and the deployment of soft-
ware are fully automated. The SoC is controlled
through an Ethernet interface that allows quick
loading of programs into main memory, updating

Table (1) Neural-networks characteristics.

Model Dataset Layers Input Model Size

LeNet MNIST 9 1x28x28 1.7 MB
Convnet CIFAR-10 13 3x32x32 572 KB

SimpleNet MNIST 44 1x28x28 21 MB
AlexNet ILSVRC2012 150 3x224x224 50 MB

ResNet-50 ILSVRC2012 229 3x224x224 98 MB

the bootloader and resetting the processors. The
SoC can run bare-metal programs or boot Linux,
which allows logging into the system with SSH

via Ethernet.

FPGA-based Evaluation
We demonstrate the proposed SoC design

flow with a set of FPGA-based prototypes that
integrate NVDLA and Ariane.

NVDLA Integration. We seamlessly inte-
grated the NVDLA with the five simple steps of
our integration flow.

NVDLA is an open-source fixed-function, but
highly configurable, accelerator. Composed of
multiple engines, it can perform deep learning
inference. At every invocation, the engines can
be configured to execute inference on one neural
network layer. To test and evaluate the integration
of NVDLA in ESP, we used “NVDLA small”,
featuring 8-bit integer precision, 64 multiply-and-
accumulate units, a 128KB local memory, and a
64-bit data AXI4 interface.

The NVDLA Compiler takes as inputs the
network topology and a trained Caffe model and
generates an NVDLA Loadable, which contains
the layer-by-layer information to configure the
accelerator. After loading the input image and
the Loadable through a user-space driver, the
NVDLA runtime system submits a series of in-
ference jobs to its Linux device driver. During
the configuration phase, a processor reads and
writes the NVDLA registers via an APB slave
interface. Then, NVDLA exchanges data with the
memory hierarchy via its AXI4 master interface.
Upon completion of a task, NVDLA uses a level-
triggered interrupt line to notify the processor.

Table 1 reports the five neural networks for
image classification used in these experiments
together with their characteristics.

Ariane Integration. We added the Ariane
core as a second processor option in ESP. For the
hardware integration, we enhanced two adapters
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Figure (3) Four SoCs designed with ESP.

that are part of the processor tile socket for
AHB-to-cache and AHB-to-NoC communication.
They have a latency of at most one clock cycle
and support the full throughput of the bus and
the NoC router that they connect. We added
support for the AXI protocol needed by Ariane,
in addition to the AHB protocol used by LEON3.
Everything else in the system is decoupled from
the processor. The only exception is the interrupt
controller, a processor-specific component. We
added Ariane’s interrupt controller to the auxil-
iary tile and we modified the interrupt-to-NoC
adapter accordingly.

For the software integration, we added the
RISC-V compilation option to the automated
software-build step of the SoC design flow. When
selecting Ariane during the configuration, the
resulting SoC can execute any RISC-V program
as is, with no ESP-specific patches.

The integration of a new processor cannot be
as automated as the integration of an accelerator.
However, the integration of Ariane shows that the
ESP platform highly simplifies this task and can
easily support multiple processor options.

SoC Design. Once integrated in ESP, an accel-
erator can be selected with the GUI and instan-
tiated in multiple tiles during the configuration
step. By leveraging the integration capabilities of
ESP, we designed and implemented various SoC
architectures that include one processor tile with
the Ariane core, and different numbers of memory
tiles and third-party accelerator tiles containing
NVDLA (Figure 3).

The NVDLA runtime and device driver run
on Ariane, which offloads the inference jobs to

the accelerator instances as needed. When in-
stantiating multiple memory tiles, ESP automati-
cally partitions the memory hierarchy to leverage
the increased off-chip communication bandwidth.
Each memory tile is responsible for a portion
of the memory address space. ESP updates the
device tree and routing tables in the processor and
accelerator sockets to map each physical address
range to its corresponding memory tile and LLC
partition. Hence, the accelerators can benefit from
a balanced load distribution across memory tiles.

FPGA Prototyping. We used the ESP push-
button FPGA prototyping flow to deploy each
SoC on a proFPGA Virtex Ultrascale XCVU440.
On this board, the ESP SoCs run at 50MHz.

First, we ran inference jobs on a single
NVDLA instance for the networks in Table 1,
Figure 4a reports the average number of frames
per second (fps) processed by SoC1 of Figure 3,
which has one NVDLA and one memory tile.
The performance depends on the network size,
varying between 0.4 fps for ResNet50 and 4.5
fps for Convnet. As a reference, a performance
of 7.3 fps is reported for the ResNet50 with an
ASIC implementation of NVDLA small running
at a clock frequency of 1GHz, which is twenty
times faster than ours.

NVDLA small does relatively well for smaller
networks like LeNet, whereas for larger networks
such as ResNet50, the larger NVDLA full would
achieve better performance, if provided with
enough memory bandwidth. The data-processing
throughput can be raised by executing in parallel
large batches of images across multiple instances
of NVDLA small. With ESP, it is easy to explore
the design space of possible SoC architectures
by tuning the number of NVDLA instances and
memory channels utilized in parallel. Since the
runtime and device driver provided for NVDLA
currently work with a single instance, we patched
them to enable the simultaneous invocations of
multiple instances. Then, during the SoC configu-
ration stage, we can seamlessly select the number
of NVDLA instances as well as the number of
memory channels so that computation and off-
chip communication are well balanced.

Figure 4b shows the results for the four SoC
architectures of Figure 3 when running inference
for different neural networks. Each SoC presents
an increasing number of NVDLA instances and
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Figure (4) Evaluating the ESP SoC prototypes on an FPGA board (each SoC runs at 50MHZ.)

memory channels utilized in parallel, compared
to the previous one. The task parallelization de-
livers an approximately linear increase in perfor-
mance. For instance, four NVDLA instances with
four memory channels bring approximately a 4×
speedup. The parallelization benefit for ResNet-
50 is partially limited by the non-negligible data
preparation part of the application running seri-
ally on a single Ariane core.

Related Work
Among other open-source SoC design plat-

forms, Chipyard supports the integration of Chisel
accelerators with RoCC, a custom co-processor
interface [10].

Centrifuge integrates HLS-generated accelera-
tors into the bus-based SoC architecture provided
by the FireSim FPGA-accelerated full-system
hardware simulator [11]. Similarly, another work
has integrated NVDLA in FireSim’s RISC-V SoC
architecture [12].

ESP focuses on SoCs containing many
loosely-coupled accelerators designed with a va-
riety of languages and tools. This work augments
ESP to provide the automation needed for the
seamless integration of third-party accelerators
with their software.

Conclusions
We developed a design flow that simplifies the

integration of third-party accelerators into com-
plete SoC architectures and their evaluation via
FPGA prototyping. We released the contributions
of this paper in the public domain with the goal
of supporting the progress of the open-source
hardware community.
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