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Abstract—Accelerators integrated on-die with General-Purpose CPUs (GP-CPUs) can yield significant performance and power
improvements. Their extensive use, however, is ultimately limited by their area overhead; due to their high degree of specialization, the
opportunity cost of investing die real estate on accelerators can become prohibitive, especially for general-purpose architectures. In this
paper we present a novel technique aimed at mitigating this opportunity cost by allowing GP-CPU cores to reuse accelerator memory
as a non-uniform cache architecture (NUCA) substrate. On a system with a last level-2 cache of 128kB, our technique achieves on
average a 25% performance improvement when reusing four 512 kB accelerator memory blocks to form a level-3 cache. Making these
blocks reusable as NUCA slices incurs on average in a 1.89% area overhead with respect to equally-sized ad hoc cache slices.

Index Terms—Cache memory, accelerator architectures.
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1 INTRODUCTION

THE combination of fixed power budgets and the failure of
Dennard’s scaling for nanometer technologies is bringing

us into an era in which chip dies are increasingly dominated
by dark silicon, a term that captures the growing transistor
underutilization inherent in further technology scaling ([18],
[2]). Given the predicted fall of multicore scaling at the hands
of dark silicon [5], superior efficiency via specialization has
materialized as a compelling solution toward sustaining per-
formance gains [16]; once restricted to embedded systems,
accelerators are currently seeing wider exposure (e.g., [3]), and
many-accelerator architectures are in the research agenda ([4],
[13]).

The dynamic usage patterns of accelerators make them a
natural match for dark silicon. When in use they achieve
peak performance and efficiency ([18], [7]), and when not
needed they can suitably remain dark ([10], [8]). An ideal
many-accelerator architecture would thus exploit this property,
incorporating abundant accelerators in order to efficiently ac-
commodate workloads from varied domains.

A key challenge toward realizing such an architecture is in
making a cost-effective use of the die area. While integrating
accelerators that fit a given workload is clearly beneficial,
integrating accelerators that do not match the workload incurs
in severe opportunity costs: the associated design effort and
the impact on die yield would have been better spent on
alternatives, or simply avoided altogether.

We propose to mitigate the opportunity cost of accelerator
integration by reusing the memory blocks from otherwise
powered-off accelerators as on-chip cache. The following two
observations motivate our idea:

• Accelerators are mostly memory. A survey of eleven
publicly available accelerators reveals that “an average of
69% of accelerator area is consumed by memory” [13],
which makes memory the best candidate for reuse among
accelerator components.

• Accelerator memory blocks disseminated across the die
provide a de facto Non-Uniform Cache Architecture
(NUCA) substrate, which is the optimal organization for
multi-megabyte caches [12]. We can thus leverage these
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Fig. 1. Example instance of our architecture. Accelerators 0 and
2 are in normal operation, with their cache managers powered
off. Accelerator 1’s local memory functions as a remote NUCA
slice for the GP-CPUs. Turned-off logic (i.e., dark silicon) is
shown in black. “R” stands for Network-on-Chip Router.

memory blocks to alternate between two ends: accelera-
tion and optimal last-level caching.

In the remainder of this paper we first describe an architec-
ture for accelerator memory reuse, and then report synthesis
and simulation results of a tiled instance of this architecture in
which memory blocks from a 4-tile MPEG encoder are reused
as on-chip cache slices.

2 AN ARCHITECTURE FOR ACCELERATOR MEMORY
REUSE

An example of our architecture in operation is shown in Fig. 1.
Accelerators, GP-CPUs and a DRAM controller are nodes
in a network-on-chip (NoC). Accelerators 0 and 2 are being
used to efficiently run part of the current workload, while
accelerator 1’s memory blocks are being reused as a cache slice
by the GP-CPUs.

Accelerators integrated in our architecture are loosely coupled,
i.e., have private memories and are not tied to any particular
core. For our purposes, loosely coupled accelerators have two
main advantages over tightly coupled ones. First, they ease
accelerator development and integration, since designers only
need to adhere to the abstraction imposed by the network
interface. Second, when accelerator memory blocks are reused
as on-chip cache, the resulting set of cache slices form by
construction a NUCA substrate that is familiar to architects:
each cache slice is simply a node in the NoC.



TABLE 1
Baseline simulation parameters.

Processor 4xARM11MPCore (ARMv6)
Cache line size 32 bytes
L1d cache Private 8KB, 4-way, write-through, 1-cycle

access latency, LRU eviction
L1i cache Private 8KB, 4-way, write-through, 1-cycle

access latency, LRU eviction
L2d cache Shared 128 KB, 4-way, 2-cycle access latency,

write-back, write-allocate, LRU eviction
NoC 7-cycle average access
DRAM latency 180 cycles
Linux kernel v2.6.37.6

In order for accelerator memory blocks to operate as cache
slices, a cache manager is integrated on each accelerator. This
module has two main functions: it implements customary
cache bookkeeping (e.g., storing cache tags, performing set
lookups) and adapts cache line requests to the width of the ac-
celerator’s memory blocks. The adapter is the only accelerator-
specific component of the cache manager. For example, if
accesses to an accelerator’s memory block need to be 4 bytes
wide, a 32-byte cache line request on that block requires the
adapter to perform 8 sequential accesses.

The network interface (NI) offers services that are com-
mon to all accelerators. In order to accommodate a diverse
range of accelerators, NI services include support for both
message-passing and non-coherent shared memory models.
To minimize area overhead, designers can tailor network
interface instances to suit the needs of their corresponding
accelerators: for example, if an accelerator communicates ex-
clusively via message-passing, the designer will not include
the shared memory access unit to increase instead the depth
of the message-passing queues. The remaining NI services,
namely configuration registers (e.g., for handling voltage and
frequency scaling commands) and a unit to forward cache-
related messages to the cache manager, incur in a negligible
area expense and are thus always implemented.

3 EXPERIMENTAL METHODOLOGY

3.1 Modeled system
We evaluate our architecture using a modified version of Rab-
bits [6], a full-system simulator designed to ease the integration
and testing of accelerators written in SystemC. Table 1 shows
the major system parameters used. We have extended Rabbits’
ARM11MPcore CPU model to include a shared L2 cache, and
added support for simulated hardware performance counters
which allows us to profile our code using linux’ perf tools.

In our evaluation we model a tiled configuration, encapsu-
lating accelerators into one or more accelerator tiles of fixed size.
Our system is thus composed of six tiles: a 4-core ARMv6 CPU
tile, a DRAM controller, and four accelerator tiles that imple-
ment an MPEG encoder. Each of the MPEG tiles integrates
512KB of memory.

3.2 Benchmark suite and cache configurations
We run a variety of single and multi-threaded workloads from
the SPECint’06 and PARSEC [1] benchmark suites. Given that
our simulator is not cycle-accurate, for each benchmark we
average the results from several runs.

In our study we consider the following configurations:
• base. Baseline system as described in Table 1. No acceler-

ator memory is reused.
• base + 512k L2 and base + 1.5M L2. The Level 2 cache on the

baseline system is expanded to make use of the accelerator
tiles from the MPEG encoder. base + 512k L2 reuses one of
the MPEG tiles, and base + 1.5M L2 reuses three tiles.

• base + 512 L3 and base + 2M L3. An inclusive level 3
cache is implemented reusing one and four of the MPEG
accelerator tiles, respectively.

All cache slices have a least-recently used (LRU) eviction
policy. Cache lines are address-interleaved among the slices,
i.e., the lower bits of a line’s tag uniquely determine the
line’s slice. We use address interleaving for its simplicity and
adequate performance; for instance, it only incurs in a 6%
average slowdown compared to the more complex R-NUCA
for multiprogrammed server workloads [9].

The use of address interleaving explains each configuration’s
number of cache slices. The objective is to have a total number
of slices that is a power of two, to make it trivial to compute
the destination slice from a given address. For example, when
expanding the local L2, we add either one or three remote
slices to the existing local slice. When implementing the level
3 cache we can reuse the four slices from the MPEG tiles, since
the CPU does not have a local L3 slice.

Address interleaving also affects the associativity of the
MPEG cache slices. Given that the local L2 has a single 4-way
128kB slice and the MPEG slices are of 512kB, the associativity
of the 512kB slices must be set to 16, which results in a
consistent tag length for all slices and thus guarantees their
full utilization.

MPEG slices are set to complete cache requests in 15 cycles.
This number, which contributes to remote cache access latency
in addition to NoC delay, purposely overestimates the latency
in the cache adapter: even though the MPEG memory blocks
are all 64 bytes wide (which would result in just a 1-cycle delay
in the adapter), we model a more conservative scenario.

4 EVALUATION

4.1 Performance
Fig. 2 shows the measured off-chip miss rate and execution
time of the five configurations considered. The decrease in
execution time as a result of a lower Last-Level Cache (LLC)
miss rate varies significantly across configurations. Reusing the
MPEG memory blocks as L3 slices provides execution time
savings for all workloads: 20% and 25% on average respec-
tively when using 512kB and 2MB, which is consistent with
the workloads’ cache sensitivity ([1], [14]). However, reusing
the accelerator blocks as L2 is in most cases detrimental to
performance, since the high L2 access latency that results from
accessing L2 slices over the NoC dominates over the savings
gained by reducing off-chip accesses.

The use of block interleaving explains why a smaller level
2 cache can outperform a larger one, even if the miss rate is
lower when using the latter. When only one remote slice is
used (base + 512k L2), L1 misses are spread evenly among the
local and remote slices. However, when three out of the four
L2 slices are remote (base + 1.5M L2), 75% of the L1 misses are
served by these slices, which have a significantly higher access
latency than the local slice. Therefore, adding L2 remote slices
only pays off when the subsequent miss reduction is large—
e.g., libquantum, mcf.
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Fig. 2. Measured Last-Level Cache (LLC) miss rate (a) and execution time normalized to the base configuration (b). The reported
margin of error is twice the standard deviation of the mean (i.e., 95.5% confidence interval).
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Fig. 3. Area (a) and power (b) breakdown of the encoder’s tiles.

4.2 Area and power consumption

The MPEG accelerator was designed in SystemC, converted to
RTL by a commercial high-level synthesis tool, and mapped
to a 45 nm CMOS PD-SOI technology library by a commercial
logic synthesis tool. The result was tested in simulation to run
at 1 GHz.

Fig. 3a shows the area of the four MPEG tiles broken down
in four components as shown in Fig. 1. On average, 62.20% of
the tile area is devoted to memory, which is consistent with
the survey in [13]. The cache manager takes on average 7.89%
of a tile’s area. Fig. 4 breaks down the area of these cache
managers by components. The adapter on the ReO tile is the
largest because it adapts and multiplexes between two 64-byte
wide memory blocks instead of one. Note that the tag array
and control logic are the same for all tiles, as they would be
for managing equally-sized ad hoc cache slices. On average,
the area overhead of the adapter is 14.94% per cache manager,
viz., a 1.89% overhead over an equally-sized ad hoc cache slice
(comprising memory and cache manager).

Fig. 3b shows the power consumption of each MPEG
tile. This chart emphasizes the importance of turning off
accelerator-specific logic when reusing accelerator memory:
doing so results on average in 42.79% power consumption
savings.
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Fig. 4. Area breakdown of the tiles’ cache managers.

The per-tile area and power numbers of the MPEG ac-
celerator match closely those of a state-of-the-art embedded
processor. The accelerator’s average per-tile area and power
consumption are respectively 6.86 mm2 and 2.00 W. These
numbers are close to those of an ARM Cortex A9, which
in 40 nm consumes 1.9 W for a die size of 6.7 mm2. Their
similarity is not coincidental: one of our future goals is to
evaluate the extent at which the regularity arguments that moti-
vated tiled CMP designs [17] could apply to many-accelerator
architectures.

We refrain from analyzing the power consumption of the
memory hierarchy under accelerator memory reuse for two
reasons. First, our simulator can only model an architecture
(ARMv6) that exhibits very little memory-level parallelism
(MLP), which results in leakage power acutely dominating the
overall power consumption of the memory hierarchy. This is
particularly severe for caches, whose power consumption—
even at full dynamic load—is increasingly governed by leakage
as technology scales down [15]. Second, the impact on energy
efficiency of NUCA configurations is out of the scope of this
paper, and has already been studied in detail (e.g., [11]).

5 RELATED WORK

Harnessing specialized hardware as a response to dark silicon
was advocated by Venkatesh el al. [18]. Specialization through
accelerator-based architectures was proposed by Lyons et
al. [13], whose focus is on memory reuse between accelerators
by centralizing their integration into an accelerator store. We
share their attention to memory reuse, but take the alternative



approach of integrating accelerators as NoC nodes, enabling
GP-CPUs to reuse the accelerator’s private memory blocks as
NUCA slices. Our NoC-based coupling of accelerators and
GP-CPUs is similar to the one proposed by Cong et al. [4],
although they do not consider memory reuse and focus instead
on architectural support for accelerator abstraction.

6 PRACTICAL IMPLICATIONS

We were unable to explore in depth the implications of accel-
erator memory reuse in systems more complex than our proto-
type. However, we anticipate the following practical issues in
achieving high-performance accelerator memory reuse, which
we plan to address in future work:

• Eviction policies. Compared to write-through policies,
write-back mechanisms minimize off-chip accesses, at the
expense of requiring a cache slice flush upon switching
back to accelerator mode. Whether the subsequent delay
is admissible is application-dependent.

• Address space mapping. Our choice of address interleaving
was solely based on the simplicity of its implementation.
Alternative mapping mechanisms that cope well with a
fluctuating number of cache slices should be developed.

• Frequency of use. Given the fixed costs in enabling an
accelerator memory block as a remote cache slice—partly
as a result of the above two points—, accelerators used
less often than others are better candidates for exposing
their memory blocks as cache slices.

• Clock frequency and SRAM word size. In addition to locality
and network congestion, NUCA algorithms will need to
take into account accelerators’ clock frequency and SRAM
word size. Based on these parameters, algorithms may
favor the reuse of some accelerators over others to meet
power and performance requirements.

7 CONCLUSION

We presented accelerator memory reuse, a technique to lever-
age memory from unused accelerators to provide an on-chip
NUCA substrate. We described an architecture to enable access
to accelerators’ memory blocks via a network-on-chip, and
evaluated a simulated prototype of a tiled instance of this
architecture integrating a 4-tile MPEG accelerator. Our results
showed that enabling the reuse of the 512 kB memory blocks on
these MPEG tiles incurs on average in a 1.89% area overhead
with respect to equally-sized ad hoc cache slices. Reusing these
four blocks as a level-3 cache by a 4-core system with a 128 kB
level-2 cache yielded, on average, a 25% performance improve-
ment for a variety of single and multi-threaded workloads.

As we enter the dark silicon era, aggressive integration
of accelerators is emerging as a plausible contender toward
sustaining performance increases. We believe that the idea of
reusing accelerator memory has the potential of playing a
catalytic role in transitioning toward these accelerator-based
architectures: while a portion of the accelerators can efficiently
execute a subset of a workload, the remaining accelerators can
double as a NUCA substrate, which results in a more effective
use of silicon by sparing the need for ad hoc NUCA slices.
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