
Coupling Latency-Insensitivity with Variable-Latency for
Better Than Worst Case Design: A RISC Case Study

Mario R. Casu, Stefano Colazzo, Paolo Mantovani
Dipartimento di Elettronica, Politecnico di Torino

C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy

mario.casu@polito.it

ABSTRACT

The gap between worst and typical case delays is bound to
increase in nanometer scale technologies due to the spread in
process manufacturing parameters. To still profit from scal-
ing, designs should tolerate worst case delays seamlessly and
with a minimum performance degradation with respect to
the typical case. We present a simple RISC core which tol-
erates worst case extra latency using the Latency-Insensitive

Design approach coupled to a Variable-Latency mechanism.
Stalls caused by excessive delay, by data and control hazards
and by late memory access are dealt with in a uniform way.
Compared to a pure worst-case approach, our design method
permits to increase the core clock frequency by 23% in a
45 nm CMOS technology, without area and power penalty.

Categories and Subject Descriptors

B.5.1 [Design]: REGISTER-TRASNFER-LEVEL IMPLE-
MENTATION—Control design, Data-path design

General Terms

Design

Keywords

Latency-Insensitive Design, Variable-Latency

1. INTRODUCTION
The high variability of process technology parameters –

like threshold voltages and transistor channel lengths – is a
design challenge in nanometer technologies. Designers who
take large margins to ensure operation in the so-called worst

case process corner – worst combination of technological pa-
rameters producing the longest delays – are bound to waste
the advantages of scaling. On the other hand, a typical case

approach likely does not meet the design yield requirements.
To solve the dilemma, researchers in the field of microarchi-
tecture design are investigating in two directions which have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’11, May 2–4, 2011, Lausanne, Switzerland.
Copyright 2011 ACM 978-1-4503-0667-6/11/05 ...$10.00.

in common the aim to design for the typical instead of the
worst case. A first approach, whose foremost representative
is Razor [1][2], tolerates variability through error detection
and correction. The other technique uses Variable-Latency

(VL) functional units that operate mostly at one clock cycle
per operation, and schedule execution in two cycles when
critical paths are activated [3].

This work belongs to the second class of methods. We
designed a processor core compatible with the MIPS R2000
instruction set (albeit with no support for floating point)
whose control is designed to tolerate variable-latency op-
erations. We developed the core at register-transfer level
and coded it in synthesizable VHDL. The pipeline interlock
is based on the Latency-Insensitive Design (LID) approach
which uses a synchronous handshake among the pipeline
stages [4] and makes it simple and convenient to embed VL
functional units. The main contributions of this work are:

• A fine-grain stage-by-stage pipeline interlock, enabled by
the LID approach, allows to support in a uniform way
pipeline stalls caused by control and data hazards, late
memory access and stalls caused by VL execution.

• A specific synthesis method increases the clock frequency
by 23% compared to a standard approach and limits VL
penalties just to the worst process corner. No performance
degradation ensues in all other corners.

• A small software built-in self-test (BIST) executed once
after reset and that makes use of standard instructions
checks if the core can run at full speed or if it needs two
cycles when a critical instruction is executed.

Other relevant works reported MIPS implementations, like
the one by Martin et al. who presented an asynchronous
delay-insensitive MIPS R3000 in [5]. Delay-insensitive de-
sign differs from LID, despite the similarity in nomencla-
ture, under various aspects, but primarily because of the
more radical asynchronous style of the first compared to the
usual synchronous choice of the second which makes it more
suited to a standard design flow. As far as we know this is
the first reported implementation of a synchronous latency-
insensitive processor with variable-latency functional units
compliant with a well-known instruction set architecture.

The paper is so organized. We provide a short background
about related work in Section 2. LID and VL units are the
subject of Section 3 and 4, respectively. Logic synthesis
methodology and results on a CMOS 45 nm technology tar-
get are discussed in Section 5. Section 6 describes the sim-
ulations used to verify design correctness and to evaluate
performance. Section 7 concludes the paper.

163

CL CL

v

s

v

s

Figure 1: Latency-insensitive pipeline with local
stall. (CL stands for combinational logic.)

2. BACKGROUND AND RELATED WORK
Latency-Insensitive (LI) design was introduced by Carloni

et al. to help synchronous circuits tolerate excessive latency
coming from wires [4]. Synchronous processes exchange data
by means of a handshake protocol that utilizes validity and
stall bits. If some of the inputs to a block are not valid,
because data are late due to an excessive wire delay, the
block gets clock-gated. It will be enabled back when the
data will finally arrive. At the same time the other valid
inputs are stalled. Stall signals are not broadcast by the
protocol but are instead locally back-propagated, block by
block. As a result, extra buffers are needed to save incoming
new data that otherwise will be lost.

This principle can be adapted to a standard pipelined
microarchitecture. Every pipeline register stores only valid
data and is clock-gated if receives invalid tokens or a stall
signal. In the latter case a new incoming datum is stored
in an ancillary register. The idea of such fine-grain pipeline
interlock was discussed first in [6] but was not further ex-
tended to a real design case. That paper also proposed a
smart implementation of the double buffer by allowing a
separate use of the two latches of a master-slave pair.

Figure 1 depicts a hypothetical LI pipeline of combina-
tional logic (CL) stages separated by pipeline registers and
controlled by a stall logic. Stalling events arising locally
are progressively propagated upstream (s=1) and progres-
sively invalidate (v=0) downstream stages, resulting in a lo-
cal clock gating. Two registers per stage are needed to save
an incoming valid datum while the current one is stopped.

Stalling events occur because of data and control depen-
dencies or because of excessive latency in computation or in
memory access. The different sources of stalls are handled in
the same way by the LI control using forward valid (v) and
backward stop signals (s). Cortadella et al. in [7] briefly hint
at how a LI protocol (called “elastic” in [7]) can be coupled
with VL units, but did not elaborate further. In essence, a
late unit invalidates the forward validity bit and stops the
new incoming data at the same time. When computation is
done, stall gets released and validity asserted again.

Literature cited so far focused on the control substrate
that can be used to build an efficient latency-tolerant pipeline.
Other works concentrated on the variable-latency datapath.
Relevant examples are [3] for a methodology that isolates
critical paths and predicts their activation, [8] for variable-
latency register files and floating-point units, [9] for a tech-
nique that pairs random logic with extra gates to evaluate
whether computation requires one or two cycles to complete.

A number of papers addressed how to tolerate pipeline er-
rors. The Razor approach, proposed to detect errors caused
by low voltage in a dynamic voltage scaling setting [1], proved
useful also to tolerate process variations [2]. In case of er-

Branch
CTRL

Instruction
Decode

DIV

MUL

/

M
E
M

W
B

P
C

/
F

I

I

D

I
D
/
E
X
E

+4

/
E
X
E

M

M
E

Instruction
Fetch (IF)

Execute
(EXE)

Memory
(MEM)

Write

IF ID EXE MEM WB

ALU

SHIFT

PC+8

Instruction
Decode (ID) Back (WB)

VL VL VLJ

branch taken

Register

File (RF)

RF

invalidate

Instruction
Memory

Data
Memory

Figure 2: MIPS latency-insensitive pipeline and ab-
stract representation of the control with token flow.

ror, [1] proposes a global stall, something that we avoid by
means of the LI protocol. [2] avoids stall broadcast but the
error gets propagated downward and taken care of just prior
to register file commit. Finally a rollback re-executes the
failing instruction which may have issued long before error
handling, with consequent waste of time and energy.

In principle, error detection could be coupled with LI con-
trol, but we preferred to prevent errors with a VL mechanism
rather than correcting them. The reason is the complexity
of the sequential circuit that substitutes standard pipeline
registers for error detection and of the corresponding tim-
ing constraints [2]. Moreover, it is not well suited to soft,
synthesizable cores that use standard-cell libraries, like ours.

3. MICROARCHITECTURAL DESIGN
The pipeline of our MIPS is shown on top of Figure 2.

It is a classic in-order five stage design (IF, ID, EXE, MEM
and WB) with no bypass loops. We kept it extremely simple
compared to a modern microarchitecture so as to focus on
latency-insensitive and variable-latency features rather than
on instructions per cycle (IPC) performance optimization.

Every pipeline register is paired with its companion buffer
that saves the incoming datum if a stall signal arises from
the subsequent stage. For reasons of clarity the diagram
omits control and protocol signals. Branch and jump in-
structions are resolved in the decode stage. The execution
unit is made of five parallel units, an arithmetic and logic
unit (ALU), an adder that increments the program counter
(PC+8) to compute the link address, a shifter, an inter-
nally pipelined multiplier to support integer 32 and 64-bits
multiplications, and a multicycle combinational divider that
completes operation in a fixed nine clock cycle latency.

The bottom of Figure 2 illustrates an abstract model of
the pipeline LI control. The rectangles represent the pipeline
register pairs. At reset, the light gray ones contain valid
data, represented by black tokens in figure. The dark gray
elements, initialized with “bubbles” (i.e. no tokens), store
valid tokens when stops occur. Tokens propagate along the
“valid” paths (forward arrows) whereas stall events assert
“stop” signals (backward arrows). The J element is a join

164

SLT R4,R4,R0

bubble

VL VL VLJ

stop asserted

two tokens stored

stop asserted

VL VL VLJ

invalidation

...

...

...

...

...

...

...

...

L1: LW R3,8(R30)

LW R3,12(R30)

13 14 15

LW R3,12(R30)BNE R2,R0,L1

BNE R2,R0,L1SLT R4,R4,R0

bubble SW R2,0(R30) LW R2,0(R30)

SW R2,0(R30) LW R2,0(R30) SLT R4,R4,R0

LW R2,0(R30)

time 0 time 1

VL VL VLJ

two tokens stored

invalidate
R2

VL VL VLJ

stop asserted (need R2)
two tokens stored

stop asserted bubble

VL VL VLJ

branch target

time 2 time 3

time 4 time 5

time 14 time 15

MEM

WB

EXE

ID

IF

time

VL VL VLJ

two tokens stored

stop asserted

bubble

VL VL VLJ

stop asserted (need R2)

VL VL VLJ

branch taken

delay slot

delay slot

ADDIU R2,R2,1 ADDIU R2,R2,1SW R2,8(R30) SW R2,0(R30) LW R2,0(R30) LW R2,0(R30)LW R2,12(R30) LW R2,0(R30) LW R2,0(R30)

MFLO R2 SW R2,8(R30) SW R2,8(R30) LW R2,12(R30) ADDIU R2,R2,1 ADDIU R2,R2,1 ADDIU R2,R2,1 ADDIU R2,R2,1 SW R2,0(R30)

LW R2,12(R30) SW R2,0(R30) SW R2,0(R30) SW R2,0(R30)

bubble MULT R3,R2 MFLO R2 SW R2,8(R30) LW R2,12(R30) bubble bubble

bubble MULT R3,R2 MFLO R2 SW R2,8(R30) LW R2,12(R30) bubble bubble bubble

MULT R3,R2MULT R3, R2 MFLO R2 SW R2,8(R30) LW R2,12(R30) bubble bubble ADDIU R2,R2,1bubble

MFLO R2

SLT R2,R2,R0 SLT R2,R2,R0 SLT R2,R2,R0SW R2,0(R30)

0 1 2 3 4 5 6 7 8 ...

...

...

Figure 3: Execution of assembly segment and corresponding token view. Circled instructions are stalled.

controller that validates its output when both its inputs are
valid and stalls the valid one if the other is not valid [7]. In
this case, both the decoded instruction and the required reg-
isters must be valid. Each of the 32 registers of the register
file (RF) has a corresponding token. A load instruction, or
in general any instruction that updates a register, first in-

validates the RF destination token. When such instruction
reaches the WB phase, it validates again the token of the
destination register. This automatically solves any load-use

data dependency: Any other valid instruction attempting to
read that register before its token gets validated generates
a pipeline stall through the join controller. We remark that
such pipeline interlock solves all data dependencies without
the need for compiler intervention.

The dashed arrows labeled branch taken in Figure 2 indi-
cate the actions subsequent to the decoding of a branch in-
struction. The program counter is updated with the branch
target, if taken. The token of the IF/ID pipeline register
contains the so-called delay slot, that is the instruction that
immediately follows a branch or jump.

Figure 3 shows some situations of stalling events to help

understand the behavior of the LI control of the pipeline.
The top part reports a sequence of instructions that flow
throughout the various pipeline stages in clock cycles 0-15.
Circled instructions are stalled. The bottom part is the
corresponding token view for cycles 0-5 and 14-15. Three
relevant situations are reported. A case of stall caused by
excessive computation latency (stall event at time 0); a case
of stall created by load-use data dependency (event at time
4 and also at time 8); a situation of branch taken (time 14).

At time 0, multiply instruction MULT R3,R2 in EXE stage
gets stalled because of an excessive latency. A stop event
at time 0 stalls the instruction and invalidates the result.
This corresponds to the bubble inserted in MEM pipeline
stage at time 1. The incoming move instruction MFLO R2,
decoded at time 0, gets queued in the secondary ID/EXE
register (dark gray) at time 1 because the primary (light
gray) is full (two tokens stored in token view at time 1).
Also, the stop signal flows backward and at time 1 stalls the
just fetched store instruction SW R2,8(30) that is ready to
be decoded. From time 1 to 2 the stop signal flew backward
and now stalls addition instruction ADDIU R2,R2,1 in fetch
stage while two tokens are now stored in IF/ID register pair

165

and another token is stored in the ancillary dark register of
the RF. At time 2 a stop goes also backward from RF to
MEM and meets a bubble. Stopping an invalid datum is
useless, hence the stop does not further propagate.

When ADDIU R2,R2,1 finally reaches ID stage at time 4, a
data dependency occurs. Previously decoded instruction LW

R2,12(R30), now in EXE, invalidated at time 3 the token
of destination register R2: It will be only updated when
the store commits. Hence, the addition wanting to read R2
is stalled and restarts only at time 7 when R2 is available
again. Thereby two instructions get stored in IF/ID pair at
time 5 and two in PC at time 6. At time 8 an analogous case
of data dependency occurs to instruction SW R2,0(R30).

At time 14, conditional branch if not equal instruction BNE

R2,R0,L1 is decoded. If R2 register content differs from R0,
the branch target labeled L1, which corresponds to load in-
struction LW R3,8(R30), is fetched. The delay slot instruc-
tion, LW R3,12(R30), is executed even if the branch is taken.

4. VARIABLE-LATENCY UNITS
To take advantage of typical silicon and get more perfor-

mance than a standard worst-case approach, it’s necessary
that in the worst scenario only a few, predictable critical
paths exist to which the VL mechanism can be applied. If
they are rarely activated, and so the extra clock cycle is not
frequently used, the performance penalty will be limited.
For simple RISC processors like ours critical paths are in
EXE, due to long carry propagation in adders or multipli-
ers, and in the branch-loop path from DEC to PC.

As for the EXE paths, regular average-case input patterns
rarely activate them [10][11]. For the multiplier, since 64-
bits multiplications are not frequent, we allow the higher
32-bits part of the result to be computed in three clock cy-
cles instead of two (the multiplier has an internal pipeline
register). MIPS multiplications write their result into a spe-
cial register from which data can be read with a special
move instruction. Then, once the VL is configured, MULT

or MULTU instructions are detected by the EXE dispatcher
which stalls the pipeline locally by asserting the backward
stop signal and injecting a bubble forward, but only if a
move from special register immediately follows. If not, no
stalls occur. Another stall case arises in the very uncommon
case in which a 32-bits MUL follows a 64-bit multiplication.
32-bits MUL’s are instead not subject to extra latency.

For the 32-bits adder/subtracter in ALU and the PC+8
adder, we used a different technique. We cannot schedule
an extra clock cycle latency based on the instruction only,
as we did for the multiplier, otherwise the penalty would
be intolerable, given the high rate of occurrence of these
instructions. We thus designed a Brent-Kung parallel-prefix
adder [12] with a few extra gates that detect the critical
paths activation. In a nutshell, we enable variable-latency at
present clock cycle if carry bit C15 changed compared to the
previous cycle (an xor gate and a flip-flop are used for this
purpose) and if it will be propagated at least until the 23rd
sum bit (the logic AND of propagate bits P22 down to P16 is
the condition we use). This condition covers the true critical
path (which goes down to sum bit 31st) and some others less
critical but close to it. We compared our adder with the one
available through the Synopsys DesignWare library and the
worst propagation delay turned out to be only 20 ps slower
in a 45 nm CMOS technology, an acceptable penalty.

For the optimization of the branch-loop, we selected the

hold_mul

A
D

D

C15

P22:16

alu_vl

hold_add
opcode

mul_vl

is_64b_mult

srcA

M
U

L

srcB Hi[31:0]

Lo[31:0]

reg[0:15]

reg[0:31]

srcB_early

srcA_early

srcB

srcA

RF
BRANCH

CTRL

to EXE

to PC

RF_vl

0

1

1

0

srcA_adx

srcB_adx

hold_RF
no_src_early

srcA

srcB

Figure 4: Hold functions for extra latency operation.

register file (RF) as the component of this path to which VL
could be efficiently applied. By allowing half of the regis-
ters in RF to be accessed in two instead of one cycle in the
worst case we can actually shorten the access time to the
other half, because this type of relaxed constraint helps the
logic synthesizer find a shorter delay. Then, when a branch
instruction attempts to read registers from R16 to R31, an
extra stall is generated and the branch completes in two
clock cycles. The choice of slowing down registers R16:R31
comes from an analysis of some program benchmarks. We
found out that such registers are seldom used for branch in-
structions, much less than registers R0:R15.

Figure 4 reports a schematic representation of the “hold
functions” that allow functional units to operate with an
extra clock cycle if required. For the 64-bits multiplications,
the condition is simply the logic AND of a decoded opcode
and signal mul_vl. For the instructions that use the ALU the
activation of the critical path is data-dependent. Again, the
alu_vl signal at logic one is required. Although not shown
in figure, the PC+8 adder and the corresponding VL enable
signal pcp8_vl and hold function are identical to the ALU
ones. As for the RF, if signal RF_vl is active, the branch
controller is fed with “early” signals if registers R0:R15 have
been addressed or with one clock cycle late signals (due to
the extra register) if registers R16:R31 have been chosen.

Signals mul_vl, alu_vl, pcp8_vl and RF_vl – in the fol-
lowing indicated as *_vl – are set to logic one in the worst
case only, that is if the corresponding critical path requires
an extra cycle. When at logic zero, no extra cycle is required.
Next subsection discusses how these signals are set.

4.1 Software BIST
To decide whether VL is necessary or not, a test of the

delay of the processor critical paths is needed. If such paths
end in architected registers, it is not necessary to add logic
for testing because the result of delay critical operations
are fully exposed to the software. A software built-in self-
test (BIST) routine can be then written for this purpose.
The only caveat is that checking operations must be reliable
and always produce a correct result, no matter the process
corner. This can be obtained by properly setting the *_vl

signals prior to executing a checking instruction.

166

We thus developed a short BIST routine that is run after
reset. It makes use of standard MIPS instructions and can
be compiled with a standard tool chain. It interacts with
the hardware by setting a configuration register made of 4
bits, the VL Mask Register (VLMR). Each of the VLMR
bits is connected to one of the *_vl signals. We used the
fact that in the standard MIPS architecture the coprocessor
0 (COP0), which handles system functions, contain registers
numbered from 0 to 15, but the register opcode field in in-
structions MFC0 and MTC0, which move data between COP0
and RF, is 5-bits wide. As a result, we can address up to
32 registers in COP0 and so we mapped the VLMR as the
16th register, in a way totally transparent to the compiler.

The BIST routine executed at startup checks in sequence
the various units and sets the corresponding mask bits with
a move to COP0, that is a MTC0 instruction, using the mask
value as the first argument and register 16 as the second
one. The code, 70 lines of MIPS assembly, consists of four
subroutines that activate the critical paths of every VL unit:
PC+8: To test this adder we preload at reset a fake jump

and link (JAL) instruction in the IF/ID register with a PC
value that stimulates the critical path. VL is also set to zero
at reset (pcp8_vl = 0). The jal instruction updates regis-
ter R31 in RF and the rest of the BIST routine checks its
value to verify its correctness. Finally signal pcp8_vl gets
updated through a proper MTC0 instruction, if necessary.
RF and conditional branches: The variable-latency is
removed (i.e. RF_vl = 0) and two slow registers – that is
in range R16:R31 – are first reset, then preloaded with all
ones and finally compared through a branch if equal (BEQ) in-
struction. If the result of the comparison arrives in time, the
program counter jumps to an instruction that resets one of
the two registers to zero and sets the variable-latency again
in the RF. Otherwise, if the comparison path is slow, the
program continues its flow increasing the program counter.
The content of the register will not be reset in that slow
case. In both cases the variable-latency is set again (RF_vl
= 1) because the program checks the content of the register
through a branch if equal to zero (BEQZ) instruction which
we want to be correctly executed in both fast or slow cases.
The program assumes that the register was reset. In the
positive case the program branches to a location in which
RF_vl is set to zero, otherwise RF_vl remains at one.
ALU Adder: Testing the ALU boils down to write an as-
sembly routine that resets to zero signal alu_vl and then
adds two numbers chosen in such a way that the carry prop-
agates all the way down the adder tree. The result of the
addition gets stored in a general purpose register and fur-
ther checked for correctness. Finally alu_vl gets updated.
Multiplier: This test is similar to the ALU one. It consists
in disabling the two-cycle execution by resetting mul_vl and
multiplying two numbers which activate the critical path of
the higher 32-bits part of the result. The result is checked
for correctness. If incorrect, signal mul_vl is asserted again.

5. SYNTHESIS METHOD AND RESULTS
We developed the RTL code of our RISC in VHDL and

made logic synthesis experiments with a standard-cell li-
brary of a commercial CMOS 45 nm technology character-
ized in various process corner cases. To find upper and lower
bounds of the clock frequency, we first synthesized our design
in the worst and typical corners with tight constraints for

the VL paths, that is by forcing them to always complete in
one clock cycle. We found out a gap of 23% between typical
and worst case clock frequencies (333MHz vs. 270MHz).

To avoid the yield loss of the typical case design, we syn-
thesize the design in the worst case but allow some of the
paths, the critical ones of the VL units, to exceed the clock
cycle constraint. By doing so, we speed the worst case de-
sign up and possibly let it run at the faster speed that a
typical case would permit. Of course, a higher clock fre-
quency does not necessarily mean a higher performance and
we must take into account the possible penalty for sporadic
two-cycle execution. We discuss the balance between higher
clock frequency and IPC penalty in section 6.

The next step is the development of ad hoc synthesis
scripts to obtain our goal. A global clock constraint ap-
plies to the whole design except the critical paths of the
VL units which can exceed the clock period. We used the
set_max_delay Synopsys command for this purpose. The
amount of extra delay these paths are given should be large
enough so that the synthesis tool can relax them and opti-
mize the other clock-constrained paths, but not too large:
We don’t want to incur any penalty, should the silicon in
which the processor is deployed be faster than the worst
case. Therefore the delay must be short enough so that all
VL units don’t need an extra clock cycle in the typical case.
After a number of trial-and-error experiments it turned out
that an extra delay of 1.1 ns was sufficient to this aim.

We were finally able to achieve timing closure at the same
clock frequency of the typical case, 333MHz. Interestingly,
area and power figures exhibited little variations across the
experiments. We can then claim that we obtained the per-
formance of typical case design almost at no area/power
penalty and without incurring the low yield of the typical
case. Table 1 summarizes the results that we obtained.

Table 1: Synthesis Results. WC = worst case de-
sign; VL WC = worst case design with variable-
latency; TYP = typical case design.

area power power ck freq.
(µm

2) (mW@ck freq.) (µW/MHz) (MHz)
WC 44218 4.783 17.7 270
VL WC 44354 5.838 17.5 333
TYP 42300 6.030 18.09 333

6. VERIFICATION AND BENCHMARKING
We checked through logic simulations the correctness of

our RTL code against a Verilog reference design publicly
available [13][14]. The comparison concerned only the se-
quence of values in the time traces of the architected states
(PC, register file and special register), regardless the precise
timing which differs due to our LI distributed stalling logic.
We used a set of test programs available on [14].

Then we cross-compiled with gcc – on a Linux x86 ma-
chine with MIPS target – the classic Dhrystone and a set
of integer benchmarks taken from the MiBench suite [15].
We then ran several VHDL logic simulations with binary
program and corresponding data loaded in instruction and
data memories. The aim was to evaluate the VL penalty in
terms of IPC with respect to a worst-case design which does
not use VL. A penalty that is compensated by the increased
clock frequency with respect to the worst-case approach.

167

Table 2: IPC Penalty (Ovh.) and Total Speed-Up
(SU) with respect to WC design. Bch. = Bench-
mark; VL = VL configuration; M, P8, ALU, RF =
Multiplier, PC+8, ALU and RF additional stalls.

Bch. VL M/P8/ALU/RF Stalls Cycles Ovh. SU

Dhr.

0000 0/0/0/0 0 21506 0.00% +23%
1111 10/0/2363/10 2383 23885 11.00% +11%
0001 0/0/0/10 10 21516 0.05% +23%
0010 0/0/2363/0 2363 23865 11.00% +11%
0100 0/0/0/0 0 21506 0.00% +23%
1000 10/0/0/0 10 21516 0.05% +23%

0000 0/0/0/0 0 139022 0.00% +23%
1111 125/0/13405/9 13537 152470 9.67% +12%

Quick 0001 0/0/0/7 7 139029 0.00% +23%
Sort 0010 0/0/13407/0 13407 152401 9.62% +12%

0100 0/0/0/0 0 139022 0.00% +23%
1000 125/0/0/0 125 139084 0.04% +23%

AES

0000 0/0/0/0 0 158093 0.00% +23%
1111 3/0/4282/9 4292 162331 2.68% +20%
0001 0/0/0/7 7 158100 0.00% +23%
0010 0/0/4284/0 4284 162323 2.68% +20%
0100 0/0/0/0 0 158093 0.00% +23%
1000 3/0/0/0 3 158094 0.00% +23%

0000 0/0/0/0 0 28063 0.00% +23%
1111 3/0/1238/9 1248 29308 4.44% +18%

CRC 0001 0/0/0/7 7 28070 0.02% +23%
32 0010 0/0/1240/0 1240 29300 4.41% +18%

0100 0/0/0/0 0 28063 0.00% +23%
1000 3/0/0/0 3 28064 0.00% +23%

0000 0/0/0/0 0 245431 0.00% +23%
1111 3/0/31218/9 31228 276599 12.70% +9%

String 0001 0/0/0/7 7 245438 0.00% +23%
Search 0010 0/0/31220/0 31220 276590 12.70% +9%

0100 0/0/0/0 0 245431 0.00% +23%
1000 3/0/0/0 3 245432 0.00% +23%

Table 2 reports the results of penalty in terms of clock
cycles for the selected benchmarks (overhead, Ovh. column)
and the actual performance increase when the higher clock
frequency is accounted for (speed-up, SU column). The VL
configuration is a 4-bits code, with every digit representing
VL enabled (1) or not (0) for every functional block. From
left to right, the correspondence between code bits and units
is the following: Multiplier, PC+8, ALU, Register File. We
did not consider all possible combinations of functional units
and instead evaluated the case of a single unit at a time (only
one bit at logic 1) and the pessimistic case where all units
are forced to operate in the slower mode (all bits at logic 1).

The results show that the largest contribution to extra la-
tency is the ALU one whereas the remaining contributions
to penalty are negligible. In fact, the worst case condition
for the ALU 2’s complement adder and subtracter is not
as infrequent as it might seem at first glance. Every time
two concordant numbers of similar absolute value are sub-
tracted and produce a negative result, there is a sign that
ripples through the bits ending in the most significant one,
thus stimulating the critical path. (The same situation oc-
curs when two discordant numbers are added.) As for the
multiplier and the RF, their impact is little because multi-
plications are infrequent as are conditioned branches using
registers R16:R31. The PC+8 adder has no impact because
the address space used by the benchmarks is limited and it
is never the case that the most significant bits of the PC+8
adder result switch from zero to one (or the opposite).

It turns out that in the worst case the penalty can be as
high as 12.7%, but still the speed-up is between +9% and
+23% thanks to the higher clock frequency. The harmonic
average of the speed-up across all the benchmarks and the
tested VL configurations is +19%.

As a final test we simulated the post-synthesis gate-level
netlist annotated with the delays and verified its correctness
against the pre-synthesis design. The annotation of delays
allowed us also to check the correctness of the BIST routine
which proved really effective in setting the correct VL.

7. CONCLUSIONS
In this paper we discussed the design of a latency-insensitive

MIPS R2000 microarchitecture with support for variable-
latency operations. A software BIST allows to discover the
“status” of the silicon onto which the processor is mapped.
In the typical manufacturing process case, VL is disabled
and no instructions per cycle penalty occurs. In the worst
case, some instructions may require an additional clock cy-
cle to complete. However, due to the fact that these cases
occur rarely and to the increase of clock frequency that our
approach permits, worst-case performance gets closer to the
typical one. As the results on a series of program bench-
marks show, the overall speed up, which accounts for higher
clock frequency and possibly lower instructions per cycle,
ranges between 9% and 23%, with an harmonic average of
+19%. Compared to a standard worst-case approach, the
design is more efficient, because it makes clock frequency
limited by frequent instructions rather than infrequent ones.

Looking ahead, we will improve the core with bypass loops,
something that will reduce data-dependency stalls but will
complicate the latency-insensitive control because of the join

controllers needed to handle the bypass multiplexers.

8. REFERENCES
[1] D. Ernst et al. ,”Razor: A Low-Power Pipeline Based on

Circuit-Level Timing Speculation,” Proc. MICRO-36,
Dec. 2003, pp. 7–18.

[2] D. Blaauw et al., “Razor II: In Situ Error Detection and
Correction for PVT and SER Tolerance,” Proc. ISSCC,
Feb. 2008, pp. 400–622.

[3] S. Ghosh et al., “CRISTA: A New Paradigm for Low-Power,
Variation-Tolerant, and Adaptive Circuit Synthesis Using
Critical Path Isolation,” IEEE TCAD, vol. 26, no. 11,
Nov. 2007, pp. 1947–1956.

[4] L.P. Carloni et al., “A Methodology for
Correct-by-Construction Latency Insensitive Design,”
Proc. ICCAD, Nov. 1999, pp. 309–315.

[5] A.J. Martin et al., “The design of an asynchronous MIPS
R3000 microprocessor,” Proc. ARVLSI, Sep. 1997,
pp. 164-181.

[6] H.M. Jacobson et al., “Synchronous Interlocked Pipelines,”
Proc. ASYNC, Apr. 2002, pp. 3–12.

[7] J. Cortadella et al., “Synthesis of Synchronous Elastic
Architectures, Proc. DAC, July 2006, pp. 657–662.

[8] X. Liang and D. Brooks, “Mitigating the Impact of Process
Variations on CPU Register File and Execution Units,”
Proc. MICRO-39, Dec. 2006, pp. 504–514.

[9] D. Bañeres et al., “Variable-Latency Design by Function
Speculation,” Proc. DATE, Apr. 2009, pp. 1704–1709.

[10] M. Olivieri, “Design of Synchronous and Asynchronous
Variable-Latency Pipelined Multipliers,” IEEE TVLSI,
vol. 9, no. 2, April 2001, pp. 365–376.

[11] P. Ndai et al., “Trifecta: A Nonspeculative Scheme to
Exploit Common, Data-Dependent Subcritical Paths,” IEEE
TVLSI, vol. 18, no. 1, Jan. 2010, pp. 53–65.

[12] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel
Adders,” IEEE TCOMP, vol. C-31, no. 3, 1982, pp. 260–264.

[13] N. Pinckney et al., “A MIPS R2000 Implementation,”
Proc. DAC, June 2008, pp. 102–107.

[14] “Google Code hmc-mips,”
http://code.google.com/p/hmc-mips/

[15] University of Michigan at Ann Arbor - Electrical
Engineering and Computer Science Department, MiBench:
a free, commercially representative embedded benchmark
suite, http://www.eecs.umich.edu/mibench/

168

