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ABSTRACT
We present an automated system for assigning protein,

gene, or mRNA class labels to biological terms in free text.
Three machine learning algorithms and several extended
ways for defining contextual features for disambiguation
are examined, and a fully unsupervised manner for
obtaining training examples is proposed. We train and
evaluate our system over a collection of 9 million words of
molecular biology journal articles, obtaining accuracy rates
up to 85%.
Contact: vh@cs.columbia.edu

INTRODUCTION
Discovery of new genes and new gene functions has
become a daily routine as opposed to the painfully slow
progress of the recent past; an unprecedented number of
scientists both in academia and in industry collaborate
in colossal genome sequencing and functional analysis
projects. But precisely the same features that make
this situation exciting create a new problem: Individual
researchers are often unable to keep up with the rate of
information accumulation. In many fields of molecular
biology, and particularly in signal transduction, thousands
of new results are published each year, and relationships
between the information in different articles is often not
immediately apparent, even if a researcher manages to
read all relevant published articles.

A promising approach to handle the resulting informa-
tion overload is to automate the process of knowledge
extraction, using data mining techniques on the text
of published articles, extracting novel information and
relationships between biological entities such as genes,
proteins, and RNA, and encoding that information in
a computer-accessible form, so that further reasoning
and analysis can be performed on it. At Columbia Uni-
versity, we are pursuing the design and development
of a fully automatic system, GeneWays, for extracting
knowledge of this type. GeneWays is a collaborative
effort involving four departments (Computer Science,

Medical Informatics, and Genome Center at Columbia
University and Computer Science at Queens College
CUNY) and aims at the extraction of molecular pathways
from on-line research articles with natural language
processing (NLP) techniques. The general architecture of
the language-processing part of our system includes seven
major modules: The collection module retrieves newly
published articles from the Internet on a daily basis; the
preprocessing module transforms the HTML encoding
to a more rigidly specified (and thus understandable to
the machine) XML representation, and enriches it with
various types of additional language information (such as
part-of-speech tags and sentence breaks); the term extrac-
tion module identifies words and phrases (terms) that are
content-bearing and of interest to biological applications
(such as genes, proteins, and small molecules); and the
disambiguation module assigns a class label (such as gene
or protein) to each term occurrence. This information
is used by the fifth module to propose general patterns
and constraints involving biological terms, and, together
with a supplemental lexicon and a grammar, by the sixth
module which extracts relationships between terms from
a single article; these tentative relationships are validated
across articles and against existing knowledge by the
seventh module, and, if they pass muster, are entered in
a persistent database. Modules one to four are currently
fully implemented, substantial progress has been made on
module six, and modules five and seven are the topic of
future work.

This paper focuses on the fourth module in the above ar-
chitecture, which disambiguates words or phrases known
to be terms in this domain by assigning specific class la-
bels to them. This disambiguation task is an important
milestone for allowing us to reason with classes (e.g., pro-
teins) rather than specific phrases. For example, it allows
us to automatically discover, in a subsequent module, that
proteins activate genes, and not the other way around. This
is done by collecting information on patterns of the form
“X activates Y ” and observing that the X ’s tend to be pro-
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teins, while the Y ’s genes. Even the fact that “activate”
is an important verb in the biology domain is automati-
cally discovered, by observing that it co-occurs a lot with
proteins and genes. Although our current implementation
of the sixth module uses mostly manually developed rules
capturing these constraints (Friedman et al., 2001), we are
moving towards automating the task of learning these pat-
terns from the texts. In contrast with other current work on
finding relationships from biological texts (Blaschke et al.,
1999; Proux et al., 2000), we are aiming to extract both
general patterns and their instantiations in the text rather
than matching prespecified patterns to the articles.

The kind of sense disambiguation addressed here is
essential for processing text in any domain where, for
reasons of terminological economy, terms are associated
with multiple meanings. The biology domain offers a
prime example of this multiplicity of meanings, since
every protein has an associated gene with often the same
name. Further, genes and their transcripts (mRNA, rRNA,
tRNA and the like) often share the same name as well.
Often, an article will refer to the protein, gene, and RNA
senses of a term in close proximity, relying on the reader’s
expertise and the surrounding context for disambiguation.
For example, SBP2 is listed as a gene/protein in the
GenBank (Benson et al., 1999) database. In one of
our source articles (Copeland et al., 2000) we find the
following sentences:

• “By UV cross-linking and immunoprecipitation, we
show that SBP2 specifically binds selenoprotein mR-
NAs both in vitro and in vivo.”

• “The SBP2 clone used in this study generates a 3173
nt transcript (2541 nt of coding sequence plus a 632 nt
3’ UTR truncated at the polyadenylation site).”

In the first sentence the highlighted occurrence of SBP2
is a protein, while the highlighted occurrence in the second
sentence is a gene.

The ambiguity problem often becomes an issue for
human readers, as evidenced by the occasional inclusion
of disambiguating information (e.g., “the SBP2 gene”)
by the authors of an article, and by the establishment of
typographic conventions involving capitalization or itali-
cization by some journals (e.g., Gene). However, not all
online articles strictly follow these typographic conven-
tions, and italics and capitalization are used for other text
purposes as well (e.g., emphasis, or for sentence-initial
words and proper nouns). Consequently, the disambigua-
tion task would be hopeless for an automated system
without a powerful technique for resolving ambiguity.
We present such a method in this work, drawing from
approaches used in statistical natural language processing.

Our method uses the context of known occurrences of
genes, proteins, and mRNA to learn weights for elements

in that context, so that applying these weights to the
elements in the context of an unknown occurrence would
result in the accurate classification of that occurrence as
gene or protein.† We innovate by using as learning features
not just the words around the term but also positional and
morphological information. Since obtaining labeled genes
and proteins for the learning phase requires laborious
efforts by domain experts who would annotate the articles,
we identify instead specific types of context where our
system can confidently classify a term as gene, protein,
or mRNA and use these as the input to our learning
algorithm, generalizing to all types of occurrences of
biological terms. This makes our approach an example
of unsupervised learning, where only the raw text and no
human input or annotation is available to the system.

In the next section, we situate our approach relative
to other efforts for knowledge extraction in medical
informatics, biology, and natural language processing. We
then describe our process for data collection and pre-
processing, as well as a particular way for extracting
terms, which we use in the experiments reported in this
paper. Then we present different ways of defining features
for modeling the context of each term occurrence and three
learning algorithms that we applied to our data. We follow
with results and evaluation scores on a 9 million word
collection of articles, and compare system- and human-
assigned classes on a smaller set of terms. These results
indicate that the system produces the correct label 78–84%
of the time, making it a valuable tool for further statistical
and knowledge-based analysis of the texts.

UNSUPERVISED LEARNING VERSUS
ALTERNATIVES
Natural language systems have been successfully devel-
oped for various tasks involving text processing. However,
in a practical application, the need for high specificity (low
rate of false positives) in the output that the system extracts
from the text often leads the system’s designers to follow
a knowledge intensive approach: Detailed models of hu-
man language processing, often in the form of a semantic
grammar (Baud et al., 1992) (a grammar with both syntac-
tic and classification information in its non-terminals), is
painstakingly encoded by hand. The resulting system can
then perform its task with an acceptably low error rate.
However, this approach is applicable only to fairly narrow
domains, where syntactic and semantic knowledge can be
modeled with a reasonable amount of human effort.

The medical informatics domain is perhaps the best ex-
ample of deployed natural language systems, which al-
most always follow the above knowledge-based approach,
since specificity is of paramount importance in medical

† A separate stage filters and classifies other types of biological entities from
non-ambiguous classes such as small molecules, using table lookup.
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applications. MedLEE is an example of such a system;
using a domain specific lexicon and semantic grammar,
it achieves performance comparable to that of human ex-
perts in processing mammography reports (Hripcsak et al.,
1995). Knowledge-intensive approaches involving a gram-
mar have also been applied to the task of extracting in-
formation from biology texts (Park et al., 2001; Yakushiji
et al., 2001).

An alternative that sacrifices some of the accuracy
offered by the methods that model human knowledge, but
obtains much broader generality and adaptability, is to
rely instead on data-intensive, learning methods guided
by a much weaker model of language behavior. Empirical
methods of this type have gradually gained prominence
in the research side of natural language processing during
the 1990s. Since creating in advance a full lexicon of
genes and proteins and rules for disambiguating each
of them in context is impractical for more than a few
thousand terms, and does not allow the easy addition
of information on newly discovered genes, we opted for
using a statistical method for the disambiguation stage
of the system. Subsequent modules can then use this
information to apply explicit syntactic knowledge models
to classes covering thousands of individual terms, and we
in fact use an adapted version of MedLEE (Friedman et al.,
2001) for part of the relationship extraction module.

The task of assigning gene or protein labels to terms
is a case of word sense disambiguation (albeit a hard
one, because of the pervasive ambiguity in the biology
domain). Earlier work on this problem with general
language terms (e.g., disambiguating between the use
of the word bank as a financial institution and as the
slope next to a river) proposed modeling the context of
each ambiguous word as a vector of neighboring words
(Brown et al., 1991; Gale et al., 1992); for example, words
such as “teller” and “money” would likely indicate that a
nearby ambiguous bank referred to the financial institution
sense. These methods obtain classification accuracies
(percentage of correctly disambiguated cases) of 65-
92% depending on the word being disambiguated and
the alternative senses (choosing between bank/institution
and bank/river is much easier than choosing between
bank/institution and bank/building (Buitelaar, 1998)).

A drawback to these statistical learning techniques as
originally formulated is their requirement for labeled
training examples, which usually can only be obtained
by manual annotation. Several techniques have been
proposed to address this practical deficiency, including
bootstrapping (Hearst, 1991), using parallel texts in
different languages (Dagan and Itai, 1994), constructing
pseudo-words for training (Gale et al., 1992), and us-
ing contextual evidence that indicates that some of the
unlabeled terms belong to a particular class (Yarowsky,
1995). We apply this last approach to the biology domain,

by noting that 9,187 (2.65%) of the occurrences of
genes, proteins, and mRNAs in our text collection are
readily disambiguated by the authors of the article, who
include the word “gene”, “protein”, or “mRNA” right
after the ambiguous word. Although these cases (which
we term non-ambiguous occurrences) are probably the
hardest for humans to disambiguate without the explicit
“gene”, “protein”, or “mRNA” following them, it is
plausible to assume that some of the other words near a
non-ambiguous occurrence are also indicative of its status
as gene, protein, or mRNA. Using only this information,
we trade some of the increased accuracy that could be
obtained with hand-labeled data for a much greater set
of unlabeled (but disambiguated in the manner described
above) examples, making our method unsupervised.

DATA COLLECTION
An automated script is used to download articles that ap-
pear in HTML (HyperText Markup Language) format on
the Internet, at prespecified journal publishers’ web sites
or via keyword searches through the PubMed database
(http://ncbi.nlm.nih.gov). Downloaded articles often
contain extraneous information (such as PubMed headers,
links to facilitate site navigation, and information about
the journal); we have written scripts to transform the
HTML representation to a more controlled and structured
version in XML (eXtended Markup Language) that con-
tains only content-bearing tags. A DTD (Document Type
Definition) that defines our target document representa-
tion has been specified, and we achieve the translation
from HTML to the XML representation using the publicly
available HTML::Parse and LT XML extraction and
processing tools (Brew et al., 2000). Converting the
articles to XML rather than working directly with the
HTML source allows us to standardize the format of our
text data across different journals, to strip HTML tags that
carry no useful information for purposes of text analysis,
and to enrich the document with additional tags.

The added XML tags mark word, sentence, paragraph,
and section boundaries, non-textual material such as
figures and tables, and specific kinds of text content
that stand out from the main part of the document
(such as author information and references). We use
formatting information in the original HTML document
to detect section and paragraph breaks, the MXTerminator
statistical sentence detector (Reynar and Ratnaparkhi,
1997) retrained on biological text for finding sentence
boundaries, and a word tokenizer we have implemented as
a collection of pattern-matching finite state automata for
identifying individual words, punctuation, and symbols in
the text. We also add part-of-speech information to each
token in the input text, using a statistical part-of-speech
tagger (Brill, 1992). Figure 1 shows a portion of a sample
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<!DOCTYPE PAPER SYSTEM "/proj/nlp/genome/xml/dtd/paper.dtd" >

<PAPER>
...
<AUTHORS> <AUTHOR>Vassilios Alexiadis</AUTHOR>
...
<AUTHOR>Claudia Gruss</AUTHOR>
</AUTHORS>
<JOURNAL>The EMBO Journal Vol. 17,pp. 3428-3438, 1998</JOURNAL>
<ABSTRACT>
...
</ABSTRACT>
<BODY>
<DIV DEPTH="1">
<HEADER>Introduction</HEADER>

<P><S>
<W C="W" P="NNP">Little</W> <W C="W" P="VBZ">is</W>
<W C="W" P="VBN">known</W> <W C="W" P="IN">about</W>
<W C="W" P="WRB">how</W> <W C="W" P="DT">the</W>
<W C="W" P="NN">replication</W> <W C="W" P="NN">machinery</W>
...

</S></P>
</DIV></BODY></PAPER>

Fig. 1. Sample portion of annotated document.

article, annotated with the XML tags described above.
Identifying terms in the text is a research topic on its

own, and several approaches can be used. For the experi-
ments reported here, we employ a simple lookup method
over the GenBank database (Benson et al., 1999), which,
as of February 2001, contains 204,177 gene/protein/RNA
names. Gene or protein names can be phrases composed of
common English words, either with a transparent mean-
ing (e.g., antifreeze protein precursor) or with more ob-
scure origins (e.g., forever young in the plant Arabidopsis
thaliana); most, however, are strings of letters and digits
not occurring in regular English text, such as HI0509 or
SBP2. Since our goal here is not term extraction but rather
term disambiguation, we only consider as terms those en-
tries in GenBank that either consist of multiple words or, if
single words, do not appear in the 80,531-entry lexicon of
common English words used by Brill’s statistical part-of-
speech tagger (Brill, 1992). This filtering step eliminates
only 0.9% of the valid gene and protein names from con-
sideration and significantly increases the accuracy of the
recognized terms. It is possible to replace this simple term
extractor with a more sophisticated method, relying on fre-
quency and distributional information (Justeson and Katz,
1995) and complementing that with techniques that utilize
approximate string matching to identify term variants and
new terms similar to old ones, such as the method pro-
posed by Krauthammer et al. (2000) specifically for bio-

logical terms.
Since terms do not neatly correspond to single words,

our term identification method also looks for terms that
appear as part of a longer word and for multiword terms.
We break any word in the text at hyphens and allow
for matches between one or more of these divisions and
GenBank; this allows us to detect, for example, gp41 as a
term in gp41-mediated. We also match, at any given word,
that word and the longest possible subsequence of words
immediately preceding it against GenBank, allowing for
multiword terms such as mothers against decapentaplegic.

With our document representation enhanced with term
boundary information, we subsequently separate the terms
in two categories: those immediately followed by a
disambiguating word (“gene”, “protein”, or “mRNA”),
and those that are not. The former are used during system
training and for the automated evaluation, as described in
the next two sections. Naturally, predictions are made for
all terms, whether locally disambiguated or not.

Using the above approach, we collected 1,374 articles
from the European Molecular Biology Organization
(EMBO) journal, spanning the years 1997 to 2000. This
represents 9,003,923 words of text, taking up 314 Mb
(including markup). Our term extraction method identifies
346,519 terms (protein, gene, or mRNA names) in this
collection, of which 9,187 (2.65%) are non-ambiguous
occurrences.
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LEARNING METHODOLOGY
Features
Words that appear near a term (whether a term for which
the class label is known, during training, or one for which
a label should be predicted) form the basic features to
which contextual information is mapped to for machine
learning (see references on sense disambiguation listed
earlier). Our approach to feature definition extends earlier
work by considering additional positional information in
addition to the words themselves. For example, if the word
“activates” immediately precedes a term, it is likely that
the term is a gene, while protein is the most likely class
if “activates” follows a term. We considered three ways of
incorporating positional information into our features:

• Given a term, we collect all words near the term in a
vector of counts representation (a word bag‡ approach,
with no positional information).

• Rather than using a single word bag for each term
occurrence, we separate the nearby words into two
bags: one for the words before the term, and another
for the words after the term.

• Each word is annotated with its distance from the term,
and we keep separate counts for each different position
(so our features become, for example, X/+2 and X/−1
rather than just a word X ).

We also consider several options for defining our
features that utilize morphological, distributional, and
shallow syntactic information to either further refine the
features or to conflate several strings to the same feature:

• Capitalization. Word strings that differ only in case
can be mapped to the same feature. Differences
in case are often due to typographic conventions
(e.g., sentence-initial words) rather than differences in
content.

• Part-of-speech. Keeping a word’s part of speech (e.g.,
noun or verb) allows for limited disambiguation of
that word (for example, structure/N vs. structure/V).
Different meanings may indicate different preferences
for specific term classes.

• Stopwords and similarly distributed words. Com-
mon English words (such as articles (“the”) and
prepositions (“in”)) make up a large percentage of
the text, but often do not help in classification tasks
since they are not strongly associated with any of
the alternative classes. Extending this concept, we
automatically identify during training other words,

‡ A bag is another term for a multiset, i.e., a set where multiple occurrences
of the same element are allowed.

not in a standard stopword list, that are approximately
equally distributed between the alternative classes. We
select for removal those words for which a chi-square
test contrasting their distributions across the alterna-
tive classes does not yield a statistically significant
difference at the 5% level.

• Stemming. Stemming is an automated process that
maps inflected forms of the same root to a common
feature, so that, for example, phosphorylate and
phosphorylation are treated as the same feature.

In all cases, we omit from the features the word
“gene”, “protein”, or “mRNA” that always occurs right
after the term (we use this information to label training
and evaluation instances with their correct class). When
the system is run in prediction mode, it automatically
labels non-ambiguous occurrences using the immediately
following disambiguating word; but this information is
not used when we train or when we evaluate over non-
ambiguous occurrences.

Defining what is a term’s “nearby” words is an issue
that has received considerable attention in the sense
disambiguation literature, with research showing that
sometimes disambiguating information can be found far
from the term’s occurrence (Gale et al., 1992). We define
the neighborhood of a term as all words in a window
extending N words to the left and N words to the right
of the term. N is determined empirically from the training
data; we explain this step later in this section.

The three learning techniques
We considered three established learning techniques for
constructing a prediction model over the extended word
features of the previous subsection. The first method is
naive Bayesian learning (Duda and Hart, 1973). The
method aims to assign to a term occurrence the class c
that maximizes P(c|E), where E is the evidence available
to the machine learning algorithm for that occurrence (i.e.,
the features f1, f2, . . . , fk in the term’s context). Using
Bayes’ rule, P(c|E) can be written as

P(E |c) × P(c)

P(E)
=

P( f1, f2, . . . , fk|c) × P(c)

P( f1, f2, . . . , fk)
(1)

where P(c) is the a priori probability of class c. The
a priori probability of the evidence P( f1, f2, . . . , fk) is
the same for all classes c, and hence does not affect the
maximization of (1). So we equivalently maximize

P(c) × P( f1, f2, . . . , fk |c) (2)

Estimating P( f1, f2, . . . , fk|c) for a large k is however
impossible for most applications due to the sparseness of
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available data. At this point, we make an independence
assumption for the features f i (hence the “naive” qualifier
in the name of the method), and rewrite (2) as§

P(c) ×
k∏

i=1

P( fi |c)

Although the assumption of independence between fea-
tures is obviously a simplification (Mosteller and Wallace,
1984), the method frequently offers a good enough
approximation to the true classification odds among the
classes. For example, terminator, genomic, replacing,
translocations, and allelic appear among the top 25 (out
of 25,000) discriminators for the gene class.

The second method we considered is decision trees, in
particular the C4.5 implementation of decision tree learn-
ing (Quinlan, 1993). Decision trees recursively partition
the feature space into areas corresponding to each class la-
bel. First, the feature that discriminates most between the
classes is selected for the root of the tree, and, depend-
ing on the presence or absence of that feature, the algo-
rithm proceeds to the left or right subtree. Subtrees are re-
cursively constructed in a similar manner, until eventually
the process terminates at a leaf, associated with one of the
class labels.

A third method conceptually similar to decision trees is
inductive rule learning; we experimented with the RIPPER

implementation of this approach (Cohen, 1996). In this
method, rules involving tests on features are iteratively
constructed; these rules map a particular combination of
features to a class label, and are applied sequentially
during prediction, so that rules where the system has
the highest confidence are applied first. Note that it is
possible to convert decision trees to a similar rule format
(by tracing the path followed from the root to a leaf), so
both of these approaches offer the advantage of allowing
a human observer to realize what makes the classifier
work. Negative information (i.e., that a feature does not
appear near a term occurrence) is made explicit in the
rules, although it is implicitly used by all three methods.
Figure 2 shows a sample of the rules automatically learned
by C4.5; for example, Rule 530 captures the fact that genes
encode information while Rule 408 captures the fact that
references to genes are often followed by a citation to the
work of other researchers (the ET comes from et al.). Rule
408 is in fact a good example of evidence that can be
automatically detected from text regularities but would be
unlikely to be included in a knowledge-based system.

§ In the actual implementation of the Bayes method, all calculations are
carried on a logarithmic scale, to preserve numerical accuracy with finite
floating point representations.

Rule 408: after DEVELOPMENT is present
after ET is present
before DATA is NOT present
�⇒ class gene [91.7%]

Rule 516: before THAT is NOT present
before FRAGMENT is NOT present
before ALLELE is present
�⇒ class gene [93.9%]

Rule 530: after ENCODES is present
before ENCODES is NOT present
�⇒ class gene [96.5%]

Fig. 2. Sample rules produced by C4.5.

Experimental design
Systems that automatically learn rules or estimate param-
eters from a certain amount of training data always run
the risk of adapting too much to pecularities of the data set
used during training, which may not reflect general proper-
ties. To check against this potential pitfall, it is imperative
to evaluate on data unseen by the system during training.
However, the common approach of dividing the available
data into separate training and test subsets does not make
the most efficient use of the data. Another alternative is
n-fold cross-validation, in which the total available data is
split into n equal parts, and n training/test cycles are per-
formed. During each of these cycles, one of the n parts is
kept aside for testing, and the remaining n − 1 parts are
used for training; the evaluation scores reported are the
averages of the scores obtained during each cycle. In this
way, all of the data is eventually used for both training and
testing, but the data in each test set is never accessible to
the system during training for that test set.

We perform our training and evaluation experiments
using 10-fold cross-validation, with an additional refine-
ment. We mentioned earlier that the size of the window
of neighboring words N that defines the features related
to each term occurrence is a parameter of the learning
process. Obviously, large values of N have a smoothing
effect, with the attendant advantages and disadvantages
(capturing dependencies at longer range, but also dilluting
the effect of the words closest to the term). To estimate the
optimal value for N , we set aside 1/10th of our data and
apply 10-fold cross-validation to it, running the learning
algorithm successively for N from 2 to 35. The N that
leads to the best overall classification accuracy during
this phase is then fixed as the window size for the full
training and evaluation phase, which is performed on the
remaining 9/10th’s of the data, again using 10-fold cross
validation.
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RESULTS AND EVALUATION
We have experimentally compared the performance of the
disambiguation system under various learning conditions,
using the different learning algorithms and the different
options for constructing features described earlier. As
our measure of performance we use the overall rate
of classification accuracy, i.e., the total percentage of
correct decisions made by the classification algorithm.
This is always equal to 100% minus the error rate. Other
measures of performance, such as precision/recall and
specificity/sensitivity can be used to describe the system’s
performance on particular categories (e.g., for genes
only) if an application assigns more importance to the
accurate detection of terms from that particular category.
Space does not permit listing these detailed scores for all
experiments, but we report precision, recall, F1-measure
(van Rijsbergen, 1979), specificity, and sensitivity for the
final experiment that uses the entire amount of data and
the best combination of features.

We base our comparisons between algorithms and
features on relative performance on locally disambiguated
cases (non-ambiguous occurrences, i.e., those imme-
diately followed by a disambiguating word), since by
using automatically labeled cases we can evaluate close
to 10,000 disambiguation decisions. However, since it is
possible that the distributional characteristics of words in
the context of non-ambiguous occurrences are different
than those of ambiguous terms in general, we have
also manually labeled a smaller set of 550 ambiguous
occurrences, and we evaluate our final combination of
features on that set as well.

We considered two target sets of labels for the terms:
classifying them as genes, proteins, or messenger RNA
(mRNA), or classifying them as genes or proteins only and
ignoring occurrences of mRNAs in our training and test
data sets. The former, three-way classification is in prin-
ciple more useful, representing a more accurate model of
term classes. But with a finite amount of data, and given
the relatively low rate of occurrence of mRNAs in the text
(13.93% of non-ambiguous terms), lower performance on
the mRNA category may lower overall system accuracy.
For applications that are primarily considering the distinc-
tion between genes and proteins, the two-way classifica-
tion offers an alternative with higher expected accuracy.

Effects of the learning algorithm We first tested the three
learning algorithms on about one third of our collection
of articles. Their relative performance was similar in
both the three-way and two-way classification settings,
with C4.5 outperforming RIPPER by one percentage
point on absolute terms in the two-way case and two
percentage points in the three-way case, and naive Bayes
being practically indistinguishable from C4.5 in terms of
accuracy in both cases (Table 1). However, naive Bayes

Table 1. Accuracy of different learning techniques (cross-validated on one-
third of our data).

Two-way
classification

Three-way
classification

RIPPER 74.59% 66.75%
C4.5 76.61% 67.81%
Naive Bayes 76.57% 67.62%

is significantly faster in both training and prediction than
the other two methods, by about an order of magnitude
over the slowest C4.5, and this speed gain is important as
we handle large sets of data. Hence, we have chosen naive
Bayes as the learning algorithm for the remainder of our
experiments.

Effects of feature definitions We subsequently examined
alternatives for our feature definitions, summarized below:

• Positional information. We tested whether words
should be used as features directly, or whether in-
formation about their position relative to the term
should be encoded as well. We found that using full
positional information (counting words at different
positions as different features, even if they shared
the same string of characters) universally lowered
accuracy by as much as six percentage points; keeping
just the sign of the positional difference (i.e., whether
words are before or after the term) slightly decreased
accuracy (by 1-1.5% on average). We believe that this
effect is likely due to the sparseness of data introduced
when the same character string is mapped to different
features, and we will explore in the future models that
condition the use of positional information according
to the frequency of a given word.

• Capitalization. Mapping all words (but not the terms
themselves) to lower case did not alter performance.
We include this mapping in our final system to slightly
reduce the total number of features and thus enhance
speed and lower memory requirements.

• Part-of-speech. Using part-of-speech information as
a local disambiguator of the meaning of words gener-
ally helped the overall accuracy of the system, but only
modestly (less than 1% on absolute terms on average).
This is probably due to the technical nature of the do-
main (which offers less opportunity for ambiguity on
non-terms than general English does). Consequently,
we include this information in our final definition of
features.

• Similarly distributed words. Eliminating words that
do not differ significantly in their distribution between
the two or three classes has a small negative effect on
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Precision
Recall/

Sensitivity
F-measure Specificity

Two-way/Gene 81.83% 87.23% 84.44% 81.90%
Two-way/Protein 87.28% 81.90% 84.50% 87.24%
Three-way/Gene 78.83% 80.16% 79.48% 83.64%
Three-way/Protein 80.57% 77.73% 79.12% 85.94%
Three-way/mRNA 69.00% 72.89% 70.86% 94.70%

Table 2. Evaluation metrics for particular categories of terms.

performance (0.2–0.5% on absolute terms, depending
on other options for defining features). As a result, we
decided not to include this option in the final system,
but we note that it can significantly reduce the total
number of features that need to be considered during
machine learning, from approximately 25,000 to about
5,000 (depending on other experimental parameters).
Therefore it offers a promising approach if a five-fold
gain in computational efficiency justifies a small loss
of classification accuracy.

• Stopwords. Unlike the removal of content words,
removing extremely common function words is useful
for both increasing performance (0.5–1.5% increase in
accuracy) and reducing the feature space.

• Stemming. Mapping related word forms to their
common root increased classification accuracy by
0.4% on absolute terms on average, and therefore is
included in our final system.

Evaluation of the final feature combination We evaluated
the experimentally determined best combination of op-
tions for defining features on our full data collection using
10-fold cross-validation. Table 2 shows detailed evalua-
tion scores for particular classes of terms, while accuracy
measurements for our overall results are shown in the first
row of Table 3, indicating that the system achieves ap-
proximately 80% accuracy in the three-way classification
and 85% accuracy in the two-way classification.

The second and third rows of Table 3 show system
performance as compared to a set of manually labeled
terms. These terms were chosen randomly among the
majority of terms that are not locally disambiguated
with an immediately following specifier. We randomly
selected 15 articles from our collection, extracted 75
paragraphs at random from them, and highlighted the 550
terms there according to our simple term finder (i.e., by
matching with GenBank and removing common English
words). We then asked three experts (all holding Ph.D.
or M.S. degrees in molecular biology, bioengineering,
or mathematical genetics) to manually tag each term as

Two-way Three-way

Vs. non-ambiguous terms in test set 84.48% 78.11%
Vs. majority human model 69.40% 63.58%
Vs. full agreement human model 70.68% 65.85%
Baseline (non-ambiguous terms) 43.19% 50.18%
Baseline (majority human model) 45.36% 51.12%
Baseline (full agreement human model) 51.71% 55.50%

Table 3. Overall evaluation scores for predicted class labels, against non-
ambiguous and manually labeled terms.

gene, protein, mRNA, ambiguous, or wrongly extracted.
The three experts used the “ambiguous” label sparingly
(only 24 times in the 1,650 total manually assigned
labels, and never twice for the same term occurrence
across different evaluators), but nevertheless exhibited
considerable disagreement. Their average pairwise rate
of agreement was 77.58%, which indicates that the
disambiguation task is hard even for human experts. We
mapped the human-assigned labels to two models for
comparing with our system: First, we considered the term
occurrences for which a majority of the three evaluators
agreed on a label (518 occurrences, or 94.18% of the total),
and, second, the occurrences for which all three evaluators
assigned the same label (381 occurrences, or 69.27%)
of the total. From each of those models we removed
cases where the humans thought that the term extracted
was not a gene, protein, or mRNA¶, and scored our
system’s predictions against the remaining occurrences
in the model. For the three-way classification task, the
comparison is straightforward; for the two-way task, we
also removed any occurrences of mRNAs from the model.

We also estimate baseline models, as lower bounds on
system performance. We construct the baseline models by
assuming that such a classifier always predicts the most
frequent class, and estimate class frequencies from the
automatically extracted non-ambiguous cases, from the
cases in the human majority model, and from the cases in
the human full-agreement model. These baseline models
always predict “protein” as the class label; their accuracies
are listed in the last three rows of Table 3, respectively.

¿From Table 3, we observe that performance is signif-
icantly lower against the human-labeled models when
compared to our automatically extracted non-ambiguous
cases. There are two possible explanations for this dis-
crepancy: Either the human experts are correct, in which
case the decline in performance can be partially attributed
to the fact that many of the selected cases appear to be

¶ These are errors made by our simple text extractor that matches strings
against GenBank.
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harder to classify (as evidenced by the relatively low
agreement rate between humans), and partially to some
inconsistencies in labeling cases that our system does not
currently handle (for example, in follow-up interviews,
one of the evaluators mentioned that he was consistently
marking tRNA or snRNA occurrences as mRNA, as
that was the closest among our labels). Or, the system
is actually doing a more consistent job than the humans
and is penalized for making correct decisions when
they are wrong. This intriguing possibility is supported
by the fact that our system does better when evaluated
against the non-ambiguous cases (while not examining
the disambiguating words) than the humans do against
each other. We plan additional experiments where we
will mask the word following non-ambiguous terms
(providing a setting identical to how our system works)
and compare their disambiguating performance on that
data to our system’s on the same data. Nevertheless,
the system achieves performance which under the worst
interpretation is 7–14 percentage points below human
performance and improves accuracy by a relative 20–95%
over the baselines.

CONCLUSION
We have explored three learning techniques and several
ways for defining contextual features for the problem
of automatically disambiguating biological terms such
as genes, proteins, and mRNAs. Rather than relying on
extensive human markup for training our system, we
utilize instead textual information for disambiguating a
small part of our data with high confidence and use
this as seed training material for predicting labels on all
ambiguous terms in our collection. We have performed
a large-scale evaluation on automatically disambiguated
data from a 9 million word corpus, and a smaller study
using manual annotations. During system design, we
optimized both accuracy and computational efficiency, an
important constraint when working with large data sets.

Our system demonstrates accuracy within the range of
statistical sense disambiguation applications; but more
importantly, since it is used within a larger text mining
system, perfect accuracy is not needed for obtaining
high quality results further down our pipeline. Unlike a
system that has to extract information from a specific
text passage, we collect information from a large corpus,
where repeated occurrences of the same relationship or
pattern are expected; and this aggregation of information
shields us against a reasonable percentage of local mis-
takes. We nevertheless outperform significantly baseline
disambiguation systems, achieve performance near that
of the human agreement rate when evaluated against
humans, and score higher than that rate within our set
of locally non-ambiguous cases. It is also possible to

make predictions primarily or exclusively for cases where
the system’s confidence in the classification decision (as
measured by the relative Bayesian odds across classes) is
high; this will likely increase the overall accuracy. In the
future, we plan to refine several aspects of our system,
such as its positional information model, as well as use
its results for predicting relationships between classes of
biological terms.
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