Statistical Acquisition of Content Selection Rules

for Natural Language Generation

Pablo A. Duboue and Kathleen R. McKeown

Computer Science Department Columbia University in the city of New York

Choosing the right information to communicate

- Domain dependent complex task

Content Selection Example

- Input: Set of Attribute Value Pairs

(name first) John (name last) Doe 150Kg 160cm (weight) (height) (occupation) c-writer (occupation) **c-producer** (award title) BAFTA (award year) 1999 (relative type) c-grandson (rel. first) Dashiel $\langle rel. lastN \rangle$ Doe (rel. birthD) 1990

- Output: Selected Attribute-Value Pairs

 $\langle name first \rangle$ John $\langle name last \rangle$ Doe $\langle occupation \rangle$ c-writer $\langle occupation \rangle$ c-producer

John Doe is a writer, producer, ...

• Our focus

- Descriptive texts (single, informative, communicative goal)

– High-level content selection rules, to filter out the input

Our Approach: Learning of Content Selection Rules

• Input to Our Learning System

- A set of associated knowledge base and text pairs

(name first) Johr	$\langle name ast \rangle$	Doe		John Doe, American writer, born in Maryland in
(weight) 150k	$\langle g \langle height \rangle$	160cm	$\leftarrow \ldots \rightarrow$	1967, famous for his strong prose and

Our Approach: Learning of Content Selection Rules

• Input to Our Learning System

- A set of text and associated knowledge base pairs

$\langle name first \rangle \ \langle weight angle$	John 150Kg	$ig \langle { t name last} angle \ ig \langle { t height} angle$	Doe 160cm	$\leftarrow \ldots \rightarrow$	John Doe, American writer, born in Maryland 1967, famous for his strong prose and			
				VS.				
$\langle name first \rangle \\ \langle weight \rangle$	John 150Kg	$\langle \texttt{name last} angle \ \langle \texttt{height} angle$	Doe 160cm	\leftrightarrow	$\langle \texttt{name first} \rangle$ $\langle \texttt{weight} \rangle$		$\langle \texttt{name last} \rangle$ $\langle \texttt{height} \rangle$	Doe 160cm

Our Approach: Learning of Content Selection Rules

• Input to Our Learning System

- A set of text and associated knowledge base pairs

$\langle name first \rangle$	John	$\langle \texttt{name last} \rangle$	Doe	<i>,</i> , , , , , , , , , , , , , , , , , ,	John Doe, American writer, born in Maryland in
$\langle \texttt{weight} angle$	150Kg	$\langle \texttt{height} angle$	160cm	$\leftarrow \ldots \rightarrow$	1967, famous for his strong prose and

• Output

- Content Selection rules, constrained by what is in the data

Methods

- Analyze how variation on the data influence variations in the text
 - * Compare the cross entropy of cluster of text induced by clusters on the data

- Generate immediate up-to-date information about individuals of interest
- PROGENIE: Automatic **Biographical** Description
- Columbia University—University of Colorado AQUAINT project
 - Open Question Answering

• **PROGENIE** has three major components

- 1. Knowledge Component
- 2. Generation Component
- 3. Learning Component
- The Knowledge Component provides structured knowledge for the Generation Component
 - Noisy input
- The Learning Component trains off-line major parts of the Generation Component
 - Using cleaner data, in the form of text and associated knowledge (Text and Knowledge Resource, TKR)

• Given:

 $-\left(KB_{1},Bio_{1}\right),\left(KB_{2},Bio_{2}\right),\left(KB_{3},Bio_{3}\right),\left(KB_{4},Bio_{4}\right)$

• If:

- $\{KB_1, KB_2\}$ contain ((birth place state), MD')
- { KB_3, KB_4 } contain ((birth place state), 'NY')
- Then:
 - Compare the language models of $\{Bio_1, Bio_2\}$ against $\{Bio_3, Bio_4\}$.
 - If the models differ (cross entropy), select (birth place state).
- $Bio_1 \Rightarrow$ "... born in Maryland..."
- $Bio_2 \Rightarrow$ "... from Maryland..."
- $Bio_3 \Rightarrow$ "... native from New York..."
- $Bio_4 \Rightarrow$ "... born in New York..."

- Obtained directly from the exact matching step
- Useful as a baseline for comparison
- Induction Algorithm
 - Count the number of times a data path appears matched in the texts
 - Select the data path if above some fixed threshold
- Example
 - Always select (name last)
 - Never select $\langle \texttt{height} \rangle$

- Augment the baseline rules
- Select or unselect each and every instance of a given data path
- Example
 - Will add to the baseline rules like (birth place state)

Impact

– Include datapaths where no exact match between data and text can be found (e.g., "MD" \rightarrow "Maryland").

(3) Statistical Selector Module

Find a change in word choice correlated with a change in data

(3) Statistical Selector Module

Find a change in word choice correlated with a change in data

(C) Content Selection Rules

Rules so far

- Always include (birth date day) (baseline)
- Always include (birth place state) (class-based)

• We want constrained rules

– Include the name of the award, if it is an Oscar.

• Example

- It appears ... won an Oscar...
- It does not appears ... won an Actors Association Award...
- Approach: look for *n*-grams in the text
 - As a **signal** for selection
 - won an $\langle award name \rangle$

Obtaining finer grained information

• The most significant *n*-grams were picked by looking at their overall contribution to the CE term

$$CE(M_1, M_2) = -\sum_{n-\text{gram}} P_{M_1}(n-\text{gram}) \log P_{M_2}(n-\text{gram})$$

- Re-sample and measure the impact of each *n*-gram to the cross-entropy formula
- Different strategies evaluated to select appropriate *n*-grams from the sampling
 - Top *n*-grams
 - Global discounting based on *n*-gram frequency

(5) Example Extractor Module

Extract training examples

• Training data for each data path is generated.

- Select the classification label (selected or unselected)
 - Via direct extraction from the exact match; or
 - Via the signaling *n*-grams.

Transform the weak evidence to direct evidence

$\langle name first \rangle \\ \langle weight \rangle$	John 150Kg $\langle name last \rangle$ $\langle height \rangle$	Doe 160cm	$\left \leftarrow \ldots \rightarrow \right $	John Doe, American writer, born in Maryland in 1967, famous for his strong prose and
			∫ ↓	
$\langle name first \rangle$ $\langle weight \rangle$	$\begin{array}{c c} John & \langle \texttt{name last} \rangle \\ 150Kg & \langle \texttt{height} \rangle \end{array}$	Doe 160cm	\leftrightarrow	$\begin{array}{ c c c c } \langle \texttt{name first} \rangle & \texttt{John} & \langle \texttt{name last} \rangle & \texttt{Doe} \\ \langle \texttt{weight} \rangle & \texttt{150Kg} & \langle \texttt{height} \rangle & \texttt{160cm} \end{array}$

Two phases of training and testing

• Knowledge bases from E! on-line (celebrities)

Development

- 102 biographies
- From biography.com
- Split into development training (91) and test (11)
- Hand-tagged the test set
- Average length: 450 words

Test

- 205 new biographies
- From imdb.com
- Split into training (191) and test (14)
- Hand-tagged the test set
- Average length: 250 words
- Content selection rules to be learned were different

Experiment	de	evelop	oment		imdb.com				
	Selected	Prec.	Rec.	F *	Selected	Prec.	Rec.	F *	
select-all	1129	0.26	1.00	0.41	1584	0.23	1.00	0.37	
baseline	530	0.40	0.72	0.51	727	0.35	0.68	0.46	
class-based	550	0.41	0.94	0.58	891	0.36	0.88	0.51	
content-selection	336	0.46	0.53	0.49	375	0.44	0.44	0.44	
test set	293	1.00	1.00	1.00	369	1.00	1.00	1.00	

Experiment	de	evelop	oment	t	imdb.com				
	Selected	Prec.	Rec.	F*	Selected	Prec.	Rec.	F*	
select-all	1129	0.26	1.00	0.41	1584	0.23	1.00	0.37	
baseline	530	0.40	0.72	0.51	727	0.35	0.68	0.46	
class-based	550	0.41	0.94	0.58	891	0.36	0.88	0.51	
content-selection	336	0.46	0.53	0.49	375	0.44	0.44	0.44	
test set	293	1.00	1.00	1.00	369	1.00	1.00	1.00	

Experiment	de	evelop	omen	t	j	mdb.	com	
	Selected	Prec.	Rec.	F*	Selected	Prec.	Rec.	F*
select-all	1129	0.26	1.00	0.41	1584	0.23	1.00	0.37
baseline	530	0.40	0.72	0.51	727	0.35	0.68	0.46
class-based	550	0.41	0.94	0.58	891	0.36	0.88	0.51
content-selection	336	0.46	0.53	0.49	375	0.44	0.44	0.44
test set	293	1.00	1.00	1.00	369	1.00	1.00	1.00

Experiment	de	evelo	pmen	t	imdb.com				
	Selected	Prec.	Rec.	F*	Selected	Prec.	Rec.	F*	
select-all	1129	0.26	1.00	0.41	1584	0.23	1.00	0.37	
baseline	530	0.40	0.72	0.51	727	0.35	0.68	0.46	
class-based	550	0.41	0.94	0.58	891	0.36	0.88	0.51	
content-selection	336	0.46	0.53	0.49	375	0.44	0.44	0.44	
test set	293	1.00	1.00	1.00	369	1.00	1.00	1.00	

• We filter out half the input data

- Keeping a 90%+ recall
- Class-based model is best
 - Aid in the Content Selection Knowledge Engineering task.
 - Ripper approach requires a better instance representation
- Novel method for learning Content Selection rules
 - Content Selection is a difficult, domain dependent, task

• Further work

- Incorporate knowledge (improve clustering and matching)
- Improve *n*-gram distillation and rule-induction instance representation