
Analytical Query Execution Optimized for all
Layers of Modern Hardware

Orestis Polychroniou

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018



c©2018

Orestis Polychroniou

All Rights Reserved



ABSTRACT

Analytical Query Execution Optimized for all
Layers of Modern Hardware

Orestis Polychroniou

Analytical database queries are at the core of business intelligence and decision support.

To analyze the vast amounts of data available today, query execution needs to be orders

of magnitude faster. Hardware advances have made a profound impact on database design

and implementation. The large main memory capacity allows queries to execute exclu-

sively in memory and shifts the bottleneck from disk access to memory bandwidth. In the

new setting, to optimize query performance, databases must be aware of an unprecedented

multitude of complicated hardware features. This thesis focuses on the design and imple-

mentation of highly efficient database systems by optimizing analytical query execution for

all layers of modern hardware. The hardware layers include the network across multiple

machines, main memory and the NUMA interconnection across multiple processors, the

multiple levels of caches across multiple processor cores, and the execution pipeline within

each core. For the network layer, we introduce a distributed join algorithm that minimizes

the network traffic. For the memory hierarchy, we describe partitioning variants aware to

the dynamics of the CPU caches and the NUMA interconnection. To improve the mem-

ory access rate of linear scans, we optimize lightweight compression variants and evaluate

their trade-offs. To accelerate query execution within the core pipeline, we introduce ad-

vanced SIMD vectorization techniques generalizable across multiple operators. We evaluate

our algorithms and techniques on both mainstream hardware and on many-integrated-core

platforms, and combine our techniques in a new query engine design that can better utilize

the features of many-core CPUs. In the era of hardware becoming increasingly parallel

and datasets consistently growing in size, this thesis can serve as a compass for developing

hardware-conscious databases with truly high-performance analytical query execution.



Table of Contents

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Modern Hardware Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Mainstream CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Cache Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Main Memory and NUMA . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Additional Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 SIMD Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Many Integrated Cores . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Distributed Joins with Minimal Network Traffic . . . . . . . . . . . . 10

1.3.2 In-Memory Partitioning and Large-Scale Sorting . . . . . . . . . . . 11

1.3.3 Lightweight Compression Alongside Fast Scans . . . . . . . . . . . . 11

1.3.4 Advanced SIMD Vectorization Techniques . . . . . . . . . . . . . . . 12

1.3.5 Query Execution Engines for the Many-Core Era . . . . . . . . . . . 12

1.4 Additional Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Heavy Hitter Aggregation for SIMD Processors . . . . . . . . . . . . 13

1.4.2 Energy Analysis of Hardware and Software Range Partitioning . . . 13

1.4.3 SIMD-accelerated Regular Expression Matching . . . . . . . . . . . 14

i



1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Parallel and Distributed Databases . . . . . . . . . . . . . . . . . . . 14

1.5.2 Batch Distributed Data Processing . . . . . . . . . . . . . . . . . . . 15

1.5.3 Network-Optimized Databases . . . . . . . . . . . . . . . . . . . . . 15

1.5.4 Query Execution Engines . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.5 Main-Memory Partitioning . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.6 In-Memory Joins and Group-by Aggregation . . . . . . . . . . . . . 17

1.5.7 Lightweight In-Memory Compression . . . . . . . . . . . . . . . . . . 17

1.5.8 SIMD Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.9 Databases on GPUs and FPGAs . . . . . . . . . . . . . . . . . . . . 18

2 Distributed Joins with Minimal Network Traffic 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Track Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 2-Phase Track Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 3-Phase Track Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 4-Phase Track Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Traffic Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Network Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Tracking-Aware Hash Join . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Semi-Join Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 In-Memory Partitioning and Large-Scale Sorting 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Partitioning Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Partitioning In-Cache . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ii



3.2.2 Partitioning Out-of-Cache . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Partitioning Across NUMA Regions . . . . . . . . . . . . . . . . . . 67

3.2.4 Radix / Hash Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.5 Range Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Radixsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.3 Comparison-Based Sorting . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Lightweight Compression Alongside Fast Scans 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Horizontal Bit Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Scalar Packing and Unpacking . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Word-Aligned Scalar Scanning . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 SIMD Unpacking and Scanning . . . . . . . . . . . . . . . . . . . . . 91

4.3 Vertical Bit Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Scalar Packing and Unpacking . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 SIMD Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3 SIMD Unpacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.4 Selection Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Advanced SIMD Vectorization Techniques 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Fundamental Operations for Vectorization . . . . . . . . . . . . . . . . . . . 106

5.2.1 Logical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Gather/Scatter Implementation . . . . . . . . . . . . . . . . . . . . . 107

5.2.3 Implementing Selective Loads / Stores . . . . . . . . . . . . . . . . . 109

iii



5.2.4 Algorithmic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Selection Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Linear Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Double Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.3 Cuckoo Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Radix / Hash Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6.2 Range Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6.3 Data Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6.4 Buffered Data Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Sorting and Hash Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.8.1 Selection Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.8.2 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8.3 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.8.4 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.8.5 Sorting and Hash Joins . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.9 SIMD CPUs and SIMT GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Query Execution Engines for the Many-Core Era 149

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Mainstream & Many-Core Processors . . . . . . . . . . . . . . . . . 151

6.2.2 Analytical Query Execution Engines . . . . . . . . . . . . . . . . . . 154

6.3 Vectorized Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.1 Scalar Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.2 SIMD Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Proposed Query Engine Design . . . . . . . . . . . . . . . . . . . . . . . . . 160

iv



6.4.1 Selection Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4.3 Hash Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.4 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.5 Materialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.6 Group-by Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 Conclusions and Future Work 191

Bibliography 198

v



List of Figures

1.1 SIMD instruction examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Example of network transfers in hash join and track join per distinct join key 29

2.2 Example of 4-phase track join optimal schedule generation per distinct join

key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Synthetic 109 unique R tuples on 109 unique S tuples (1 × 1 key matches) . 42

2.4 Synthetic 2·108 unique R tuples on 109 non-unique S tuples (1 × 5 key matches) 43

2.5 Synthetic 4 · 107 unique R tuples on 2 · 108 S tuples (1 × 5 key matches) . . 43

2.6 Synthetic 2 · 108 R tuples on 2 · 108 S tuples with 4 · 107 unique keys (5 × 5

key matches intra-table collocated) . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Synthetic 2 · 108 R tuples on 2 · 108 S tuples with 4 · 107 unique keys (5 × 5

matches inter-table collocated and intra-table collocated) . . . . . . . . . . 45

2.8 Slowest join of slowest query (Q1) of workload X (original data placement) 46

2.9 Slowest join of slowest query (Q1) of workload X (shuffled data placement) 46

2.10 Common slowest join in slowest queries 1–5 of X (dictionary compressed) . 47

2.11 Slowest join in slowest query of workload Y using variable byte encoding . . 48

3.1 Partitioning variants and contributions . . . . . . . . . . . . . . . . . . . . . 57

3.2 SIMD comb-sort (4-way) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Throughput of out-of-cache radix partitioning (1010 tuples) . . . . . . . . . 79

3.4 Partitioning throughput with uniform random and Zipf data (θ = 1.2) . . . 80

3.5 Scalability of out-of-cache radix partitioning (109 tuples, 1024-way) . . . . . 80

3.6 Throughput of histogram generation (1010 keys) . . . . . . . . . . . . . . . 81

vi



3.7 Throughput of all three sorting methods . . . . . . . . . . . . . . . . . . . . 81

3.8 Sorting scalability (109 tuples, 32-bit keys and 32-bit payloads) . . . . . . . 82

3.9 Execution time per sorting algorithm phase (1010 tuples) . . . . . . . . . . . 83

3.10 NUMA-aware vs. NUMA-oblivious sorting (1010 tuples) . . . . . . . . . . . 83

3.11 Performance of scalar and SIMD comb-sort (32-bit keys and 32-bit payloads) 84

4.1 Throughput of packing, unpacking, and scanning for horizontal and vertical

bit packing using scalar and SIMD code (multi-threaded) . . . . . . . . . . 100

4.2 Throughput of packing, unpacking, and scanning for horizontal and vertical

bit packing using scalar and SIMD code (single-threaded) . . . . . . . . . . 101

5.1 Selective store operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Selective load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Gather operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Scatter operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Selection scan throughput on KNC and Haswell (32-bit key and 32-bit payload)139

5.6 Throughput of hash table probing on KNC and Haswell using linear probing

(LP) and double hashing (DH) (shared, 32-bit key input → 32-bit payload

output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.7 Throughput of hash table probing on KNC and Haswell using cuckoo hashing

(shared, 32-bit key input → 32-bit payload output) . . . . . . . . . . . . . . 140

5.8 Throughput of building and probing hash tables on KNC using linear prob-

ing (LP), double hashing (DP), and cuckoo hashing (CH) (1:1 build–probe,

private, 32-bit keys and 32-bit payloads both inputs) . . . . . . . . . . . . . 141

5.9 Throughput of building and probing on KNC using linear probing (LP), dou-

ble hashing (DH), and cuckoo hashing (CH) (1:10 build–probe, L1-resident,

private, 32-bit keys and 32-bit payloads both inputs) . . . . . . . . . . . . . 141

5.10 Throughput of Bloom filter probing on KNC (5 hash functions, 10 Bloom

filter bits / tuple, 5% selectivity, 32-bit key and 32-bit payload) . . . . . . . 142

5.11 Throughput of radix and hash histogram generation on KNC (32-bit keys) . 143

5.12 Throughput of range partitioning function on KNC and Haswell (32-bit keys) 143

vii



5.13 Throughput of data shuffling for radix partitioning on KNC (private, out-of-

cache, 32-bit key and 32-bit payload) . . . . . . . . . . . . . . . . . . . . . . 144

5.14 Performance of sorting (LSB radixsort) on KNC . . . . . . . . . . . . . . . 145

5.15 Hash join performance on KNC (2 ·108 ./ 2 ·108 32-bit key and 32-bit payload)145

5.16 scalability of LSB radixsort and partitioned hash join on KNC (4 · 108 and

2 · 108 ./ 2 · 108 32-bit key and 32-bit payload, log/log scale) . . . . . . . . . 146

5.17 LSB radixsort and partitioned hash join on 1 61-core KNC co-processor (Intel

Xeon Phi 7120P) vs. 4 8-core Sandy Bridge CPUs (Intel Xeon E5 4620) (sort

4 · 108 tuples, join 2 · 108 ./ 2 · 108 tuples, 32-bit key and 32-bit payload) . . 146

5.18 Radixsort with varying payloads on KNC (2 · 108 tuples, 32-bit key) . . . . 147

5.19 Hash join with varying payloads on KNC (107 ./ 108 tuples, 32-bit keys) . . 147

6.1 Throughput of non-sequential accesses . . . . . . . . . . . . . . . . . . . . . 153

6.2 Running time of example query using code generation (10% selectivity) . . 159

6.3 Running time of example query using code generation (90% selectivity) . . 159

6.4 Example of selection scan (already determined tuples are not skipped) . . . 163

6.5 Hash join FonA from the example query with and without partitioning . . . 175

6.6 Example of mapping hashes to group-ids . . . . . . . . . . . . . . . . . . . . 176

6.7 Example of resolving hash collisions . . . . . . . . . . . . . . . . . . . . . . 179

6.8 Selection scans on uncompressed data (1–3 32-bit key columns, 1 predicate

per key column, 1 32-bit payload column) . . . . . . . . . . . . . . . . . . . 183

6.9 Selection scans on compressed data (1–3 32-bit key columns, 1 predicate per

key column, 1 32-bit payload column) . . . . . . . . . . . . . . . . . . . . . 184

6.10 Expression tree for selection on part table from TPC-H Q19 (0.24% selectivity)184

6.11 Selection on part table from TPC-H Q19 . . . . . . . . . . . . . . . . . . . . 185

6.12 Partition of multiple columns and types . . . . . . . . . . . . . . . . . . . . 185

6.13 Hash join on synthetic data (1 key, 1–3 payloads, 128M on 32M tuples) . . . 186

6.14 Hash joins using the core TPC-H tables . . . . . . . . . . . . . . . . . . . . 187

6.15 Group-by aggregation on synthetic data (1 32-bit group-by key, 1–3 32-bit

payloads, 1 sum aggregate per payload, count(*), 256M tuples) . . . . . . . 188

6.16 Step breakdown for join and aggregation . . . . . . . . . . . . . . . . . . . . 189

viii



6.17 Group-by aggregation step from TPC-H Q1 . . . . . . . . . . . . . . . . . . 190

ix



List of Tables

2.1 Column details of R and S tables joined in Q1 . . . . . . . . . . . . . . . . 45

2.2 CPU and network time of the slowest join of the slowest query of X and Y 50

2.3 Distributed hash join time per step (in seconds) . . . . . . . . . . . . . . . . 51

2.4 4-phase track join time per step (in seconds) . . . . . . . . . . . . . . . . . . 52

5.1 Experimental platforms for advanced SIMD vectorization experiments . . . 137

x



First, I would like to thank my advisor Kenneth Ross for accepting me as a PhD student,

discussing with me for endless hours, giving me complete intellectual freedom, and generally

tolerating me over these last 6 years. I would also like to thank Luis Gravano and Eugene

Wu for all the discussions that took place in the Columbia Database Group. I would also

like to thank Martha Kim and Stratos Idreos for their participation in the committee and

interest in the work.

Second, I would like to thank current and former members of the Columbia Database

Group at Columbia: Eva Sitaridi, Fotis Psallidas, John Paparrizos, Pablo Barrio, Bingyi

Cao, Jiacheng Yang, and Wandga Zhang, as well as other friends from Columbia: Dimitris

Paparas, Evangelia Skiani, Marios Pomonis, and Vasileios P. Kemerlis.

Third, I would like to thank Yannis Ioannidis, Yannis Smaragdakis, Alex Delis, and

Panagiotis Stamatopoulos for introducing me to Computer Science and Databases and

generally nurturing me during my undergraduate years in the University of Athens.

Fourth, I would like to thank Eric Sedlar, Nipun Agarwal, Rajkumar Sen, Arun Ragha-

van, and John Kowtko for the collaboration during my internships at the Oracle Labs.

Finally, I would like to thank Ippokratis Pandis and Michalis Petropoulos from Amazon

Web Services.

xi



To my family and closest friends.

xii



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In the era with large volumes of data easily accessible and business decisions being data

driven, analytical database queries are at the core of business intelligence and decision sup-

port. Database management systems have traditionally focused on transactions, supporting

analytical queries, but executing them at very low efficiency compared to what is achievable

by modern hardware. The quality of decision support depends on the amount of data we

process in time. Thus, the need for highly efficient analytical query execution is apparent.

Modern hardware advances have fundamentally reshaped the design and implementation

of database management systems. The advent of large main memory capacity has allowed

small to medium-sized databases to remain main-memory resident. The bottleneck shifts

from disk access, the metric that database systems have traditionally optimized for, to

memory bandwidth [?; Manegold et al., 2000a]. In the context of distributed databases, the

bottleneck is the network bandwidth. The potential performance improvement supported

by the hardware is now orders of magnitude higher compared to disk-oriented databases

and marks the one-size-fits-all database model as obsolete [Stonebraker et al., 2007].

Optimizing database systems by focusing on specific workloads is necessary to achieve

the efficiency potential provided by modern hardware [Stonebraker et al., 2005; Stone-

braker et al., 2007; Cudre-Mauroux et al., 2009; Raman et al., 2013; Gupta et al., 2015;

Dageville et al., 2016; Verbitski et al., 2017]. Workload specialization include transactional

(OLTP) databases, analytical (OLAP) databases, and others types such as array databases.

Analytical queries are fundamentally different than transactional queries, the classic focus



CHAPTER 1. INTRODUCTION 2

of database systems. An OLAP database varies in both the storage and the execution model

from an OLAP database. Transactional queries favor row-oriented storage, since they up-

date a small number of tuples. On the other hand, analytical queries favor column-oriented

storage, since they read a small number of attributes from a large number of tuples.

In this thesis, we describe techniques for the design and implementation of efficient

analytical query execution on modern hardware. Each chapter discusses optizations to

make query execution aware of (or utilize) different layers of the underlying hardware.

The hardware layers are main memory, the multiple levels of caches in modern processors,

the NUMA interconnection layer across multiple CPUs in shared memory platforms, the

network layer, and, finally, the layer above the caches commonly described as the processor

registers, but more accurately described as the throughput within each processor core.

The memory layers of a mainstream platform include three levels of CPU caches, the

main memory connected to each CPU socket, and the NUMA interconnection layer com-

bining multiple CPUs in a single shared memory platform. Memory access during query

execution is optimized not only via column-oriented storage and compression, but also

by using main memory partitioning to divide or cluster the data in smaller pieces with

better memory locality. Cache-conscious execution [Manegold et al., 2000b] can be used

on multiple database operators such as joins [Manegold et al., 2002; Kim et al., 2009; ?;

Blanas et al., 2011; Albutiu et al., 2012; Balkesen et al., 2013b; Balkesen et al., 2013a;

Schuh et al., 2016], group-by aggregation [Müller et al., 2015], and materialization [Mane-

gold et al., 2004], in order to eliminate random memory accesses and cache misses altogether.

Adapting to the multiple levels of memory hierarchy by minimizing cache misses and trans-

fers across CPUs is instrumental to efficiency. Chapter 3 describes multiple main memory

partitioning variants optimized for the CPU caches, main memory, and the NUMA inter-

connection. The partitioning variants are used as building blocks in the implementation of

multiple large-scale sorting algorithms with different properties.

Lightweight compression reduces the memory footprint and increases the data access

rate. Contrary to generic lossless compression, lightweight compression focuses on decom-

pression efficiency over compression ratio. Dictionary encoding is the simplest and most

common approach used in databases and allows query execution to use compressed data



CHAPTER 1. INTRODUCTION 3

directly without decompressing [Willhalm et al., 2009; Raman et al., 2013]. Dictionary en-

coding supports multiple schemes for storing the compressed bits and each scheme provides

different trade-offs [Ross and Cieslewicz, 2009; Li and Patel, 2013]. Optimizing and evalu-

ating multiple storage schemes is the focus of Chapter 4. The work can be used to choose

the most suitable compression storage scheme per case to fully optimize memory access.

Shared-memory platforms can scale up to a few terabytes of RAM using multiple CPUs.

However, for datasets that exceed that threshold, database management systems need to

scale out to multiple servers, using high speed network. If the data is memory resident

across multiple servers, distributed query execution is bound by the network bandwidth

that is an order of magnitude lower than main memory bandwidth. Designing distributed

algorithms that reduce network traffic by burdening the CPUs can reduce the end-to-end

execution time. Chapter 2 introduces track join, a distributed join algorithm that minimizes

network traffic by generating optimal transfer schedules for each distinct join key.

The memory hierarchy layers determine the throughput of loading data into the CPU

and storing data back to memory. However, the processing throughput within the CPU cores

is determined by the implementation of the database operators. Modern processors take

advantage of three sources of parallelism to maximize performance. First, instruction-level

parallelism optimizes the instruction throughput of the pipeline. Second, thread parallelism

involves multiple cores per CPU as well as multiple hardware threads per core executing

concurrently. Third, data parallelism is supported via SIMD vector registers that execute

the same operation for multiple data items per instruction. The primary source of core

pipeline efficiency based on the implementation, is SIMD vectorization. Databases already

utilize SIMD instructions for linear-access operators such as scans and compression but not

for non-linear-access operators such as hash joins. Chapter 5 describes advanced SIMD

vectorization techniques that cover most database operators including non-linear-access

cases such as hash tables, partitioning, and Bloom filters. The techniques are evaluated

on both mainstream CPUs and co-processors based on the first generation of the Intel

many-integrated-core (MIC) architecture. Compared to mainstream CPUs, the MIC archi-

tecture uses a larger number of smaller cores with wide SIMD registers and advanced SIMD

instructions, stressing thread and data parallelism over instruction-level parallelism.



CHAPTER 1. INTRODUCTION 4

Analytical query engines dictate how to implement each individual operator based

on holistic query engine design goals. For instance, code generation [Kim et al., 2010;

Neumann, 2011; Gupta et al., 2015] minimizes data materialization by pipelining oper-

ators and eliminate interpretation costs by compiling specific code per query. However,

cache-conscious execution is precluded and diminish the impact of SIMD vectorization is

diminished. In research, hardware-oriented optimizations such as SIMD vectorization and

partitioning, are typically applied to databases operators assuming simple data types and

predicates. In order to apply such optimizations in a realistic setting, a careful redesign of

each operator is necessary, in order to support multiple data types and complex predicates,

as well as contain the cost of data materialization. Chapter 6 describes an analytical query

engine design focused on SIMD vectorization. The design is tailored to the latest generation

of many-integrated-core processors. Notably, many-core processors include an additional

memory layer of on-chip high-bandwidth memory that is faster than main memory but

slower than the caches and can be used to facilitate cache-conscious execution.

We now briefly outline the chapters of the thesis. In Chapter 1, we present the necessary

background, detail our contributions, and discuss related work. In Chapter 2, we introduce

distributed joins with minimal network traffic. In Chapter 3, we design partitioning op-

timized for the CPU caches and the NUMA layer. In Chapter 4 we discuss lightweight

compression. In Chapter 5, we introduce advanced SIMD vectorization techniques to op-

timize the efficiency within the processor core. In Chapter 6, we describe a query engine

design tailored to many-core CPUs. In Chapter 7, we conclude and discuss future work.

Each contribution focuses on specific hardware layers but uses techniques from other

layers. To optimize query execution in an analytical database, we have to apply them in

unison. Partitioning, the focus of Chapter 3, is reused in Chapter 2 to implement a cache-

conscious track join, in Chapter 5 to implement cache-conscious hash joins and sorting

using SIMD, and in Chapter 6 for joins, aggregation, and materialization. Compression,

the focus of Chapter 4, is reused in Chapter 6. SIMD vectorization, the main focus of 5,

is used in Chapter 3 for range partitioning, in Chapter 4 to accelerate compression and

decompression, and in Chapter 6 as the basis of the query engine design. Finally, Chapter 6

combines the basic principles of Chapters 3, 4, and 5 in the context of a query engine.



CHAPTER 1. INTRODUCTION 5

1.1 Modern Hardware Hierarchy

The main hardware advances over the last decade that fundamentally reshaped database

design and implementation are (i) the increase in main-memory capacity and bandwidth,

and (ii) the performance of modern multi-core CPUs. The increase in main-memory capacity

allows medium to large databases to remain memory resident. Even when the dataset is

too large, query execution can operate in a reduced memory-resident working set. In other

words, database operators look like high-performance in-memory algorithms, in contrast

to traditional databases where disk access dominated execution time. Modern CPUs have

increased their performance throughput, driving novel designs and implementations for most

database operators, in order to take advantage of the complex features of modern CPUs.

1.1.1 Mainstream CPUs

Modern mainstream CPUs share specific characteristics. Up to about a decade ago, pro-

cessors had been doubling the frequency clock rate every few years. At the same time, the

processors had become increasingly complicated. Besides the tens of stages, the pipeline

became super-scalar, executing multiple instructions per cycle, with instructions executing

mostly out-of-order. These advances are the basis of instruction-level parallelism. When the

clock frequency race came to a halt, the solution was to place multiple cores per CPU chip.

Each core would retain most advanced instruction-level parallelism capabilities, combined

now with thread parallelism. The last source of parallelism, data parallelism, was supported

in mainstream CPUs via SIMD instructions, before the advent of multi-cores.

We outline the characteristics of modern CPUs: (i) massively super-scalar execution

that reaches 6–8 instructions per cycle, (ii) aggressive out-of-order execution with a reorder

buffer window that fits hundreds of instructions, (iii) at least a dozen cores for server-class

platforms, (iv) simultaneous multi-threading (SMT) supporting multiple hardware threads

per physical core, (v) multiple levels of caches with each lower level increasing in capacity

and latency, and (vi) advanced SIMD instructions and wide 256-bit or 512-bit SIMD regis-

ters. The latest mainstream CPU micro-architectures by Intel are, in chronological order,

Westmere, Sandy Bridge, Haswell, and Skylake.



CHAPTER 1. INTRODUCTION 6

1.1.2 Cache Hierarchy

The cache hierarchy in modern processors has remained relatively stable among the lat-

est micro-architectures. The L1 cache is private per core and is split between data and

instruction cache. The L1 capacity is 32–64 KB and the latency is 1–5 cycles. The L2

cache is also private per core, the capacity of 256–512 KB, and the latency is 10 cycles or

less. The L3 cache has a capacity in the range 8–128 MB and the latency is 25–50 cycles.

The L3 is shared among all the cores in the chip. Deviations from this scheme exist in the

many-integrated-cores (MIC) architecture outside of the spectrum of mainstream CPUs.

We discuss MIC platforms and their relevance to mainstream CPUs in Chapters 5 and 6.

CPU caches are important in databases, especially for analytical queries. The disk–RAM

pair of traditional databases has been substituted by the RAM–cache pair. In the past, the

working set was a subset of the dataset and was loaded from disk to memory. Nowadays,

the entire dataset is already in memory and the working set is kept small enough to remain

cache-resident. Cache-conscious execution refers to database operator algorithms that take

into account the cache capacity to manage the working set accordingly. Interestingly, as

we show in Chapter 3, main-memory partitioning, the most important operator of cache-

conscious algorithms, is particularly unfavorable to caches if implemented näıvely.

1.1.3 Main Memory and NUMA

The capacity of main memory is currently in the scale of terabytes for high-end servers.

Small to medium-sized databases can easily fit in memory on server-class platforms. The

memory bandwidth has also increased via a quad-channel interconnection between the mem-

ory modules and the CPU. The RAM bandwidth today can reach 50 GB/s using a single

CPU. Sequential memory accesses take advantage of hardware prefetching, a mechanism

that automatically requests the following cache lines before they are explicitly requested by

the software. Databases can easily saturate the memory bandwidth for selection scans on

uncompressed data. In Chapter 4, we show that lightweight compression not only reduces

the data footprint, but also allows for skipping a constant percentage of the input.

Data are transferred from memory into the CPU in cache lines. Cache lines are 64–

128 bytes and are the minimum unit of transfer across the levels of the cache as well as



CHAPTER 1. INTRODUCTION 7

between the CPU and main memory. The cache line units further reduces the throughput

of random accesses. For instance, accessing a large array of 4-byte integers in random

order, is at least 16 times slower than sequential accesses given 64-byte cache lines, without

taking into account the absence of hardware prefetching. Random accesses are further

burdened by TLB (transaction-lookahead-buffer) misses during the translation of virtual

memory addresses to physical memory addresses. Virtual addressing is the indirection level

for memory translation imposed by the operating system (OS). In Chapter 3, we show that

transferring the data between the caches and main memory in cache line units is essential

when partitioning inputs larger than the cache.

To scale the memory bandwidth while retaining the shared-memory multi-processing

model, we connect multiple CPUs via the NUMA (non-uniform-memory-access) intercon-

nection layer. Each CPU is connected to local RAM modules, collectively known as the

NUMA region. In order for a CPU to access data from a memory module connected to

another CPU, the request travels through the NUMA interconnection layer. These transfers

across NUMA boundaries result in additional latency. In Chapter 3, we show that NUMA-

aware algorithms can achieve significant speedups over their NUMA-oblivious counterparts.

1.1.4 Network Layer

To scale up memory capacity and bandwidth, we can connect 2–8 CPUs in a shared memory

platform. Beyond that limit, we scale out to multiple nodes, potentially each node having

multiple CPUs, connected via fast local-area network (LAN). The fastest LAN networks

today use the InfiniBand protocol and transfer ∼ 10 GB/s node-to-node. Databases take

advantage not only of the increased network bandwidth but also of the reduced latencies

via RDMA (remote-direct-memory-access), to execute distributed transactions efficiently.

In analytical queries, bandwidth is the relevant factor for network efficiency. Neverthe-

less, the fastest networks are still significantly slower than RAM. For nodes with multiple

CPUs, the total memory bandwidth can exceed 200 GB/s, which is at least an order of

magnitude higher than the bandwidth of the fastest network. In Chapter 2, we discuss

how to trade-off network traffic for CPU cycles via a new distributed join algorithm that

minimizes the volume of network transfers by placing extra work on the CPUs.



CHAPTER 1. INTRODUCTION 8

1.2 Additional Background

1.2.1 SIMD Vectorization

SIMD (single-instruction-multiple-data) refers to special CPU instructions that operate

on special registers and execute the same instruction for multiple elements at once. The

operations for all 8 elements are computed in a single instruction with a throughput of one

cycle. SIMD is synonymous to data parallelism. The term data parallelism is derived from

the fact that the data must be spatially adjacent to execute the same operation for multiple

elements, using as many instructions as we would use for a single element in scalar code.

51 2 3 4 6 7 8

313 8 5 2 1 121

815 11 9 8 8 922

+

=

(a) 8-way addition

79 1 8 2 3 6 4

83 5 7 -2 4 -61

00 -1 0 -1 -1 -1-1

>

=

(b) 8-way comparison

51 1 2 3 8 13 21

71 3 2 0

215 13 1 3 2 18

45 6

(c) 8-way permutation

Figure 1.1: SIMD instruction examples

Writing code in SIMD requires the use of SIMD instructions directly. We can invoke

SIMD instructions by using intrinsics provided by the compiler. Intrinsics are part of the

official ISA documentation and their descriptions are available online.1

void add(const int* a, const int* b, int* c, size_t n) {
size_t i = 0;

do {
c[i] = a[i] + b[i];

} while (++i != n);

}

We show an example of a simple loop adding the elements of two arrays of 32-bit integers

using scalar code and SIMD code. In modern CPUs, SIMD registers are 128-bit, 256-bit,

or 512-bit wide. For this example, we assume 256-bit SIMD registers and use the AVX2

instruction set. Each 256-bit register processes 8 32-bit elements. The functions we invoke

are intrinsics mapped to single assembly instructions and are inlined by the compiler.

1http://software.intel.com/sites/landingpage/IntrinsicsGuide/

http://software.intel.com/sites/landingpage/IntrinsicsGuide/


CHAPTER 1. INTRODUCTION 9

void add_simd(const int* a, const int* b, int* c, size_t n) {
size_t i = 0;

do {
// load 8 32-bit integers from array "a" into 256-bit SIMD register "x"

__m256i x = _mm256_load_si256((__m256i*) &a[i]);

// load 8 32-bit integers from array "b" into 256-bit SIMD register "y"

__m256i y = _mm256_load_si256((__m256i*) &b[i]);

// add 8 32-bit integers from registers "x" and "y" into 256-bit SIMD register "z"

__m256i z = _mm256_add_epi32(x, y);

// store 8 32-bit integers from 256-bit SIMD register "z" to array "c"

_mm256_store_si256((__m256i*) &c[i], z);

} while ((i = i + 8) != n); // we assume for simplicity that n is a multiple of 8

}

SIMD instructions specify the size of each element they process. Assuming 256-bit

SIMD registers, the AVX2 SIMD ISA specifies instructions to add 32 8-bit integers, 16 16-bit

integers, 8 32-bit integers, 4 64-bit integers, 8 32-bit floating point numbers, and 4 64-bit

floating point numbers. The degree of data parallelism is dependent on the hardware that

determines the size of the SIMD register, and on the software that specifies the size of

each element. In Chapter 4, we show how to utilize 8-bit integer as part of 32-bit integer

decompression to increase the degree of parallelism through the use of shorter integers.

SIMD vectorization is a fundamental optimization for modern CPUs since it enables one

of the two sources of parallelism triggered by the software. Thread parallelism is enabled

in software via the use parallel algorithms. Instruction-level parallelism is already provided

by the hardware unless we suffer from performance pitfalls such as branch mispredictions

and virtual function calls. Data parallelism is enabled in software via SIMD.

Automatic SIMD vectorization refers to the compilation of scalar source code without

SIMD intrinsics into assembly with SIMD instructions. The previous example is simple

enough to be automatically vectorized by popular compilers. However, automatic vector-

ization is limited to simple cases and does not cover database operators with more complex

control flow and non-linear memory accesses.

In database research, the most common SIMD vectorization approach is to implement

individual operators in an ad-hoc way, using techniques applicable only to one specific prob-

lem. In Chapter 5, we show that generic SIMD vectorization requires the transformation of

control flow into data flow. In Chapter 6, we show that vectorization affects the algorithmic

design of individual operators as well as the design of the whole query execution engine.



CHAPTER 1. INTRODUCTION 10

1.2.2 Many Integrated Cores

The trade-off between fewer complex cores versus many simple cores has regained interest

since the advent of many-integrated-core (MIC) platforms. The first generation of MIC

platforms codenamed Knights Corner (KNC) were co-processors connected via PCI-e like

GPUs and used P54C (Pentium 1) cores without super-scalar or out-of-order execution.

However, the simpler cores had reduced energy and area footprint and had ∼ 60 cores per

chip. Still, each core supported 512-bit SIMD ahead of mainstream CPUs at the time. The

MIC design reduced instruction-level parallelism in favor of thread and data parallelism. In

Chapter 5, we use KNC co-processors to evaluate advanced SIMD vectorization techniques.

The latest MIC platform codenamed Knights Landing (KNL) is also available as a

stand-alone CPU. KNL (or many-core) CPUs have 60–70 cores per chip, with super-scalar

pipelines, out-of-order execution, with AVX-512 SIMD, same as the latest mainstream

CPUs. In addition to regular DRAM, many-core CPUs have access to 16 GB of high-

bandwidth on-chip multi-channel DRAM (MCDRAM) that is faster than regular DRAM

and slower than the caches, albeit much larger in capacity. In Chapter 6, we discuss the

design of analytical query engines for many-core CPUs.

1.3 Contributions

1.3.1 Distributed Joins with Minimal Network Traffic

Network communication is the slowest component of many operators in distributed parallel

databases. Existing parallel DBMSs rely on algorithms designed for disks with minor mod-

ifications for networks. A more complicated algorithm may burden the CPUs, but could

avoid redundant transfers of tuples across the network. In Chapter 2 [Polychroniou et al.,

2014], we introduce track join, a novel distributed join algorithm that minimizes network

traffic by generating an optimal transfer schedule per distinct join key. Track join extends

the trade-off options between CPU and network. Our evaluation based on real and synthetic

data shows that track join adapts to diverse cases and degrees of locality. Considering both

network traffic and execution time, even with no locality, track join outperforms hash join

on the most expensive queries of real workloads.



CHAPTER 1. INTRODUCTION 11

1.3.2 In-Memory Partitioning and Large-Scale Sorting

High-throughput in-memory query execution relies on partitioning to cluster or divide data

into smaller pieces and thus achieve better parallelism and memory locality. In Chap-

ter 3 [Polychroniou and Ross, 2014a], we consider a comprehensive collection of variants of

main-memory partitioning tuned for various layers of the memory hierarchy. We revisit the

pitfalls of in-cache partitioning, and utilizing the crucial performance factors, we introduce

new variants for partitioning out-of-cache. Besides non-in-place variants where linear extra

space is used, we introduce large-scale in-place variants, and propose NUMA-aware parti-

tioning that guarantees locality on multiple processors. Also, we make range partitioning

comparably fast with hash or radix, by designing a novel cache-resident index to compute

ranges. All partitioning variants are combined to build three NUMA-aware sorting algo-

rithms: a stable LSB radixsort; an in-place MSB radixsort using different variants across

memory layers; and a comparison-based sort using high-fanout range partitioning.

1.3.3 Lightweight Compression Alongside Fast Scans

Database systems employ compression, not only to fit the data in main memory, but also to

address the memory bandwidth bottleneck. Lightweight compression schemes focus on effi-

ciency over compression rate and allow query operators to process the data in compressed

form. Dictionary compression keeps the distinct column values in a sorted dictionary and

stores the values as index codes with the minimum number of bits. Packing the bits of

each code contiguously, namely horizontal bit packing, has been optimized by using SIMD

instructions for unpacking and by evaluating predicates in parallel per processor word for

selection scans. Interleaving the bits of codes, namely vertical bit packing, provides faster

scans, but incurs prohibitive costs for packing and unpacking. In Chapter 4 [Polychroniou

and Ross, 2015], we improve packing and unpacking for vertical bit packing using SIMD

instructions, achieving more than an order of magnitude speedup. Also, we optimize hori-

zontal bit packing on the latest CPUs and compare all approaches. While no single variant

is better in all cases, vertical bit packing now offers a good overall trade-off by combining

the fastest scans with comparably fast packing and unpacking.



CHAPTER 1. INTRODUCTION 12

1.3.4 Advanced SIMD Vectorization Techniques

Analytical databases are continuously adapting to the underlying hardware in order to

saturate all sources of parallelism. Many-core platforms stray from the mainstream CPU

design by packing a larger number of simpler cores per chip, relying on SIMD instructions to

fill the performance gap. In Chapter 5 [Polychroniou and Ross, 2014b; Polychroniou et al.,

2015], we present vectorized designs and implementations of database operators, based on

advanced SIMD operations. We study selections, hash tables, Bloom filters, partitioning,

sorting and joins. Our evaluation on many-core co-processors and mainstream CPUs shows

that our vectorization techniques are an order of magnitude faster than the state-of-the-art

scalar and vectorized implementations. We highlight the impact of SIMD vectorization on

the algorithmic design of database operators, as well as the architectural design and power

efficiency of hardware, by making simple cores comparably fast to complex cores.

1.3.5 Query Execution Engines for the Many-Core Era

Hardware-conscious query execution engines, even after specializing to transactions or an-

alytics, are based on multiple distinctive designs. Due to the continuous evolution of hard-

ware, new platforms can favor or disfavor existing designs. For example, the recent many-

core platforms revisit the trade-off between many simple cores and fewer complex cores.

In Chapter 6, we focus on analytical query execution on many-core CPUs. We extend a

state-of-the-art design used on mainstream CPUs by combining code generation and oper-

ator pipelining with SIMD vectorization, and show that the SIMD vectorization speedup

is diminished when query execution is memory-bound. To better utilize the hardware, we

introduce VIP, an analytical query execution engine built bottom-up from pre-compiled

column-oriented data-parallel sub-operators, implemented entirely in SIMD, and utilizing

the high-bandwidth on-chip memory of many-core CPUs to facilitate cache-conscious exe-

cution. We discuss selection scans, compression, hash joins, and group-by aggregation, and

extend the operators to support multiple data types and complex predicates. In our eval-

uation using synthetic and TPC-H queries, we show that VIP outperforms hand-written

optimized query-specific code without including the runtime compilation overhead, and

highlight the efficiency of VIP at utilizing the hardware features of many-core CPUs.



CHAPTER 1. INTRODUCTION 13

1.4 Additional Work

In this section, we discuss additional work of the author that is not presented in detail in

the following chapters. The work is within the topic of analytical query execution.

1.4.1 Heavy Hitter Aggregation for SIMD Processors

Heavy hitters are data items that occur at high frequency in a data set. They are among the

most important items for an organization to summarize and understand during analytical

processing. In data sets with sufficient skew, the number of heavy hitters can be relatively

small. We take advantage of this small footprint to compute aggregate functions for the

heavy hitters in fast cache memory in a single pass. In [Polychroniou and Ross, 2013], we

design cache-resident, shared-nothing structures that hold only the most frequent elements.

Our algorithm works in three phases. It first samples and picks heavy hitter candidates.

It then builds a hash table and computes the exact aggregates of these elements. Finally,

a validation step identifies the true heavy hitters from among the candidates. We identify

trade-offs between the hash table configuration and performance. Configurations consist of

the probing algorithm and the table capacity that determines how many candidates can be

aggregated. The probing algorithm can be perfect hashing, cuckoo hashing and bucketized

hashing to explore trade-offs between size and speed. We optimize performance by the

use of SIMD instructions, utilized in novel ways beyond single vectorized operations, to

minimize cache accesses and the instruction footprint.

1.4.2 Energy Analysis of Hardware and Software Range Partitioning

Data partitioning is a critical operation for manipulating large datasets because it subdi-

vides tasks into pieces that are more amenable to efficient processing. It is often the limiting

factor in database performance and represents a significant fraction of the overall runtime of

large data queries. In [Wu et al., 2014], we measure the performance and energy of state-of-

the-art software partitioners, and describe and evaluate a hardware range partitioner that

further improves efficiency. The software implementation is broken into two phases, allow-

ing separate analysis of the partition function computation and the cost of data shuffling.



CHAPTER 1. INTRODUCTION 14

Although range partitioning is commonly thought to be more expensive than simpler strate-

gies such as hash partitioning, our measurements indicate that careful data movement and

optimization of the partition function can allow it to approach the throughput and energy

consumption of hash or radix partitioning. For further acceleration, we describe a hardware

range partitioner, a streaming framework that offers a seamless execution environment for

this and other streaming accelerators, and a detailed analysis of a 32nm physical design

that matches the throughput of 4–8 software threads while consuming just 6.9% of the area

and 4.3% of the power of a Xeon core in the same technology generation.

1.4.3 SIMD-accelerated Regular Expression Matching

String processing tasks are common in analytical queries powering business intelligence.

Besides substring matching, provided in SQL by the like operator, popular DBMSs also

support regular expressions as selective filters. Substring matching can be optimized by

using specialized SIMD instructions on mainstream CPUs, reaching the performance of

numeric column scans. However, generic regular expressions are harder to evaluate, being

dependent on both the DFA size and the irregularity of the input. In [Sitaridi et al., 2016],

we optimize matching string columns against regular expressions using SIMD-vectorized

code. Our approach avoids accessing the strings in lockstep without branching, to exploit

cases when some strings are accepted or rejected early by looking at the first few characters.

On common string lengths, our implementation is up to 2X faster than scalar code on a

mainstream CPU and up to 5X faster on the Xeon Phi co-processor, improving regular

expression support in DBMSs.

1.5 Related Work

1.5.1 Parallel and Distributed Databases

The foundations of distributed query processing and parallel database implementation

[Bernstein and Chiu, 1981; DeWitt et al., 1984; DeWitt and Gray, 1992; Epstein et al., 1978;

Mackert and Lohman, 1986] have been laid some decades back. The fundamental dis-

tributed hash join algorithm was first presented as part of the Grace database machine



CHAPTER 1. INTRODUCTION 15

[Kitsuregawa et al., 1983] and was later parallelized by the Gamma project [DeWitt et al.,

1990]. Distributed algorithms that filter tuples to reduce network traffic have been exten-

sively studied, namely semi-joins [Bernstein and Chiu, 1981; Roussopoulos and Kang, 1991;

Stamos and Young, 1993], Bloom-joins [Mullin, 1990], and other approaches [Li and Ross,

1995]. Contemporary databases shift from the one-size-fits-all paradigm and are optimized

for specific workloads, the most notable cases being transactions and relational analyt-

ics. Transactional distributed databases are targeting higher transaction throughput, by

eliminating unnecessary network communication [Stonebraker et al., 2007] due to latency

induced delays of distributed commit protocols. [Binnig et al., 2016] discussed changes to

both transactional and analytical workloads for high-end networks, by improving the dis-

tributed 2-phase-commit protocol using RDMA as well as Grace hash join and group-by

aggregation using local preprocessing and semi-join filtering.

1.5.2 Batch Distributed Data Processing

Batch distributed data processing systems such as MapReduce [Dean and Ghemawat, 2004]

are popular platforms for executing analytical database workloads [Thusoo et al., 2009].

[Pavlo et al., 2009] evaluated MapReduce against distributed databases and finds that

found databases to be faster at execution but slow when data loading times are taken

into account. [Afrati and Ullman, 2010] proposed a single-pass algorithm for shuffling

data across the network for multiple joins. [Chu et al., 2015] evaluated the algorithm

alongside Grace hash join alongside multiple approaches for executing the joins in memory.

[Okcan and Riedewald, 2011] proposed MapReduce joins with minimized network transfers

by collocating the data with the relevant processing operations to reduce the network traffic.

1.5.3 Network-Optimized Databases

[Kim et al., 2012] proposed a distributed sorting algorithm where CPU and network time

are overlapped by transferring keys and payloads separately. [Frey et al., 2009] discussed

distributed joins on faster networks where the network is not the bottleneck by broadcasting

relations using a ring-like topology. [Rödiger et al., 2014] discussed network time optimiza-

tion for distributed joins by formulating the placing of partitions in network nodes as an



CHAPTER 1. INTRODUCTION 16

integer optimization problem. However, the approach is NP-complete and therefore cannot

be applied per-key. In contrast, the track join algorithm we propose in Chapter 2 minimizes

network volume using linear scheduling applied per key, achieving a finer granularity opti-

mum. While completion time is not necessarily a better metric than network volume when

partial results can be consumed as soon as they are generated, track join can utilize the

same temporal scheduling to reduce end-to-end time. [Zamanian et al., 2015] discussed data

placement to maximize locality for database workloads. [Rödiger et al., 2015] measured the

impact of high-speed networks on query optimization and in-memory execution. [Rödiger

et al., 2016] proposed a distributed join algorithm that deals with skew building on top of

hash join and broadcast join. [Barthels et al., 2015] optimized distributed hash joins to

run on low-area high-end networks using RDMA and [Barthels et al., 2017] extended the

approach in the latest hardware using thousands of cores.

1.5.4 Query Execution Engines

High-performance in-memory query execution originated with the advent of large main-

memory capacities. Column-oriented query execution [Manegold et al., 2000a] and cache-

conscious database operators [Manegold et al., 2002; Manegold et al., 2004] were proposed

even before the advent of multi-core CPUs. Analytical database systems adopted column-

oriented storage, focusing on columnar compression [Stonebraker et al., 2005] and complex

materialization strategies [Abadi et al., 2007] to further optimize memory access. Notable

commercial analytical databases use column-oriented storage and compression as their basic

design principles [Raman et al., 2013; Willhalm et al., 2009]. Storage managers have also

been improved since [Johnson et al., 2009] to keep up with the increasing speed. Column-

oriented block-at-a-time execution [Boncz et al., 2005] as well as per-query code generation

and compilation [Gupta et al., 2015; Kim et al., 2010; Neumann, 2011] are both state-of-

the-art analytical query engine designs. To combine transactions and analytics, [Grund et

al., 2010; Alagiannis et al., 2014; Arulraj et al., 2016] proposed hybrid-stores and adaptive

stores over column stores. [Menon et al., 2017] combined block-at-a-time execution with

prefetching to reduce the cost of cache misses in code generation. We will discuss analytical

query execution engines further in Section 6.2.2. While most engine designs dictate a



CHAPTER 1. INTRODUCTION 17

particular way to build each operator, optimized implementations of isolated individual

operators are also popular. These implementations typically use key–rid pairs and omit

payload materialization. In Chapter 6 we generalize from key–rid pairs to realistic database

operators that support multiple columns, data types, and complex predicates.

1.5.5 Main-Memory Partitioning

We first present related work on in-memory partitioning which is the focus of Chapter 3.

[Manegold et al., 2000b] identified that TLB thrashing occurs when näıvely partitioning to

a large number of outputs that exceed the TLB capacity. [Satish et al., 2010] introduced

efficient out-of-cache partitioning using cache-resident buffers and [Wassenberg and Sanders,

2011] identified the significance of write-combining to avoid cache pollution. Both works

applied efficient partitioning to radixsort. [Wu et al., 2013] proposed hardware-accelerated

range partitioning for performance and power efficiency. [Li et al., 2013] evaluated data

shuffling on the NUMA layer for platforms with multiple CPUs. [Cho et al., 2015] discussed

in-place radix-sort. [Psaroudakis et al., 2016] studied data placement on NUMA platforms.

1.5.6 In-Memory Joins and Group-by Aggregation

[Manegold et al., 2002] proposed the first cache-conscious design of hash join and [Kim et

al., 2009] applied the design to multi-core CPUs. [Blanas et al., 2011] argued that hardware-

oblivious joins are fast enough. [Balkesen et al., 2013b] argued in favor of partitioning-based

hash join implementations. [Albutiu et al., 2012] proposed a NUMA-aware sort-merge-join

algorithm for mulitple CPUs and later [Balkesen et al., 2013a] evaluated sort-merge join

against hash joins on NUMA platforms. [Lee et al., 2014] descibed the execution of joins

on compressed data. [Schuh et al., 2016] re-evaluated multiple hash join implementations,

pointing out that payload materialization eventually becomes more expensive than the hash

join itself and thus optimizing a stand-alone hash join is of limited use. We will use these

observations in Chapter 6 to discuss hash joins in the context of the whole query engine.

[Cieslewicz and Ross, 2007; Cieslewicz et al., 2010; Ye et al., 2011] discussed how to scale

group-by aggregation on multi-core processors by avoiding contention and [Müller et al.,

2015] discussed cache-conscious aggregation via partitioning.



CHAPTER 1. INTRODUCTION 18

1.5.7 Lightweight In-Memory Compression

Modern analytical databases are tuned for main-memory accesses [?; Manegold et al.,

2000a]. [Stonebraker et al., 2005] highlighted the importance of columnar compression for

in-memory databases. [Zukowski et al., 2006] discussed RAM to CPU-cache decompression.

[Abadi et al., 2006] incorporated compression into query execution. [Holloway et al., 2007]

studied schema-tuned query code generation. [Johnson et al., 2008] studied selection scans

on bit packed data. [Raman and Swart, 2006] discussed entropy compression including com-

plex dictionary encoding schemes, later applied in commercial database systems [Raman

et al., 2013]. [Afrati and Ullman, 2010] proposed pattern-based compression in processor

words. [Li and Patel, 2013] proposed vertical bit packing and denormalization with com-

pression to convert complex queries into scans [Leis et al., 2014]. [Feng et al., 2015] proposed

vertical byte packing. [Feng and Lo, 2015] showed how to compute aggregation functions

on bit packed data. [Satish et al., 2010] studied skew-friendly compression. [Stepanov

et al., 2011] studied vectorized variable-byte encoding. [Lemire and Boytsov, 2015] dis-

cussed vectorized frame-of-reference compression and delta encoding. [Lemire et al., 2016;

Wang et al., 2017] evaluated such compression techniques on inverted lists and bitmaps.

1.5.8 SIMD Vectorization

Optimizing database operators to use SIMD instructions is essential to take advantage of

data parallelism provided by modern processors. [Zhou and Ross, 2002] applied SIMD to

linear scans, index scans, and nested loop joins. [Ross, 2007] proposed hash tables with

multiple keys per bucket probed via SIMD instructions, and applied the idea to cuckoo

hashing. [Willhalm et al., 2009] optimized decompression of bit packed data. In Chapter 4

we discuss the optimization of other bit packing layouts using SIMD instructions. [Inoue et

al., 2007] proposed data-parallel combsort and merging. [Chhugani et al., 2008] optimized

bitonic merging for mergesort. [Kim et al., 2010] proposed multi-way trees tailored to the

SIMD layout by comparing multiple keys per node. [Roy et al., 2012] proposed SIMD-based

pre-filtering for frequent itemset mining. [Mühlbauer et al., 2013] optimized data loading

from CSV files using SIMD instructions for efficient parsing. [Idreos et al., 2007] proposed

database cracking, a dynamic partitioning for selection scans. [Pirk et al., 2014b] proposed



CHAPTER 1. INTRODUCTION 19

a SIMD implementation for cracking. [Inoue et al., 2014] redesigned sorted set intersection

using SIMD to reduce branch mispredictions. [Inoue and Taura, 2015] studied the sorting

of structures instead of key–rid pairs. Hash joins were evaluated on first generation MIC

co-processors by [Jha et al., 2015] and on second generation MIC processors by [Cheng et

al., 2017]. [Sidirourgos and Kersten, 2013] presented in-memory secondary indexes based

on bitmaps and zonemaps, implemented in SIMD by [Sidirourgos and Mühleisen, 2017].

Compilers can translate simple scalar code to use SIMD instructions based on loop un-

rolling [Larsen and Amarasinghe, 2000] and control flow predication [Shin, 2007]. However,

the vectorized operators we present in Chapter 5 are too complex to be automatically vec-

torized by any compiler as of yet. Also, the vectorized code executes the same database

operation but is not always equivalent to the scalar code.

1.5.9 Databases on GPUs and FPGAs

GPUs are somewhat similar to SIMD vectorization since the SIMT model is loosely similar

to the SIMD model. [Bakkum and Skadron, 2010] described the implementation of database

operators on GPUs. [Kim et al., 2010] applied the multi-way index optimization to both

CPUs and GPUs. [Satish et al., 2010] also evaluated optimized SIMD radixsort on both

CPUs and GPUs. [Pirk et al., 2011] discussed the asymmetries in the memory layout

of GPUs compared to CPUs. [Sitaridi and Ross, 2012] discussed memory contention for

group-by aggregation on GPUs. [Kim et al., 2012] discussed hash joins in GPUs, focusing

in efficient data transfers via the PCI-e channel. [Sitaridi and Ross, 2013] studied selective

predicates and proposed an optimization model for disjunctive selections on GPUs. [Pirk

et al., 2014a] presented techniques towards co-processing database workloads in multiple

platforms including GPUs. [Pirk et al., 2015] measured several hardware traits of GPUs

and MIC co-processors. [Pirk et al., 2016] proposed a vectorization algebra for mapping

SIMD operations to high-level constructs, encompassing both CPUs and GPUs. [Sitaridi

and Ross, 2016] discussed regular expression matching on GPUs and [Sidler et al., 2017]

proposed using FPGAs for the same problem. [Stehle and Jacobsen, 2017] revisited data

partitioning on GPUs by focusing on TLB misses. [Kara et al., 2017] proposed off-loading

in-memory partitioning from the CPUs to FPGAs.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 20

Chapter 2

Distributed Joins with Minimal

Network Traffic

2.1 Introduction

The processing power and storage capacity of a single server can be large enough to fit small

to medium scale databases. Servers with memory capacity of more than a terabyte are now

common. Packing a few multi-core CPUs on top of shared non-uniform access (NUMA)

RAM provides substantial parallelism, where we can run in-memory database operations

(i.e. sort, join, and group-by) at rates of a few gigabytes per second [Albutiu et al., 2012;

Balkesen et al., 2013a; Satish et al., 2010; Wassenberg and Sanders, 2011; Ye et al., 2011].

Database research has also evolved to catch up to the hardware advances. Fundamental

design rules of the past on how a DBMS should operate are now being revised due to

their inability to scale and achieve good performance on modern hardware. Special purpose

databases are now popular against the one-size-fits-all approach [Stonebraker et al., 2007],

while accelerators [Raman et al., 2013] are the implicit manifestation of the same concept.

The advances in database design for storage and execution on modern hardware have

not been met by similar advances in distributed parallel database design. When the most

fundamental work on distributed and parallel databases was published [Bernstein et al.,

1981; Epstein et al., 1978; Mackert and Lohman, 1986], hardware advances of today like

multi-core parallelism had not yet occurred. Techniques to speed up short-lived distributed



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 21

transactions [Stonebraker et al., 2007] target distributed commit protocols, which suffer

from network latencies rather than throughput. Queries where communication is inevitable

are less popular research topics or are left for data-centric generic distributed systems for

batch-processing [Dean and Ghemawat, 2004; Pavlo et al., 2009].

The latest network technologies may be slow relative to main-memory-resident process-

ing. A 40 Gbps InfiniBand measured less than 3 GB/s real data rate per node during hash

partitioning. If done in RAM, partitioning to a few thousand outputs runs close to the

memory copy bandwidth [Satish et al., 2010; Wassenberg and Sanders, 2011]. For instance,

a server using 4X 8-core CPUs and 1333 MHz quad-channel DDR3 DRAM achieves a par-

tition rate of 30–35 GB/s, more than an order of magnitude higher than the InfiniBand

network. [Balkesen et al., 2013a] achieves a hash join rate of 4.85 GB/s of 32-bit key, 32-bit

payload tuples on 4X 8-core CPUs. Such high-end specifications are common in commercial

hardware platforms for large-scale analytics.

Network optimization is important for both low-end and high-end hardware. In low-end

platforms where the network is relatively slow compared to local in-memory processing, we

expect the execution time to be dominated by network transfers. Thus, any network traffic

reduction directly translates to faster execution. In high-end platforms, given that the

network still cannot be as fast as the RAM bandwidth, completion times are also reduced

if the reduction in network traffic is comparable with the increase in CPU cycles.

In order to show how much time databases can spend on the network, we give an

example of a real analytical workload from a large commercial vendor, using a market-

leading commercial DBMS. Using 8 machines connected through 40 Gbps InfiniBand (see

Section 2.4 for more details of the configuration), we found that the five most expensive

queries spend ∼ 65–70% of their time transferring tuples on the network and account for

14.7% of the total time required to execute the entire analytical workload with more than

1500 queries. All five queries have a non-trivial query plan (4–6 joins), but spend 23%,

31%, 30%, 42%, and 43% of their total execution time on a single distributed hash join.

A sophisticated DBMS should have available options to optimize the trade-off between

network and CPU utilization. One solution would be to apply network optimization at a

higher level treating the network as a less desired route for data transfers, without modifying



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 22

the underlying algorithms. These approaches are common in generic distributed processing

systems [Dean and Ghemawat, 2004]. A second solution would be to employ data compres-

sion before sending data over the network. This solution is orthogonal to any algorithm but

can consume a lot of CPU resources without always yielding substantial compression. A

third solution is to create novel algorithms for database operator evaluation that minimize

network communication by incurring local processing cost. This approach is orthogonal and

compatible with compression and other higher level network transfer optimizations.

Grace hash join [DeWitt et al., 1990; Kitsuregawa et al., 1983] is the predominant

method for executing distributed joins and uses hash partitioning to split the initial problem

into shared-nothing sub-problems that can proceed locally per node. Partitioning both

tables works almost independently of the table sizes. However, hash join is far from network-

optimal because it transfers almost the full size of both tables over the network. Using

pre-determined hash functions guarantees load balancing, but limits the probability that a

hashed tuple will not be transferred over the network to 1/N on N nodes.

We introduce track join, a novel algorithm for distributed joins that minimizes transfers

of tuples across the network. The main idea of track join is to decide where to send rows

on a key by key basis. The decision uses information about where records of the given key

are located. Track join has the following properties: it (i) is orthogonal to data-centric

compression, (ii) can co-exist with semi-join optimizations, (iii) does not rely on favorable

schema properties, such as foreign key joins, (iv) is compatible with both row-store and

column-store organization, and (v) does not assume favorable pre-existing tuple placement.

We implement track join to evaluate the most expensive join operator in the most expensive

queries of real workloads. We found that track join reduces the network traffic significantly

over known methods, even if pre-existing data locality is removed and all data are used in

optimally compressed form throughout the join.

The rest of this chapter is organized as follows. In Section 2.2, we describe the track

join algorithm by using three variants with increasing complexity. In Section 2.3, we discuss

query optimization costs, tracking-aware hash joins, and semi-join filtering. In Section 2.4,

we present our experimental evaluation using both synthetic datasets and real workloads.

In Section 2.5, we discuss our conclusions.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 23

2.2 Track Join

Formally, the problem under study is the general distributed equi-join. The input consists

of tables R and S split arbitrarily across N nodes. Every node can send data to all other

nodes and all links are considered to have the same network bandwidth. We present three

versions of track join gradually evolving in complexity.

The first version of track join (2-phase track join) discovers network locations that have

at least one matching tuple for each unique key. We then pick one side of the join and

broadcast each tuple to all locations that have matching tuples of the other table for the

same join key. We use the term selective broadcast for this process.

The second version of track join (3-phase track join) gathers not only a boolean indicator

whether a node has tuples of a specific join key or not, but also the total size of these tuples.

Using this information at runtime, we pick the cheapest side to be selectively broadcast, a

decision taken independently for each distinct join key.

The third and full version of track join (4-phase track join) generates an optimal join

schedule for each distinct key achieving minimum payload transfers, without hashing or

broadcasting. The schedule migrates tuples from one table to potentially fewer nodes,

before selectively broadcasting tuples from the other table.

The algorithm is described here using a pipelined approach. We assume three processes

(R, S operating on tables R and S, and T that generates schedules) running simultaneously

on all nodes. A non-pipelined approach is also possible (see Section 2.4).

We now explain the algorithmic convention used throughout this section. Types are

shown next to variables when their values are being assigned. Unless a new value assignment

is explicitly written, the variable already has a value and is used as input.

2.2.1 2-Phase Track Join

The 2-phase track join is the simplest version of track join. The first phase is the tracking

phase, while the second phase is the selective broadcast phase. In the first phase, both

R and S are projected to their join key and sent over the network. The destination is

determined by hashing the key, in the same way that hash join sends tuples. Duplicate keys



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 24

Algorithm 1: 2-Phase Track Join: processR − R to S

1 TR ← {}
2 for all 〈keyR|S k, payloadR pR〉 in table R do

3 if k not in TR then

4 n← hash(k) mod N

5 send k to processT n

6 TR ← TR ∪ 〈k, pR〉

7 barrier

8 while any processT nT sends do

9 for all 〈keyR|S k, processS nS〉 from nT do

10 for all 〈k, payloadR pR〉 in TR do

11 send 〈k, pR〉 to nS

on each node are redundant and are eliminated locally. Every node receives unique keys

and stores them alongside the id of the source node. Then, transfer schedules are generated

for each join key based on the locations of matching tuples. Hash partitioning the join keys

ensures load balancing of the schedule generation process across all nodes.

In the second phase, we transfer payloads from one input only. When R tuples are

transferred, processT sends messages to each location with matching R tuples. Each message

includs the join key and the set of locations with matching S tuples. Algorithm 1 describes

processR of 2-phase track join that selectively broadcasts tuples from table R.

Algorithm 2 describes the transferring of R tuples during 2-phase track join. Note that

the algorithm is not identical to the R-processing part. When R tuples are transferred, the

Algorithm 2: 2-Phase Track Join: processS − R to S

1 TS ← {}
2 for all 〈keyR|S k, payloadS pS〉 in table S do

3 if k not in TS then

4 n← hash(k) mod N

5 send k to processT n

6 TS ← TS ∪ 〈k, pS〉

7 barrier

8 while any processR nR sends do

9 for all 〈keyR|S k, payloadR pR〉 from nR do

10 for all 〈k, payloadS pS〉 in TS do

11 commit 〈k, pR, pS〉



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 25

Algorithm 3: 2-Phase Track Join: processT − R to S

1 TR|S ← {}
2 while any processR or any processS nR|S sends do

3 for all 〈keyR|S k〉 from nR|S do

4 TR|S ← TR|S ∪ 〈k, nR|S〉

5 barrier

6 for all distinct keyR|S k in TR|S do

7 for all 〈k, processR nR〉 in TR|S do

8 for all 〈k, processS nS〉 in TR|S do

9 send 〈k, nS〉 in nR

R-processing algorithm sends the payloads, while the S-processing algorithms receives the R

tuples and joins them locally. The inverse would happen if S tuples were transferred. Both

algorithms use a distributed barrier to synchronize all processes between the two phases.

Algorithm 3 describes the process of receiving the join keys, generating the transfer

schedules, and distributing the broadcast locations. The decision whether to selectively

broadcast R tuples to S locations, or S tuples to R locations, is decided by the query

optimizer before the 2-phase track join starts executing, similarly to hash joins where we

decide beforehand which relation to build in a hash table and which relation to probe.

The tracking phase of 2-phase track join resembles a hash join on the join keys, after

eliminating duplicates. The selective broadcast phase resembles a broadcast join, since only

the tuples of one table are transferred over the network. However, compared to a broadcast

join that sends the R tuples to all nodes, track join selectively broadcasts the R tuples to

nodes that are known to contain matching S tuples. For instance, consider a join with two

equally sized tables with unique join keys and low join selectivity. The total cost of track

join would be the cost of the tracking phase plus the size of the smallest table min(|R|, |S|),

taking into account the average payload size times the number of tuples. In the same

scenario, a broadcast join would cost (N − 1) · min(|R|, |S|), and a hash join would cost

(N − 1)/N · (|R| + |S|). Having entirely unique keys maximizes the cost of the tracking

phase to wkey/(wkey + wpayload) times that of hash join, where wkey and wpayload are the

key and payload widths. As long as wkey < wpayload and the key is smaller than half of the

tuple, track join will transfer less data than hash join.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 26

2.2.2 3-Phase Track Join

3-phase track join improves over 2-phase track join by deciding whether to broadcast R

tuples to the locations of S tuples, or vice versa. The decision is taken while executing the

join, independently for each distinct join key. In order to decide which selective broadcast

direction is cheaper, we need to know how many tuples will be transferred in each case.

We gather this information during the tracking phase. Instead of only tracking nodes with

at least one matching tuple, as done in 2-phase track join, here we also track the number

of matches for each distinct join key per node. Thus, we know not only which nodes have

matching tuples per join, but also how many tuples. To generalize for tuples of variable

length, instead of using a single count, we sum the widths of the matching tuples per node.

Algorithm 4 describes the processing of R tuples during 3-phase track join. The algo-

rithms for processing R and S are identical in 3-phase track join. The additional step is

Algorithm 4: 3-Phase Track Join: processR

1 TR ← {}
2 for all 〈 keyR|S k, payloadR pR〉 in table R do

3 TR ← TR ∪ 〈k, pR〉

4 barrier

5 for all distinct keyR|S k in TR do

6 c← |k in TR|
7 n← hash(k) mod N

8 send 〈k, c〉 to processT n

9 barrier

10 while any processS or any processT sends do

11 if source is processT nT then

12 for all 〈 keyR|S k, processS nS〉 from nT do

13 for all 〈k, payloadR pR〉 in TR do

14 send 〈k, pR〉 to nS

15 else if source is processS nS then

16 for all 〈keyR|S k, payloadS pS〉 from nS do

17 for all 〈k, payloadR pR〉 in TR do

18 commit 〈k, pR, pS〉

Algorithm 5: 3-Phase Track Join: processS

1 [...] // symmetric with processR of 3-phase track join



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 27

the count aggregation of the join keys. The unique join keys and the aggregated counts are

hash partitioned over the network. Duplicate key elimination is part of the aggregation.

The first of the two barriers can be omitted here since the first phase sends nothing over

the network. Nevertheless, we include the barrier to clarify that the tracking phase will

practically start only after the local count aggregation on each node is completed.

Algorithm 6 describes the process of receiving the join keys, generating the bi-directional

transfer schedules, and driving of bi-directional selective broadcasts. The hash partitioning

of keys also distributes the matching tuple counts used to pre-compute the selective broad-

cast cost. We compute the cost for both directions and pick the cheapest. Then the suitable

key and node-id messages are relayed to source nodes to drive the selective broadcast.

The improvement of 3-phase over 2-phase track join is that bi-directional selective broad-

cast can distinguish cases in which moving S tuples would transfer fewer bytes than moving

Algorithm 6: 3-Phase Track Join: processT

1 barrier

2 TR|S ← {}
3 while any processR or any processS nR|S sends do

4 for all 〈keyR|S k, count c〉 from nR|S do

5 TR|S ← TR|S ∪ 〈k, nR|S , c〉

6 barrier

7 for all distinct keyR|S k in TR|S do

8 R, S ← {}, {}
9 for all 〈k, processR nR, count c〉 in TR|S do

10 R← R ∪ 〈nR, c · widthR〉

11 for all 〈k, processS nS , count c〉 in TR|S do

12 S ← S ∪ 〈nS , c · widthS〉

13 cRS ← broadcast R to S

14 cSR ← broadcast S to R

15 if cRS < cSR then

16 for all 〈k, processR nR〉 in TR|S do

17 for all 〈k, processS nS〉 in TR|S do

18 send 〈k, nS〉 to nR

19 else

20 for all 〈k, processS nS〉 in TR|S do

21 for all 〈k, processR nR〉 in TR|S do

22 send 〈k, nR〉 to nS



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 28

Algorithm 7: Track Join: Broadcast R to S (used in processT )

1 rtotal ← 0 // the total number of matching R tuples (or their total size)

2 rlocal ← 0 // the total number of matching R tuples in nodes with matching S tuples (local sends)

3 nR ← 0 // the number of nodes with matching R tuples (excluding self)

4 nS ← 0 // the number of nodes with matching S tuples (including self)

5 for all processR|S i do

6 rtotal ← rtotal + Ri // add the total number of matching R tuples in node i

7 if Ri 6= 0 and i 6= nself then

8 nR ← nR + 1 // count nodes with both R and S tuples

9 if Si 6= 0 then

10 rlocal ← rlocal + Ri nS ← nS + 1

11 return rtotal · nS − rlocal + nR · nS ·M // M : the size of the schedule message

R tuples. Because selective broadcasts occur from both directions, the algorithm for pro-

cessing R and S includes both cases. The decision whether to selectively broadcast R→ S

or S → R is taken independently per distinct join key and we do not pick a single direction

for the entire join. 3-phase track join also simplifies query optimization since we do not

need to predetermine which input to selectively broadcast.

The cost of a selective broadcast (R→ S) is shown in Algorithm 7. The cost is the same

as a Cartesian product excluding all nodes that have no tuples of the particular join key.

We compute the total size of R (rall), the size of R tuples in nodes with matching S tuples

(rlocal), the number of nodes with matching R tuples (nR), and the number of nodes with

matching S tuples (nS). The total cost is then computed by subtracting the local R tuples

(rlocal) from all R tuples (rall). We also include the cost of sending location messages that

drive the selective broadcast. The size of these messages denoted by (M , is the length of

the join key, the length of the node-id, and the length of the tuple count. In Section 2.2.4,

we discuss simple ways to reduce the size of such messages to reduce the network traffic.

Computing the cost of selective broadcast has O(n) complexity, where n is the number

of nodes with at least one matching tuple for the particular join key in either input. Nodes

with keys from neither input are ignored. Since the number of steps per join key is bounded

by the number of matching tuples, the total number of steps for the entire join is also

bounded by the total number of tuples in both join inputs. Thus, the complexity of the join

algorithm is in the worst case linear to the number of input tuples, similarly to hash join.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 29

…                              …

Hash Join (cost = 10)            2-Phase Track Join (cost = 12)       3-Phase Track Join (cost = 8)           4-Phase Track Join (cost = 6)

R 2 0 4 0 0

…                              …S 0 3 0 1 0

…                              …2 0 4 0 0

…                              …0 3 0 1 0

…                              …2 0 4 0 0

…                              …0 3 0 1 0

…                              …2 0 4 0 0

…                              …0 3 0 1 0

Figure 2.1: Example of network transfers in hash join and track join per distinct join key

2.2.3 4-Phase Track Join

In the full version of track join, the join is logically decomposed into single key (Cartesian

product) joins for each distinct join key. By minimizing the network cost of each Cartesian

product, we reduce the network cost of the entire join. If we omit the cost of tracking which

cannot be optimized in a generic way, 4-phase track join transfers the minimum amount of

payload data possible for an early-materialized distributed join.

4-phase track join extends 3-phase track join by using a more complicated scheduling

algorithm that includes a migration phase. The additional phase ensures that when tuples

from one table are selectively broadcast to matching tuple locations from the other table, we

have already migrated tuples to a subset of nodes, minimizing the total network transfers

for the particular join key. Note that track join does the scheduling of tuples transfers

independently for each distinct join key, the finest granularity level.

In Figure 2.1 we show an example of how the different join algorithms behave for a single

key. In hash join, we assume the hash destination is the fifth node. In 2-phase track join

we selectively broadcast R tuples to matching S tuple locations and in 3-phase track join

we choose the opposite direction, since it is cheaper. The 4-phase track join first migrates

R tuples, before selectively broadcasting S tuples.

The migration phase allows tuples from one table to be moved to fewer nodes before the

selective broadcast from the other table. The schedules do not only decide which side to

selectively broadcast, but also which nodes will migrate migrate to other nodes, so that the

selective broadcast can skip nodes. Even if we end up migrating all tuples to a single node,

track join still performs better than hash join, because the destination is determined by

hashing but is the node with the most pre-existing matching tuples. Algorithm 8 describes

the migration of R tuples. Processing S is identical.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 30

Algorithm 8: 4-Phase Track Join: ProcessR

1 [...] // identical to the 1st phase of 3-phase track join

2 barrier

3 [...] // identical to the 2nd phase of 3-phase track join

4 barrier

5 while any processT or any processR sends do

6 if source is processT nT then

7 for all 〈keyR|S k, processR nR〉 from nT do

8 for all 〈k, payloadR pR〉 in TR do

9 send 〈k, pR〉 to nR

10 TR ← TR \ 〈k, pR〉

11 else

12 for all 〈keyR|S k, payloadR pR〉 from nR do

13 TR ← TR ∪ 〈k, pR〉

14 barrier

15 [...] // identical to the 3rd phase of 3-phase track join

Algorithm 9: 4-Phase Track Join: ProcessS

1 [...] // symmetric with processR of 4-phase track join

We now show the driving of the migration phase in Algorithm 10. During the migration

phase, we send key and node-id messages to source nodes to drive the migration matching

tuples. Note that we never send the same message to multiple destinations. Every node

that receives a 〈 k, nR 〉 message, sends all R tuples with key equal to k to the node nR

(and only that node). The same is true for S tuples.

We are still missing two pieces of the puzzle to complete 4-phase track join. First, we

need to explain how to generate transfer schedules that include migration. Second, we have

to prove that these transfers schedules are optimal for single key joins.

We formalize the problem of network traffic minimization for a single key (Cartesian

product) join, assuming for simplicity (but without loss of generality) that the plan is known

to every node and there is no need to send any location messages. Assume that xij is the

binary decision of sending R tuples from node i to node j, while yij is the binary decision

of sending S tuples from node j to node i. Ri is the total size of R tuples in node i and |Sj |

is the total size of S tuples in node j. Since each schedule is on a single key, we have to

join every Ri data part with every Sj data part. One way is by sending R tuples from i to



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 31

Algorithm 10: 4-Phase Track Join: ProcessT

1 barrier

2 [...] // identical to the 2nd phase of 3-phase track join

3 barrier

4 for all distinct keyR|S k in TR|S do

5 R, S ← {}, {}
6 for all 〈k, processR nR, count c〉 in TR|S do

7 R← R ∪ 〈nR, c · widthR〉

8 for all 〈k, processS nS , count c〉 in TR|S do

9 S ← S ∪ 〈nS , c · widthS〉

10 cRS , Smigrate ← migrate S and broadcast R

11 cSR, Rmigrate ← migrate R and broadcast S

12 if cRS < cSR then

13 for all 〈k, processS nS〉 in Smigrate do

14 send 〈k, dS〉 to nS

15 TR|S ← TR|S \ 〈k, nS , count csrc〉
16 TR|S ← TR|S \ 〈k, dS , count cdst〉
17 TR|S ← TR|S ∪ 〈k, dS , csrc + cdst〉

18 else

19 for all 〈k, processR nR〉 in Rmigrate do

20 TR|S ← TR|S \ 〈k, nR, count csrc〉
21 TR|S ← TR|S \ 〈k, dR, count cdst〉
22 TR|S ← TR|S ∪ 〈k, dR, csrc + cdst〉

23 barrier

24 [...] // identical to the 3rd phase of 3-phase track join

j, setting xij = 1. Another option is to send S tuples from j to i, setting yij = 1. The last

option is to send both Ri and Sj to a common third node and join them there. In short,

we need some node k, where xik = 1 and ykj = 1. Local sends do not affect the network

traffic, thus all xii and yjj are excluded from the cost.

minimize:
∑
i

∑
j 6=i

xij ·Ri + yij · Sj subject to: ∀i, j
∑
k

xik · ykj ≥ 1

We solve the traffic minimization problem by allowing tuples to be migrated before the

selective broadcasts. Before the R→ S selective broadcast, we migrate S tuples, by testing

how the cost of the selective broadcast is affected. Since the mechanism allows only S tuples

to be transferred, we can easily decide whether the S tuples of some node should stay in

place, or be transferred somewhere with more S tuples. Also, the destination can be any



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 32

Algorithm 11: Track Join: Migrate S and Broadcast R (used in processT )

1 rtotal, rlocal, nR, nS ← 0 // same as in Algorithm 7

2 cmax ← 0 // the most matching tuples on a node with some S tuples

3 for all processR|S i do

4 rtotal ← rtotal + Ri

5 if Ri 6= 0 and i 6= nself then

6 nR ← nR + 1

7 if Si 6= 0 then

8 rlocal ← rlocal + Ri

9 nS ← nS + 1

10 if Ri + Si > cmax then

11 cmax ← Ri + Si

12 imax ← i // the node with the most matching tuples and some S tuples

13 c← rtotal · nS − rlocal + nR · nS ·M
14 Smigrate ← {} // the set of nodes that will migrate S tuples

15 for all processR|S i do

16 if Si 6= 0 and i 6= imax then

17 ∆← Ri + Si − rtotal − nR ·M
18 if i 6= iself then

19 ∆← ∆ + M

20 if ∆ < 0 then

21 c← c + ∆

22 Smigrate ← Smigrate ∪ {i}

23 return c, Smigrate

node that has S tuples (that will not be migrated), thus deciding the destination node is not

an issue. The cost of the selective broadcast is considered alongside the cost of migration.

If migrating tuples from a node n reduces the selective broadcast cost but increases the

total cost, then the migration from node n is rejected.

Algorithm 11 shown above, computes the optimal schedule of S tuple migration followed

by the R → S selective broadcast. The key and node-id messages have size m. We first

compute the cost of the selective broadcast R → S. Then, we iterate over every S node

with matching tuples and check whether migrating the S tuples would reduce the overall

cost, since we will have to selective broadcast to one less node later. The decision can be

taken greedily without considering any other nodes.

Since we consider each node with matching tuples exactly once, schedule generation is

in the worst case linear to the number of matching tuples, not to the total number of nodes.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 33

Theorem 1. We can generate optimal selective broadcast R → S schedules for any single

join key by migrating S tuples. The optimal schedule can be determined in worst-case O(n)

time, where n is the total number of R and S tuples.

Proof. We want to compute a set of nodes Smigrate ⊆ S, where any node i in Smigrate

migrates local matching tuples. Observe that the migration destination does not affect the

network cost, thus, can be any node in S \ Smigrate. Let mi be the binary decision whether

node i keeps all local matching S tuples (mi = 0 ⇔ i ∈ S \ Smigrate) or migrates them

(mi = 1⇔ i ∈ Smigrate). The cost of migrating selective broadcast from R to S is:

∑
Ri ·

∑
(1−mi)−

∑
Ri · (1−mi) +

∑
Si ·mi

The
∑
Ri term is the total size of R tuples, the

∑
(1−mi) is the number of locations with S

tuples, the
∑
Ri ·(1−mi) are the R tuples that were local during broadcast and

∑
Si ·mi is

the cost of migrating S tuples. Since
∑
Ri(≡ R) and

∑
Si(≡ S) are independent of all mi,

the formula can be minimized by checking each mi independently. Finally, since Smigrate

cannot contain all nodes, we never consinder adding the node i with the largest Ri + Si

(and Si > 0) in Smigrate (mi = 0).

Theorem 2. Between the two selective broadcast schedules (R→ S or S → R), optimized

by adding a migration phase, the one with the lowest network cost is also the schedule with

the minimum network traffic for the single key (Cartesian product) join.

Proof. Given the set Smigrate, after migrating S from Smigrate nodes and before executing

the selective broadcast of R tuples to S locations, migration of any R tuples cannot reduce

the network cost further. Assume we migrate R tuples from node x to node y. If y ∈

S \ Smigrate, then the network cost remains the same, since we moved the R tuples from

node x once, increasing the network cost by Rx. However, now the R tuples are local to

the S tuples at node y and we can skip node y during the selective broadcast, reducing the

network cost by Rx. Across the two phases, the network cost remains the same. On the

other hand, if y ∈ Smigrate, the network cost of the migration phase increases by Rx without

reducing the network cost of the selective broadcast phase. Thus, the network cost across

the two phases increases. Thus, migrating tuples from both tables is meaningless.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 34

…                              …

Selective Broadcast (cost = 0+33)       Migrate 4? Yes (cost = 4+24)    Migrate 9? No (cost = 13+16)         Migrate 6? Yes (cost = 10+14)

R 0 4 8 9 6

…                              …S 0 2 5 3 1

…                              …0 4 8 9 6

…                              …0 2 5 3 1

…                              …0 4 8 9 6

…                              …0 2 5 3 1

…                              …0 4 8 9 6

…                              …0 2 5 3 1

max

Figure 2.2: Example of 4-phase track join optimal schedule generation per distinct join key

What the last proof means, is that the migrate and broadcast mechanism is sufficient to

generate optimal schedules for single key joins. There are no plans that would migrate data

from both tables with a lower network cost. Similarly, there are no other tuple transferring

mechanisms that can achieve a lower network cost, without taking into account the cost of

the tracking phase. Thus, the mechanism of 4-phase track join is sufficient to minimize the

network traffic at the finest granularity possible.

In Figure 2.2 we show an example of 4-phase track join schedule generation for a single

join key. Initially, we compute the cost of the selective broadcast and check for each node

whether migrating its matching tuples reduces the total network cost. The nodes that have

no matching tuples from either R or S are not considered at all during schedule generation.

The time to generate each schedule depends on the number of tuples per join key. The input

of schedule generation is an array of triplets with (i) key, (ii) node identifier, and (iii) tuple

size (width). If a node does not contain a key, the triplet for that node is not generated

at all. Thus, schedule generation is linear to the number of input tuples from both tables.

Note that track join is a greedy algorithm, thus we use the term minimal instead of the

term minimum. While we proved that the amount of payload data transferred is indeed

minimum, we cannot always guarantee minimal network traffic throughout all phases of the

join, since the tracking phase cannot be optimized.

Using multiple threads is essential to achieve good performance on all CPU intensive

tasks, even when the complexity is linear. The optimization becomes more important if the

data remain main-memory resident throughout the join. Track join allows all in-process

operations across keys to be parallelized across threads freely, since all local operations

combine tuples with the same join key only. Recent work showed that dynamic thread

sharing [Leis et al., 2014] is essential to achieve good performance when multiple operators

are pipelined. Such techniques are usable in track join.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 35

Finally, while the algorithmic descriptions of track join in this section implement track

join by pipelining different operators, track join can also be implemented by fully separating

the steps. Each step materializes the results in memory before the following step. In such

an implementation, we do not separate processes R, S, and T , since they run in successive

steps and not in parallel. Each step can be implemented to use multiple threads internally.

In Section 2.4, we use this approach to implement track join and evaluate its running times.

2.2.4 Traffic Compression

Track join, as described so far, makes absolutely no effort to reduce the data footprint by

compressing the data before sending them over the network. Modern analytical database

systems employ distinct column value dictionaries [Raman et al., 2013; Willhalm et al.,

2009]. The compression process can occur offline, and data can be processed in compressed

form throughout the join. In this section, we briefly discuss some techniques that can

further reduce network traffic on top of track join.

A simple compression technique is delta encoding [Lemire and Boytsov, 2015; Stone-

braker et al., 2005]. With sufficient spare CPU cycles, we can sort all columns before

sending them over the network. Track join imposes no specific message ordering, besides

the barriers between phases. The highest compression ratio is achieved by sorting.

A second approach is to create common prefixes by partitioning the data at the source

nodes before sending anything over the network. For instance, we can radix partition the

first bp out of b bits and pack (b − bp)-bit suffix with a common prefix. We can tune the

compression rate by employing more partition passes to create wider prefixes, since each

radix partitioning pass is very fast and runs as fast as a memory-to-memory copy [Satish

et al., 2010; Wassenberg and Sanders, 2011]. If the column values are dictionary encoded

throughout the join, the number of distinct dictionary indexes that share the same prefix

is maximized and the common prefix method is more effective.

The messages sent over the network that drive the migration and the selective broadcast

phases are a pair of a key and a node id each. We can group the pairs that have the same

node id together and avoid transferring the node ids on every message. Instead, we send

all keys tagged with the same node id as a group and reduce the network footprint.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 36

2.3 Query Optimization

The formal model of track join is used by the query optimizer to decide whether to use

track join, hash join, or broadcast join. We prove track join superior to hash join, even after

making the latter tracking-aware using globally-unique record identifiers (rids). Finally, we

study how track join interacts with Bloom filters in semi-joins.

2.3.1 Network Cost Model

In this section, we assume a uniform distribution of tuples across nodes. This is the worst

case for track join since it precludes locality. Track join optimization is not limited to one

specific distribution as we will explain in this section.

The network cost of the standard hash join with early materialized payloads is:

N − 1

N
· (tR · (wk + wR) + tS · (wk + wS))

where tR and tS are the tuple counts of tables R and S, wk is the total width of the join

key columns used in conjunctive equality conditions, while wR and wS are the total width

of relevant payload columns projected for the later steps of the query.

To define the network cost of 2-phase track join, we first determine the cost of tracking.

The number of nodes that contain matches for each key is upper bounded by N and is t/d, in

the worst case when equal keys are randomly distributed across nodes, where t is the number

of tuples and d is the number of distinct values. We use the terms nR ≡ min(N, tR/dR)

and nS ≡ min(N, tS/dS) for these commonly reused quantities. We also use N = N−1
N to

exclude keys that are already in their hash destination.

We define the input selectivity (sR and sS) as the percentage of tuples of one table that

have matches in the other table, after applying all other selective predicates. The number

of distinct nodes with matching payloads also includes the input selectivity factor. We

assume that the selective predicates do not use the key column and the number of distinct

keys is unaffected. Again, we synopsize these commonly reused quantities using the terms

mR ≡ min(N, (tR · sR)/dR) and mS ≡ min(N, (tS · sS)/dS).



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 37

Using the terms described above, the cost of 2-phase track join is:

N · (dR · nR + dS · nS) · wk (track R and S keys)

+dR ·mR ·mS · wk (transfer S locations)

+tR · sR ·mS · (wk + wR) (transfer R → S tuples)

For 3-phase track join, we transfer counts during tracking alongside the keys. The

t/(d · s) fraction gives the average repetition of keys on each node if the distribution and

node placement is assumed to be uniform random. We use this metric to estimate how

many bits to use for representing counters (or tuple widths). We refer to the counter

lengths using cR ≡ log(tS/(dS · nS)) and cS ≡ log(tS/(dS · nS)). Even if some keys occur

frequently enough to exceed the maximum count, we can still aggregate at the destination

before the schedule generation. The cost of 3-phase track join is:

N · dR · nR · (wk + cR) + dS · nS · (wk + cS) (tracking)

+dR1 ·mS1 · wk + tR1 · sR1 ·mS1 · (wk + wR1) (R1 → S1)

+dS2 ·mR2 · wk + tS2 · sS2 ·mR2 · (wk + wS2) (S2 → R2)

In this formula, we assume the tuples are split into two separate classes R1, S1 and R2, S2.

The tuples of R1 are defined based on whether the R → S direction is less expensive than

the S → R direction at distinct join key granularity.

Picking which variant of track join to use is a much simpler task than estimating the

network cost of the join. 2-phase track join suffices when both tables have almost entirely

unique keys, or one table has more repeats per value than the number of nodes. In the

latter case, a broadcast join would be used. 3-phase track join is preferred when we cannot

estimate the cardinality of the relations and want to avoid the inner–outer table distinction.

If the number of output tuples exceeds the number of input tuples, such as in m-n joins,

4-phase track join should be used to generate the optimal transfer schedules. The same is

true if significant pre-existing locality is detected in the workload or if locality is generated

artificially prior to executing the joins.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 38

If the query optimizer must estimate the join cost rather than a relative comparison of

available algorithms, we can estimate the network cost of track join by splitting the input

in classes with different degrees of correlation. For example, the R1 and R2 classes used in

the cost of 3-phase track join represent the percentages of tuples of R that are joined using

the R→ (for R1), or the S → R (for R2) selective broadcast direction.

To populate the classes, we can use correlated sampling [Yu et al., 2013], a technique

that preserves the join relationships of tuples. Correleated sampling works independently

of the distribution, and can be generated off-line. The sample is augmented with initial

placements of tuples. Besides computing the exact track join cost, we incrementally classify

the distinct join keys to correlation classes based on estimated network traffic per schedule.

The cost of 4-phase track join is shown below, using two classes for 3-phase track join

(R1, S1, R2, S2) and one for hash join (R3, S3):

N · dR · nR · (wk + cR) + dS · nS · (wk + cS) (tracking)

+dR1 ·mR1 ·mS1 · wk + tR1 · sR1 ·mS1 · (wk + wR1) (R1 → S1)

+dS2 ·mR2 ·mS2 · wk + tS2 · sS2 ·mR2 · (wk + wS2) (S2 → R2)

+dR3 · nR3 · wk + tR3 · sR3 · (wk + wR3) (R3 → h(k))

+dS3 · nS3 · wk + tS3 · sS3 · (wk + wS3) (S3 → h(k))

The three correlation classes that combine hash join with 3-phase track join combine broad-

casting as well as partitioning to a common destination. If higher estimation accuracy is

required, we can create more classes as step functions between the above.

Track join invests significant time working with keys compared to early materialized

hash join. As as result, when the payloads are small, we expect track join to perform worse

than hash join in the absence of locality. For instance, if the joined tables have the same

number of tuples (tR = tS), both tables have entirely unique keys, and the join selectivity

is 0.5 (all tuples match), then the the larger payload must be twice larger than the join key,

in order for track join to send less data than hash join:

4 · wk + min(wR, wS) ≤ 2 · wk + wR + wS ⇔ 2 · wk ≤ max(wR, wS)



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 39

2.3.2 Tracking-Aware Hash Join

Late materialization is a popular approach for designing main memory databases because it

allows for operators to be performed on the keys alone. The payloads are only accessed when

needed using rids. The technique is typically used in column stores [Raman et al., 2013;

Stonebraker et al., 2005], where each column is stored as a fixed width array and any column

value can be accessed as an array slot.

Late materialization can also be viewed as a query optimizer decision of whether to defer

payload accesses or to process payloads alongside the keys. Interleaving late materialized

operators to exploit high selectivities is out of the scope of this work.

In the simple late materialized hash join, join keys are hashed, rids are implicitly gen-

erated (0 to N), and payloads are fetched afterwards. The network cost is:

N · (tR + tS) · wk + tRS · (wR + wS + log tR + log tS)

where tRS is the number of joined tuples. The join (output) selectivity is also defined as

sRS = tRS/(tR + tS). Note that sRS can be arbitrarily higher than 1 in m-n joins.

When distributed, rids contain a local rid and a node identifier. To use the implicit

tracking information carried in an rid would be to migrate the result to the tuple location,

instead of fetching the tuples where the rid pair is. For instance, assume a join of R and S,

where fetching S payloads is costlier than R. Using the R rid, we migrate the R rid where

the R tuple resides. The S tuple is sent to the location of the R tuple, after a request with

the S rid and the R destination.

Assuming that no later operation precedes payload fetching, we can further elaborate

the improvement by redoing the join on the final destination. In the above example, we

send one local id to the R node and the local id to the S node, alongside the node id of the

R node. Sending the node id can be avoided as in track join. The payload brought from

the S node will be coupled with the join key. The R rid will access the tuple and rejoin it

with the incoming tuple from the S node. The network cost is:

N · (tR + tS) · wk + tRS · (min(wR, wS) + wk + log tR + log tS)



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 40

We show that late materialized hash join is less effective than track join in minimizing

the total network traffic. In the initial phase, late materialized hash join transfers the

key column alongside rids, without eliminating any duplicate keys. In contrast, track join

transfers either the distinct keys on each node, or pairs of distinct keys counts, as a result

of the aggregation step. In the later phases, track join has minimized the network transfers.

The rid-based hash join transfers payloads from the shorter side to all locations of the

larger side where there are matching tuples. This is the same schedule as 2-phase track

join. On the other hand, track join resends the join keys have shorter representation than

rids when compressed. As a result, the simplest 2-phase track join transfers less data over

then network than the tracking-aware hash join using network-global rids.

The extra cost of transferring rids is non-trivial in most cases. As shown in our experi-

ments, real workloads may use less than 8 bytes of payload data while globally unique rids

must be at least 4 bytes. A pair of rids from both input tables may be wider than the

payloads with smaller size, making late materialization less effective for distributed query

execution compared to local in-memory query execution.

2.3.3 Semi-Join Filtering

When join operations are coupled with selections, we can prune tuples that do not qualify

from the selective conditions, both individually per table and across tables. To that end,

databases use semi-joins [Bernstein and Chiu, 1981; Mullin, 1990] implemented via Bloom

filters [Bloom, 1970]. Bloom filters are already optimized towards network traffic due to

their minimal size. In our analysis here, we assume a two-way Bloom-join. In two-way

Bloom-joins, both input tables prune tuples from the opposite table using a Bloom filter,

prior to sending any tuples over the network to execute the distributed join.

When a false positive occurs, hash join transfers the whole tuple in vain. In track join,

the matches are determined when the keys are tracked. All join keys with no matches are

discarded up front using the key projection; no location or tuples are transferred thereafter.

Whereas late materialized hash join reduces the penalty of filter errors by using key and rid

pairs, track join sends less than the key column alone.

Assuming the length per qualifying tuple in the filter to be wbf , the cost of early mate-



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 41

rialized hash join that uses Bloom filters as an initial step is:

(tR · sR + tS · sS) ·N · wbf (broadcast filters)

+N · tR · (sR + e) · (wk + wR) (transfer S tuples)

+N · tS · (sS + e) · (wk + wS) (transfer R tuples)

where e is the relative error of the Bloom filters.

The cost of late materialized hash join that uses Bloom filters as an initial step is:

(tR · sR + tS · sS) ·N · wbf (broadcast filters)

+N · tR · (sR + e) · (wk + log tR) (transfer S pairs)

+N · tS · (sS + e) · (wk + log tS) (transfer R pairs)

+tRS · (wR + wS + log tR + log tS) (fetch payloads)

where tRS includes the standard output selectivity factor.

The cost of 2-phase track join that uses Bloom filters as an initial step is:

(tR · sR + tS · sS) ·N · wbf (broadcast filters)

+N · dR · (sR + e) ·meR · wk (track filtered R)

+N · dS · (sS + e) ·meS · wk (track filtered S)

+dR · sR ·mS · wk (transfer S locations)

+tR · sR ·mS · (wk + wR) (transfer R tuples)

where meR ≡ min(N, tR · (sR + e)/dR) and similarly for meS .

The cost of broadcasting the Bloom filters may exceed the cost of transferring a few

payload columns over the network for a reasonable number of nodes N . Track join implicitly

executes perfect semi-join filtering during the tracking phase. Consequently, by using track

join, we are more likely to not need the initial Bloom filter step compared to both early

materialized hash join, that sends all key and payload columns during hash partitioning,

and late materialized hash join, that transfers only keys and rids initially.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 42

2.4 Experimental Evaluation

Our evaluation is split into three parts. First, we simulate distributed joins to measure

network traffic across encoding schemes (Section 2.4.1). Then, we implement and measure

track join against hash join execution times (Section 2.4.2).

2.4.1 Simulations

In the simulations shown in this section, we measure the total network traffic. We assume

16 network nodes and show 7 cases of distributed join algorithms: broadcast join R → S

(BJ_R) and S → R (BJ_S), hash join (HJ), 2-phase track join R → S (2TJ_R) and S → R

(2TJ_S), 3-phase track join (3TJ), and 4-phase track join (4TJ).

In the three experiments shown in Figure 2.3, the width of R tuples varies between 20

and 60 bytes, while the S tuples are fixed at 60 bytes. The key width (included in the

tuple width) is always 4 bytes. The tables have equal cardinality (109) and have (both

the same) unique keys. Thus, track join selectively broadcasts tuples from the table with

smaller payloads to the one matching tuple from the table with larger payloads and 2-phase

track join is sufficient to minimize the network traffic.

In the general case, hash join has 1/Nk probability in order for all k matching tuples to

be on the same node that matches the hash destination of the join key. For track join, this

probability is 1/Nk−1 because the collocation can occur in any node. When both tables

have almost unique keys (Figure 2.3), the network cost gap between hash join and track

join is maximized since k ≈ 2 is the lower bound for equi-joins.

In the three experiments shown in Figure 2.4, we vary the tuple width ratio R and S as

279.4 558.8 838.2

838.2 838.2 838.2

0

20

40

60

80

100

120

BJ-R BJ-S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ-R BJ-S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ-R BJ-S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

R:S		width	 =	20:60 R:S		width	 =	40:60					 				 				 				 			 				 				 				 				 				 				 			 				 				 				 				 				 			 				 		R:S		width	 =	60:60

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.3: Synthetic 109 unique R tuples on 109 unique S tuples (1 × 1 key matches)



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 43

838.2 838.2 838.2

0
20
40
60
80

100
120

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

R:S		width	=	20:60 R:S		width	=	40:60 R:S		width	=	60:60

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.4: Synthetic 2 ·108 unique R tuples on 109 non-unique S tuples (1 × 5 key matches)

in Figure 2.3, but assume a foreign-key join where R has 108 unique tuples and S has 109

tuples. The match rate is 100%, thus each unique tuple in R is repeated 10 times in S. The

cost of broadcasting R is competitive and is actually better than hash join when the tuple

width ratio of R to S is 1/3. Again, the network cost is minimized using 2-phase track join

that broadcasts the R tuples to all locations with matching S tuples.

In Figure 2.5, we show how locality can affect track join performance. We assume R

to have 200 million 30-byte tuples with unique keys and S to have 1 billion 60-byte tuples.

Each distinct join key in S is repeated 5 times but key locations follow the patterns that are

specified below each chart. The pattern 5,0,0,... denotes that all 5 tuples with the same

keys are on the same node. The pattern 2,2,1,0,0,... represents 2 nodes with 2 matching

tuples per key and 1 node with 1 matching tuple. The pattern 1,1,1,1,1,0,0,... denotes

that all tuples with matching keys are on different nodes. Naturally, the nodes for placing

the keys to satisfy each pattern, are chosen randomly per distinct join key. Overall, these

placements are artificially generated to represent different degrees of locality.

When all repeats are collocated on the same node, track join will only transfer matching

keys to a single location. When the tuple repeats follow the 2,2,1,0,0,... pattern, still

838.2 838.2 838.2

0

20

40

60

80

100

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

Pattern:	5,0,0,...																																																																						Pattern:	2,2,1,0,0,... Pattern:	1,1,1,1,1,0,0,...

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.5: Synthetic 4 · 107 unique R tuples on 2 · 108 S tuples (1 × 5 key matches)



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 44

167.64 167.64 167.64

0

20

40

60

80

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

Pattern:	5,0,0,...																																																																										Pattern:	2,2,1,0,0,... Pattern:	1,1,1,1,1,0,0,...

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.6: Synthetic 2 · 108 R tuples on 2 · 108 S tuples with 4 · 107 unique keys (5 × 5 key
matches intra-table collocated)

better than uniform placement, the traffic is still reduced compared to hash join. Note that

random placement collocates repeats to some degree.

We now do the same experiment using small tables. Each table has 40 million tuples

with unique keys and repeats each key 5 times. Since each key has 5 repeats on each table,

we generate 25 output tuples per distinct join key. The datasets were generated to have the

same number of output tuples (1 billion). In Figures 2.6 and 2.7 we use 200 million tuples

with 40 million distinct join keys for both tables, thus each distinct join key produces 25

output tuples. The tuple widths are 30 bytes for R and 60 bytes for S.

The difference between Figure 2.6 and Figure 2.7 is whether the tuples across tables

are collocated. In the first, the 5,0,0,... configuration denotes that all repeats from R

are on a single node and that all repeats from S are also on a (different) single node. We

term this case, shown on Figure 2.6, intra-table collocation. When same key tuples from

across tables are collocated, locality is further increased. We term this case, shown on

Figure 2.7, inter-table collocation. When all key repeats are collocated, track join transfers

no payloads. The messages used during the tracking phase to track the tuple locations can

only be affected by the same case of locality as hash join.

Figures 2.4, 2.5, 2.6, and 2.7 show the weakness of 2-phase and 3-phase track join

to handle all possible equi-joins. If both tables have values with repeating keys shuffled

randomly with no repeats in the same node, 4-phase track join is similar to hash join.

However, track join sends far less data when the matching tuples are collocated.

In the rest of our experimental evaluation for both simulation and the implementation of

track join (Sections 2.4.1 and 2.4.2), we will use queries from real analytical workloads. We

did extensive profiling among real commercial workloads with one sophisticated commercial



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 45

R column Cardinality Bits S column Cardinality Bits

J.ID (key) 769,785,856 30 J.ID (key) 788,463,616 30
O.U.AMT 26,308,608 25 T.ID 53 6
C.ID 359 9 S.B.ID 95 7
T.B.C.ID 233,040 18 T.ID 53 6

J.T.AMT 9,824,256 24
T.C.ID 297,952 19
S.C.AMT 11,278,336 24
M.U.AMT 54,407,160 26

769,845,120 790,963,741

Table 2.1: Column details of R and S tables joined in Q1

DBMS. The commercial hardware where we did the profiling is an 8-node cluster connected

by 40 Gbps InfiniBand. Each node has 2X Intel Xeon E5-2690 CPUs at 2.9 GHz, 256 GB

of quad-channel DDR3 RAM at 1600 MHz, 1.6 TB flash storage with 7 GB/s bandwidth,

and 4X 300 GB hard disks at 10,000 RPM.

In the next experiment we use the slowest query (Q1) from a real workload (X). All

query plans were generated by the same commercial DBMS. Query Q1 includes a hash join

that we profiled to take 23% of its total execution time. Details about the columns of two

inputs participating in the slowest join are shown in table 2.1. They are both intermediate

relations and consist of 769,845,120 and 790,963,741 tuples respectively. The join output has

730,073,001 tuples. Overall, query (Q1) executes 7 joins, after applying selective conditions

on 4 relations, and then performs a single final aggregation.

All columns of the Q1 join are of number type and would use variable byte encoding by

default, if left uncompressed. Sending uncompressed data over the network is expensive.

Compression helps all join algorithms reduce their network traffic, since the column values

167.64 167.64 167.64

0

20

40

60

80

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

Pattern:	5,0,0,...																																																																										Pattern:	2,2,1,0,0,... Pattern:	1,1,1,1,1,0,0,...

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.7: Synthetic 2 · 108 R tuples on 2 · 108 S tuples with 4 · 107 unique keys (5 × 5
matches inter-table collocated and intra-table collocated)



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 46

129.1 235.7 106.2

254.1 424.9 200.3
0

10

20

30

40

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

Fixed	Byte	Encoding	 					 				 			 				 				 				 				 				 				 			 				 				 				 				 				 			 				 			Variable	Byte	Encoding	 					 				 				 Dictionary	 Encoding	 		 				 				 				 				 			 				 				 				 				 				 			 	

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.8: Slowest join of slowest query (Q1) of workload X (original data placement)

are compressed using a global dictionary and use the minimum number of bits. Specifically

for track join, we send keys over the network more often than we do payloads. Also, the

tracking phase cannot be optimized since the key locations have not yet been tracked.

Thus, for track join, compressing the key columns will have a greater impact in reducing

the network traffic compared to compressing the payloads.

In Figure 2.8, we show the network traffic of Q1. We use 3 different encoding schemes,

fixed byte (1, 2 or 4 byte) encoding, fixed bit dictionary encoding, and variable byte en-

coding. The variable byte encoding is base-100 and stores two decimal digits per byte.

The input of Q1 exhibits pre-existing locality, since broadcasting R transferred ≈ 1/3 of R

tuples compared to hash join. We would expect both hash join and track join to transfer

the whole R table over the network. We shuffle the placement of the tuples across the

cluster to remove any data locality and repeat the experiments in Figure 2.9. As expected,

the network traffic increases as we now have to transfer most R payloads over the network.

Nevertheless, track join still outperforms hash join.

In the X workload, the key columns have less than 1 billion distinct values, and

thus, fit in a 32-bit integer if dictionary encoded. However, the actual values do not

fit in the 32-bit range. In some cases, we can effectively reduce the data width using

simple compression schemes [Lemire and Boytsov, 2015] that allow fast decompression

129.1 235.7 106.2

254.1 424.9 200.3
0

10

20

30

40

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

Fixed	Byte	Encoding	 					 				 			 				 				 				 				 				 				 			 				 				 				 				 				 			 				 			Variable	Byte	Encoding	 					 				 				 Dictionary	 Encoding	 		 				 				 				 				 			 				 				 				 				 				 			 	

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

Figure 2.9: Slowest join of slowest query (Q1) of workload X (shuffled data placement)



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 47

0

5

10

15

Q1 Q2 Q3 Q4 Q5
N
et
w
or
k	
Tr
af
fic
	(G

B)

Hash	Join

Track	Join

Figure 2.10: Common slowest join in slowest queries 1–5 of X (dictionary compressed)

and do not require accessing large dictionaries that are unlikely to remain CPU-cache-

resident. On the other hand, dictionaries reduce the width of data types and, if sorted,

can perform equality and ordering operations with the dictionary index. Decoding arbi-

trary n-bit dictionary indexes can be implemented efficiently [Lemire and Boytsov, 2015;

Willhalm et al., 2009]. However, in many operations, including non-selective equi-joins,

dictionary accesses are redundant. In our results for compressed workload X, we omit dic-

tionary dereference since the join can use the encoded values of the join keys, given that

the join key columns are encoded using the same dictionary.

In all experiments we omit dictionary dereference traffic. Dictionaries are also assumed

to be compressed before the join, using the minimum number of bits required to encode the

distinct values of the intermediate relation, even if some join keys have been filtered before

the join. This is the optimal encoding scheme in cases where most keys are unique and

there is specific value ordering. If the dictionaries are not compressed after every selection,

which is the expected scenario, we would still rely on the original dictionary that encodes

all distinct values of original tables. Encoding to the optimal compression before every join

in order to achieve the minimal network traffic is possible, but the total gain in network

traffic may be outweighed by the extra CPU time needed to re-compress.

Workload X contains more than 1500 queries and the same most expensive hash join

appears in the five slowest queries, taking 23%, 31%, 30%, 42%, and 43% of their execution

time. The slowest five queries require 14.7% of the total time required for all queries in the

workload (> 1500) cumulatively and spend ≈ 65–70% of their time on the network. Time

was measured by running the entire X workload on the commercial DBMS we use. The

hash join in all five queries operates on the same intermediate result for the key columns,

but each query uses different payloads. Queries Q2–Q5 are similar to Q1 and do 4–6 joins



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 48

118.3

0

10

20

30

40

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)
Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

(a) Original data placement

118.3

0

10

20

30

40

BJ_R BJ_S HJ 2TJ_R 2TJ_S 3TJ 4TJ

N
et
w
or
k	
Tr
af
fic
	(G

B)

Keys	&	Counts Keys	&	Nodes R	Tuples S	Tuples

(b) Shuffled data placement

Figure 2.11: Slowest join in slowest query of workload Y using variable byte encoding

followed by a final aggregation step.

In Figure 2.10, we compare hash and track join on the slowest five queries, using dic-

tionary coding with the minimum number of bits, which is also the optimal compression

scheme that we can apply here. The total bits per tuple for R:S are 79:145, 67:120, 60:126,

67:131, and 69:145 respectively. The network traffic reduction is 53%, 45%, 46%, 48%, and

52% respectively. Here, both inputs have almost entirely unique keys. Thus, assuming we

pick the table with shorter tuples (R here) to selectively broadcast during 2-phase track

join, all track join versions have similar performance.

In our last experiment we use a second real workload (Y ) that has ≈ 90 analytical

queries. We use the slowest query in Y that executes 9 joins and isolate the most expensive

hash join, based on profiling results from the commercial DBMS. The most expensive query

takes 20% of the time required to run all queries of Y cumulatively and the hash join takes

about 36% of the total execution time of the most expensive query. In Figure 2.11a we

show the network traffic of the join using the original data placement. In Figure 2.11b, we

shuffle the inputs to remove all pre-existing locality.

The R table has 57,119,489 rows and the S table has 141,312,688 rows. The join output

consists of 1,068,159,117 rows. The data are uncompressed and use variable byte encoding.

The tuples are 37 and 47 bytes wide, the largest part of which is due to a character 23-

byte character column. The large output of the query makes it a good example of high

join selectivity that has different characteristics from foreign and candidate key joins. Late

materialization could cause this query to be excessively expensive, if payloads are fetched

at the output tuple cardinality.

When the input is shuffled, the 4-phase version is better than hash join, while the



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 49

other versions almost broadcast R due to key repetitions. The 2-phase track join can be

prohibitive if there is no locality and we choose to broadcast S tuples to R tuple locations.

This is due to sending S tuples to too many nodes to match with R and is shown in

Figure 2.11b. The opposite broadcast direction is not as bad, but is still three times more

expensive than hash join. 4-phase track join adapts to the shuffled case and transfers 28%

less data than hash join. This experiment is a good example of the adaptiveness of track

join. We need many repeated keys since the output cardinality is 5.4 times the input

cardinality per distinct join key. The näıve selective broadcast of 2-phase and 3-phase track

join are similar to broadcasting R to all nodes.

2.4.2 Implementation

For the next set of experiments, we implement hash join and track join in C++ using

portable operating system calls (POSIX) without any extra libraries. The network com-

munication uses the TCP protocol and all local processing is done on RAM. We use four

identical machines connected through an 1 Gbit Ethernet switch, each with 2X Intel Xeon

X5550 CPUs at 2.67 GHz and 24 GB ECC RAM. Each CPU has 4 physical cores and 2

hardware threads per core. We measured the RAM bandwidth at 28.4 GB/s for loading

data from RAM, at 16 GB/s for storing data to RAM, and at 12.4 GB/s for RAM to RAM

copying. We compile the C++ source code using GCC 4.8 with -O3 optimization. The op-

erating system is the Ubuntu 14.04 GNU/Linux distribution and the Linux kernel version

is 3.2. In all of our experiments, we use all 16 hardware threads of each machine.

Our platform is severely network bound since each edge can transfer 0.093 GB/s, if used

exclusively. Although track join was presented using a pipelined approach in Section 2.2, we

separate CPU and network utilization by de-pipelining all operations of track join. Thus,

we can estimate performance on perfectly balanced and much faster networks by dividing

the time of network transfers accordingly. We assume the data are initially on RAM and

the join results are also materialized on RAM. If the result is too large, we write it in large

parts. In Table 2.2 we show the CPU and network cost for hash join and track join.

Our implementation uses fixed byte widths for keys, payloads, and node identifiers. For

the dataset of workload X, we use 4-byte keys, 7-byte Rpayloads, and 18-byte S payloads.



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 50

Dataset Placement Time HJ 2TJ 3TJ 4TJ

X
Original

CPU time (s) 4.308 5.396 6.842 7.500

Network time (s) 87.754 38.857 44.432 44.389

Shuffled
CPU time (s) 4.598 6.457 7.601 8.290

Network time (s) 87.828 61.961 67.117 67.518

Y
Original

CPU time (s) 2.301 2.279 3.355 2.400

Network time (s) 30.097 10.800 11.145 10.476

Shuffled
CPU time (s) 2.331 2.635 3.536 2.541

Network time (s) 30.191 28.674 29.520 18.230

Table 2.2: CPU and network time of the slowest join of the slowest query of X and Y

For the dataset of workload Y , we use 4-byte keys, 33-byte R payloads, and 43-byte S

payloads. The node ids use 1 byte and the counts use 1 byte for X and 2 bytes for Y .

Using workload X in the original order, 2-phase track join (using the R → S selective

broadcast direction) increases the CPU time by 25%, but reduces the network time by 56%

compared to hash join. 3-phase and 4-phase track join increases the CPU time by 59%

and 74% without further reducing the network traffic. If X is shuffled, 2-phase track join,

increases the CPU time by 40% and reduces the network time by 29%.

Using Y in the original order, 2-phase track join suffices to reduce the network time by

64% compared to hash join without affecting the CPU time significantly. If Y is shuffled,

2-phase and 3-phase track join increase the CPU time without saving any network traffic,

due to excessive key repetitions. In fact, we would transfer more data than hash join, as

shown Figure 2.11b, if we used more nodes, because the number of nodes is less than the

key repeats. On the other hand, 4-phase track join increases the CPU time by 9% compared

to hash join but reduces the network traffic by 40%.

We can project track join performance on 10 Gbit Ethernet by scaling the network time.

In X, track join is ≈ 29% faster than hash join, and in Y , track join is ≈ 37% faster. Note

that the hardware bundle of the commercial DBMS uses both faster CPUs (2X 8-core CPUs

at 2.9GHz) and network (40 Gbit InfiniBand). If the network is too fast compared to the

CPU, track join becomes less useful. Still, if the network is slow, track join is likely to

reduce the total execution time, even if there is no locality in the dataset. If the dataset

exhibits locality, track join will further increase the performance gap with hash join.

Table 2.3 shows the execution times (in seconds) per step for hash join. To execute



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 51

Step description
Dataset X Dataset Y

Original Shuffled Original Shuffled

Hash partition R tuples by key 0.347 0.350 0.054 0.054

Hash partition S tuples by key 0.478 0.477 0.167 0.167

Transfer R tuples 29.464 29.925 7.197 7.392

Transfer S tuples 57.199 57.142 22.550 22.945

Local copy tuples 0.115 0.115 0.039 0.039

Sort received R tuples by key 1.145 1.288 0.176 0.179

Sort received S tuples by key 1.627 1.777 0.535 0.572

Final merge-join 0.601 0.602 1.322 1.321

Table 2.3: Distributed hash join time per step (in seconds)

hash join, we first hash partition both tables based on the join key. Then, we transfer

each partition of both tables to the respective network node. Once the tables have been

transferred over the network, each node has keys with the same hash destination. We then

sort the tables locally using MSB radix-sort and perform a final merge-join on RAM. The

transfer steps that use the network are significantly slower since the experiment is measured

on 1Gbit Ethernet. Nevertheless, since the steps are completely de-pipelined, we can scale

the network time for faster networks independently of the other steps.

Table 2.4 shows the execution time per step for 4-phase track join. First, we sort both

tables locally. Then, we aggregate the tuples by key and count the number of tuples per

group, to gather the information needed in the tracking phase. Then, we hash partition

the keys and the counts by key and distribute them over the network. Then, we merge

the keys and counts to create a mapping of matching tuples for each distinct join key. The

mapping is used to generate the schedule of transfers that minimizes the network traffic for

each Cartesian product join. We transfer keys and counts that participate in the R → S

selective broadcast and pairs that participate in the S → R selective broadcast separately.

In practice, we distinguish between two types of messages per direction, those about the

initial migration and those about the later selective broadcast. After the messages are

merged on each node by key, the keys are joined with payloads and are transferred over the

network. At this point we transfer tuples for both the migration and the selective broadcast

phases together. In the last step, we merge by key and perform the final merge-join.

The cost of scheduling and the local join depend on the dataset. Since X has mostly



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 52

Step description
Dataset X Dataset Y

Original Shuffled Original Shuffled

Sort local R tuples by key 0.979 1.300 0.182 0.182

Sort local S tuples by key 1.401 1.792 0.534 0.565

Aggregate (local) keys ⇒ counts 0.229 0.227 0.022 0.025

Hash partitition keys and counts by key 0.373 0.372 0.011 0.018

Transfer keys and counts 26.800 27.339 0.977 1.378

Local copy keys and counts 0.034 0.034 0.093 0.001

Merge received keys and counts 0.506 0.507 0.015 0.022

Schedule and partition by node id 1.627 1.650 0.035 0.047

Transfer R→ S keys and node ids 7.277 10.913 0.346 0.532

Transfer S → R keys and node ids 6.046 1.562 0.135 0.247

Local copy keys and node ids 0.016 0.016 0.000 0.000

Merge received keys and node ids 0.237 0.235 0.007 0.012

Merge-join R→ S keys and node ids
0.315 0.456 0.068 0.098⇒ payloads and partition by node id

Merge-join S → R keys and node ids
0.355 0.204 0.067 0.082⇒ payloads and partition by node id

Transfer R→ S tuples 2.664 27.532 6.086 9.600

Transfer S → R tuples 0.001 0.001 3.235 6.462

Local copy R→ S tuples 0.067 0.017 0.007 0.009

Local copy S → R tuples 0.138 0.037 0.021 0.008

Merge received R→ S tuples 0.161 0.531 0.045 0.067

Merge received S → R tuples 0.141 0.066 0.043 0.045

Final merge-join R→ S 0.419 0.555 0.822 0.793

Final merge-join S → R 0.342 0.161 0.518 0.556

Table 2.4: 4-phase track join time per step (in seconds)

unique keys, scheduling is faster than the local join. On the other hand, in Y , schedule

generation is more expensive, but remains negligible compared to the total execution time.

The final merge-join in Y is expensive since the M − N join produces a larger number of

output tuples compared to the sum of both inputs.

All track join versions, as shown in Tables 2.2 and 2.4, initially sort the tables locally

and then maintain the tables in sorted order via merging tuples received over the network

in sorted order. This approach guarantees that we will remain cache-conscious throughout

the track join variants and we can avoid relying on large hash tables that will be larger than

the cache and thus incur cache misses. Since track join needs the data grouped by key in

multiple steps, merging by key is cheaper than scattering to a new large hash table after



CHAPTER 2. DISTRIBUTED JOINS WITH MINIMAL NETWORK TRAFFIC 53

every time a tuple (or a key and count pair, or a key and node id pair) is transferred.

The original ordering of tuples in dataset X exhibits locality skew among nodes. In

the absence of load balancing, the improvement of track join over hash join by taking

advantage of locality is reduced. If some nodes exhibit more locality than others, we need

to take into account the balancing of transfers and not only aim for minimal network traffic.

The approach of [Rödiger et al., 2015] can help towards balancing the transfers across nodes

by re-scheduling the transfers to minimize the end-to-end execution time.

Using large hash tables allows the algorithm to work in a pipelined fashion, as described

in Section 2.2. However, track join cannot overlap steps across separate phases; pipelining

takes place within each phase. A pipelined implementation can reduce end-to-end time by

overlapping CPU and network [Kim et al., 2012]. Track join is more complex than hash

join, offering more choices for overlap. Thus, investigating alternative implementations that

overlap CPU and network to minimize time is a crucial problem.

2.5 Conclusion

We presented track join, a novel algorithm for distributed joins that minimizes communica-

tion and therefore, network traffic. To minimize the number of tuples transferred across the

network, track join generates an optimal transfer schedule for each distinct join key after

tracking initial locations of tuples. Track join makes no assumptions about data organiza-

tion in the DBMS and does not rely on schema properties or pre-existing favorable data

placement to show its merits.

We described three versions of track join, studied cost estimation for query optimization,

compared the interaction of track join with semi-join filtering, and showed that track join

is better than tracking-aware hash join. Our experimental evaluation shows the efficiency

of track join at reducing network traffic and shows its adaptiveness on various cases and

degrees of locality. Our experimental evaluation shows that we can reduce both network

traffic and total execution time. The workloads were extracted from a corpus of commercial

analytical workloads and the queries were profiled as the most expensive out of all the

queries in each workload using a market-leading commercial DBMS.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 54

Chapter 3

In-Memory Partitioning and

Large-Scale Sorting

3.1 Introduction

The increasing main-memory capacity of contemporary hardware allows query execution to

occur entirely in memory. If the entire database also fits in RAM, analytical query work-

loads that are typically read-only need no disk access after the initial load. Thus, memory

bandwidth is the primary performance bottleneck for query execution. Relational analyt-

ics are at the core of business intelligence tasks today, thus, the need for high-throughput

in-memory query execution is apparent.

To maximize memory bandwidth and capacity, a few CPUs can be combined in a

shared-memory system using a fast interconnection. Such hardware combines the par-

allelism of multiple multi-core CPUs with a higher aggregate memory bandwidth. The

shared-memory functionality is provided by the non-uniform-memory-access (NUMA) in-

terconnection, adding an additional layer in the memory hierarchy.

In a modern multi-core processor, the best performance is achieved when all cores work

in a shared-nothing fashion and the working set is small enough to fit in the higher levels

of the CPU cache that are also private per core. The same cache-conscious approach was

more efficient even before the advent of multi-core CPUs, since random memory accesses

are too expensive out of the cache.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 55

Query execution is decomposed into a series of operations, the most time consuming of

which are typically joins and aggregations. To speed up these operations using hardware

parallelism, we partition into small pieces using the keys, then process each piece indepen-

dently. For instance, an efficient algorithm for joins is to hash partition in parallel until

the input is split into cache resident pieces before we execute the join using a hash table

[Manegold et al., 2002]. In fact, even in-cache join can further partition into trivial parts

with very few distinct items, before executing a nested loop to join them [Kim et al., 2009].

This chapter considers a comprehensive menu of partitioning options across several di-

mensions. The three types of partitioning are hash, radix and range partitioning, depending

on the function that takes the key as an input and outputs the destination partition. Parti-

tioning also depends on the layer of the memory hierarchy that it targets, namely in-cache,

out-of-cache and across NUMA regions. Finally, we distinguish partitioning variants based

on whether they use auxiliary space that is linear to the input size or not.

Until recently, prior work used the in-cache versions of partitioning and, if parallel, the

non-in-place variant, which can be trivially distributed across threads. In all cases, when

the input is larger than the cache, [Manegold et al., 2000b] showed that the performance

is throttled by TLB misses. [Satish et al., 2010] highlighted that partitioning is a patho-

logical case for caches and suggested using the cache as a buffer to mitigate TLB misses.

[Wassenberg and Sanders, 2011] suggested using non-temporal writes on buffers that are as

large as a cache line, to facilitate hardware write-combining.

Efficient out-of-cache partitioning assumes free access to auxiliary space in order to

write the output. For cases where extra memory space in unavailable, we introduce several

in-place out-of-cache partitioning variants utilizing the same crucial performance factors:

an in-place method analogous to the shared-nothing non-in-place method; a modified non-

in-place method that generates the output as a list of blocks that overwrites the input; and

a parallel non-in-place method that combines the previous two.

To support scaling to multiple CPUs, we consider how the NUMA layer affects parti-

tioning performance and modify both in-place and non-in-place out-of-cache partitioning to

guarantee minimal transfers across NUMA boundaries. Also, we ensure that memory ac-

cesses that cross NUMA boundaries are always sequential, in order for hardware pre-fetching



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 56

to hide the latency of the NUMA interconnection layer [Albutiu et al., 2012].

All of the algorithms mentioned so far target the data shuffling part of partitioning and

implicitly assume that the partition function is cheap and can be computed at virtually no

cost. While this assumption holds for radix and hash partitioning given a suitable hash

function choice, the cost of computing a range partition function is higher than the cost

to transfer the tuple, especially when the number of partitions increases beyond the TLB

capacity. The näıve implementation uses binary search on a sorted array of delimiters

that define each range, incurring a logarithmic number of cache accesses. We introduce a

specialized SIMD-based cache-resident index that speeds up range functions up to 6 times,

making range partitioning a practical choice for many applications.

All partitioning variants discussed in this chapter are shown in Figure 3.1, where we also

mark our contributions. We apply all variants to design and implement three large-scale

NUMA-aware sorting algorithms. We use sorting, rather than joins or aggregations for

two reasons. First, because it is a wider problem that can be a sub-problem for both join

and aggregation. Second, we can apply all partitioning variants to build unique sorting

algorithms, such that each is more scalable in distinct cases depending on input size, key

domain size, space requirements, and skew efficiency.

The first sorting algorithm we propose is stable least-significant-bit (LSB) radixsort.

The algorithm is based on non-in-place out-of-cache radix partitioning where we add two

innovations. We use hybrid range-radix partitioning to guarantee load balancing among

threads, and ensure each tuple crosses NUMA boundaries at most once, even if the default

algorithm would re-shuffle the whole array in each partitioning pass.

The second sorting algorithm we propose is an in-place most-significant-bit (MSB) radix-

sort. The algorithm utilizes all variants of in-place partitioning that we introduce, one for

each distinctive level in the memory hierarchy: shared out-of-cache in-place partitioning,

shared-nothing out-of-cache partitioning, and in-cache partitioning. We reuse the range-

radix idea to minimize transfers across NUMA boundaries and guarantee load balancing.

The third sorting algorithm we propose is a comparison-sort that uses the newly opti-

mized range partitioning. We perform very few out-of-cache range partitioning passes with

a very wide fanout until we reach the cache, providing NUMA optimality. In the cache, we



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 57

radix

hash

range partition

in-cache

non-in-place

out-of-cache

out-of-cache

in-place

in-cache

shared

in block lists

in segments

sharedshared-nothing

NUMA
oblivious

NUMA
aware

previously known

our contributions

Figure 3.1: Partitioning variants and contributions

employ SIMD-assisted sorting [Inoue et al., 2007], modified to use the cache more effectively.

We use fixed length integer keys and payloads, typical of analytical database applica-

tions. We evaluate on both dense and sparse key domains. If order-preserving compression

is used [Raman et al., 2013; Willhalm et al., 2009], any sparse or dense domain with fixed

or variable length data is compacted into a dense integer domain.

Skewed workload distribution can reduce parallelism in some näıve approaches. In our

context, when we statically distribute partitions to threads, we ensure that the partitions

are as balanced as possible. Specifically, we never use radix partitioning to any range of

bits to divide the workload. Instead, we combine range with radix partitioning to guarantee

that, if specific bit ranges have very few distinct values, we can find delimiters that split

the workload equally among threads, independently of the key value range.

In this chapter, we make the following contributions:

• We introduce several new variants for main-memory partitioning, most notably large-

scale in-place partitioning and efficient range partitioning, and also guarantee minimal

NUMA transfers across multiple CPUs.

• We combine partitioning variants to design three sorting algorithms, all the fastest of

their class for billion-scale inputs, and evaluate the best options depending on input

size, key domain, available space, and skew.

The rest of this chapter is organized as follows. In Section 3.2, we describe all partition-

ing variants, starting from the top level of the memory hierarchy. In Section 3.3, we discuss

the three sorting algorithms. In Section 3.4, we present our experimental evaluation and

we conclude in Section 3.5.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 58

3.2 Partitioning Variants

3.2.1 Partitioning In-Cache

We start by considering the versions that best operate when the table fits in the cache.

Each partition is generated in a single contiguous segment. The non-in-place version in

Algorithm 12 uses a separate array from the input to store the output. The simplest non-

in-place version does only two random accesses per item. When operating in the cache, we

need the output and the offset array to be cache-resident.

A slightly more complicated version of the algorithm allows the partitioning to occur

in-place, by swapping tuples across locations instead of copying out to a separate output

array. This variant is shown in Algorithm 12. In the in-place version, we start by loading a

tuple, find the correct partition and the output location through the partition offset. Then,

we swap the loaded tuple with the item stored at the target location and continue with the

next tuple we just loaded. The loop stops when the cycle of swaps returns to the original

location. Each tuple is moved exactly once between locations of the same table and the

process stops when every tuple has been moved. In the simple version of this algorithm

[Albutiu et al., 2012], each cycle swaps tuples until we return to the partition encompassing

the initial location, incurring O(|T |/P) branch mispredictions for shuffling |T | tuples across

P partitions. In Algorithm 13, the tuples are written in reverse order and each swap cycle

shuffles all tuples from at least one partition, incurring only O(P) branch mispredictions.

Algorithm 12: Non-in-place in-cache partitioning

1 i, o, p← 0

2 do

3 O[p]← o // store the offset to the start of each partition in O (formally O is the prefix sum of H)

4 o← o + H[p] // the starting offset of the next partition is the ending offset of the current partition

5 p← p + 1 // iterate over the P partitions

6 while p 6= P
7 do

8 t← T [i] // load tuple from input

9 i← i + 1

10 p← f(t) // compute the output partition using the partition function f

11 o← O[p] // load the output location of tuple

12 O[p]← o + 1 // store back incremented offset of partition

13 T ′[o]← t // store tuple to output

14 while i 6= |T |



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 59

Algorithm 13: In-place in-cache partitioning

1 o1, o2, p1, p2 ← 0

2 do

3 o← o + H[p1] // compute and store the offset to the end of each partition in O

4 O[p1]← o

5 p1 ← p1 + 1

6 while p1 6= P
7 while H[p2] = 0 do

8 p2 ← p2 + 1 // skip initial empty partitions

9 do

10 t← T [o2] // load tuple to initiate cycle of tuple swaps

11 do

12 p1 ← f(t) // find the output partition using the partition function f

13 o1 ← O[p1]− 1 // find the output location of the tuple

14 O[p1]← o1 // store back decremented offset of partition

15 T [o1]←→ t // swap tuple in registers with tuple in table

16 while o1 6= o2
17 do

18 o2 ← o2 + H[p2] // go over partitions with all tuples already shuffled

19 p2 ← p2 + 1

20 while p2 6= P and o2 = O[p2]

21 while p2 6= P

3.2.2 Partitioning Out-of-Cache

As mentioned in Section 3.1, out-of-cache performance is throttled by increased cache con-

flicts [Satish et al., 2010] and cache pollution with output tuples [Wassenberg and Sanders,

2011]. Also, TLB thrashing occurs when the number of partitions exceeds the capacity of

the TLB [Manegold et al., 2000b], unless the entire dataset can be placed in equally few

large operating system pages in order to be TLB resident.

3.2.2.1 Non-in-place Partitioning

To mitigate these problems, we can use the cache as an intermediate buffer and write back

to memory in groups of tuples [Satish et al., 2010]. Writes can bypass the higher cache

levels via non-temporal stores [Wassenberg and Sanders, 2011]. Non-temporal stores are

the only mechanism to avoid cache pollution with data we do not need to re-access soon.

Buffering data for each partition reduces the working set size and eliminates the TLB

problem when operating in the buffer. TLB misses still occur, but 1/B of the time, if B

is the number of tuples buffered for each partition before writing to output. If the buffer



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 60

for each partition is exactly as big as a cache line, writing the full cache line to memory

is accelerated by write-combining and avoids polluting the higher cache levels with output

data. The partitioning fanout is now bounded by the number of cache lines in the fast

core-private cache, rather than the TLB entries. To maximize the cache use, we use the last

buffer slot to save the output offset and access one cache line per iteration. Algorithm 14

shows this method. The P buffers with B slots each are contiguous in the B array. The last

loop flushes any remaining tuples in the buffers to the output. We need to rewrite the last

group of tuples of each partition in case it was overwritten by the of the following partition.

Algorithm 14: Non-in-place out-of-cache partitioning

1 i, o, p, p′ ← 0

2 do

3 B[(p1 + 1) · B − 1]← o // store output offset of partition in last buffer slot

4 o← o + H[p1]

5 p1 ← p1 + 1

6 while p1 6= P
7 do

8 t← T [i] // load tuple from input

9 i← i + 1

10 p← f(t) // find the output partition using partition function f

11 o← B[(p + 1) · B − 1] // load output offset from last buffer slot

12 B[(p + 1) · B − 1]← o + 1 // store back the incremented output offset

13 b← o mod B // B is a power of 2 and we can use masking instead of modulo

14 B[p · B + b]← T [i] // copy tuple from input table to buffer

15 if b = B − 1 then

16 b← 0

17 do

18 T ′[o + b− B]← B[p · B + b] // (non-temporal) copy tuple from buffer to output

19 b← b + 1

20 while b 6= B
21 B[(p + 1) · B − 1]← o + 1 // store output offset in last buffer slot

22 while i 6= |T |
23 do

24 o← B[(p′ + 1) · B − 1] // load output offset of partition from last slot of buffer

25 b1 ← 0 // 1st valid tuple in the buffer

26 b2 ← o mod B // last valid tuple in the buffer

27 if b2 > H[p′] then

28 b1 ← b2 −H[p′] // in case the partition has very few tuples

29 while b1 6= b2 do

30 T ′[o− (b2 − b1)]← B[p′ · B + b1] // copy tuple from buffer to output

31 b1 ← b1 + 1

32 p′ ← p′ + 1

33 while p′ 6= P



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 61

If we have multiple columns stored in separate arrays, we use one cache line per column

in the buffer for each partition. We can use one cache line per column flushed separately.

We can also pack multiple columns as a single tuple in order to reduce the number of cache

accesses, and de-interleave to separate columns before we flush to memory. For instance,

to partition 32-bit keys and 32-bit payloads, we can store each tuple as a 64-bit pair in the

buffer. Each time the buffer is flushed, we can use SIMD instructions to de-interleave.

To execute the non-in-place out-of-cache partitioning variant in parallel given T threads,

we can split the input among T equal pieces and process each piece in one thread. Each

thread computes the histogram of a different portion of the input and, by computing the

prefix sum of the interleaved histograms, we can ensure that each partition is split to T

partition with no memory overlaps between different threads. We need to synchronize the

T threads twice, once to wait for the histograms to be generated before we interleave them,

and once before we flush the buffers to memory. Without the latter synchronization, race

conditions can occur at the cache lines spanning across multiple partition boundaries.

Algorithm 15: In-place out-of-cache partitioning

1 O ← (|T |+ B)− ((|T |+ B) mod B) // any multiple of B that is larger than |T |
2 o, p← 0 // loop over the P partitions to setup the buffers

3 do

4 b1 ← 0

5 if H[p] + (o mod B) > B then

6 b2 ← (o + H[p]− 1)− (o + H[p]− 1) mod B)

7 do

8 B[p · B + b1]← T [b1 + b2] // buffer tuple from cache line at the end of partition

9 b1 ← b1 + 1

10 while b1 6= B
11 B0[p]← B[p · B] // store tuple in 1st slot of buffer

12 B[p · B]← o + H[p] // overwrite the 1st slot of the buffer with the output offset

13 else

14 do

15 B[p · B + b1]← T [b1 + o] // buffer tuple from (only) cache line at the end of partition

16 b1 ← b1 + 1

17 while b1 6= H[p]

18 B0[p]← B[p · B] // store tuple in 1st slot of buffer

19 B[p · B]← b1 +O // output offset of last cache line stored using O

20 o← o + H[p]

21 O[p]← o // store ending offset of each partition in O

22 p← p + 1

23 while p 6= P



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 62

Algorithm 15: In-place out-of-cache partitioning (continued)

24 p1, p2, o2 ← 0

25 while H[p2] = 0 do

26 p2 ← p2 + 1 // skip initial empty partitions

27 t← T [0] // load 1st tuple of 1st partition to start swap cycle

28 loop

29 do

30 p1 ← f(t) // compute the output partition using the partition function f

31 o1 ← B[p1 · B]− 1 // load and decrement the output offset

32 B[p1 · B]← o1 // store back the decremented output offset

33 b← o1 mod B
34 B[p1 · B + b]←→ t // swap tuple from registers with tuple from buffer

35 while b 6= 0

36 if o1 6= O then

37 do

38 t← T [o1 + b− B] // load tuple from following cache line

39 B[p1 · B + b]←→ t // swap with tuple from following cache line in the buffer

40 T [o1 + b]← t // (non-temporal) store tuple from buffer to output

41 b← b + 1

42 while b 6= B
43 t← B0[p1] // load tuple in 1st slot from last cache line to restart swap cycle

44 b2 ← o1 −O[p1] // compute remaining tuples for current partition

45 if b2 > B then

46 B0[p1]← B[p1 · B] // save tuple in 1st slot of current (buffered) cache line to reuse the slot

47 B[p1 · B]← o1 // overwrite the 1st slot of buffer with the output index

48 else

49 b1 ← 0

50 while b1 6= b2 do

51 B[p1 · B + b1]← B[(p1 + 1) · B + b1 − b2] // move tuples to the front of the buffer

52 b1 ← b1 + 1

53 B0[p1]← B[p1 · B] // save tuple in 1st slot of current (buffered) cache line to reuse the slot

54 B[p1 · B]← b2 +O // output offset larger than O denotes the last cache line

55 else

56 t← B0[p1] // restore tuple from 1st slot in case swap cycle is not closed

57 B0[p1]← B[p1 · B] // save tuple in 1st slot of buffer to reuse the slot

58 B[p1 · B]← O // overwrite 1st slot of buffer with O to denote finished partition

59 if p1 = p2 then

60 do

61 o2 ← o2 + H[p2] // go over partitions with all tuples already shuffled

62 p2 ← p2 + 1

63 if p2 = P then

64 break loop // exit (outer) loop if we have processed all partitions

65 while B[p2 · B] = O
66 t← T [o2] // load 1st tuple of partition to restart swap cycle



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 63

Algorithm 15: In-place out-of-cache partitioning (continued)

67 o, p← 0 // flush the buffers for all P partitions

68 do

69 b← min(B − (o mod B), H[p])

70 B[p · B]← B0[p] // restore tuple in 1st slot of buffer

71 while b 6= 0 do

72 T ′[o + b]← B[p · B + b] // copy tuple from buffer to output

73 b← b− 1

74 o← o + H[p]

75 p← p + 1

76 while p 6= P

3.2.2.2 In-place Partitioning, Contiguous Segments, Shared-Nothing

Adapting the out-of-cache buffering technique to in-place partitioning requires a more com-

plicated approach. The basic idea is to perform the swaps between the buffers, so that the

sparse RAM locations are accessed only 1/B of the time, reducing the overhead from TLB

misses. Compared with non-in-place out-of-cache partitioning, which uses the buffer as an

intermediate layer to group tuples before writing them, in-place out-of-cache partitioning

performs all tuples swaps in the buffer, and accesses RAM at cache line units. Effectively

the buffers map the current cache line per partition where the tuple swaps are performed.

Before the main loop, we load the cache lines in the starting partition locations to the

buffers. We use the first slot of each buffer to store the output offset, similarly to the

non-in-place variant where we used the last slot. The offsets are stored inside the buffer

and the last B items of each partition are handled differently to eliminate branching in the

inner loop. Item swaps between partitions occur using the last B tuples that are stored in

the buffer. When a buffer has swapped all B tuples, the cache line is flushed to the location

where it was originally loaded from and the buffer is refilled with the next B tuples of the

same partition. Thus, all operations occur in the buffers (B− 1)/B of the time without any

cache or misses. The entire process is shown in Algorithm 15.

Given T threads and P partitions, if having T × P contiguous segments is acceptable,

then we can run in-place partitioning in parallel in a shared-nothing fashion. However,

unlike the non-in-place variant, generating P contiguous segments across using multiple

threads is impossible unless we use some coarse grain synchronization mechanism.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 64

3.2.2.3 In-place Partitioning, List of Blocks

The requirement of generating all partitions in P contiguous segments can be relaxed.

Instead of storing the tuples of each partition sequentially to the output, we can generate

large blocks that contain tuples from a single partition. While shuffling, we fill P blocks at

a time. Once a block is full, we allocate a new block for the partition. The block size must

be large enough to amortize the cost of non-sequential writes acros blocks, but not be too

large to avoid external fragmentation from non-full blocks.

To access the tuples from a single partition, we generate linked lists to connect all the

blocks that contain tuples of the same partition. While the access is not entirely sequential

compared to the single segment case, the non-sequential accesses incurred by the list hops

after scanning an entire block sequentially, are amortized by using sufficiently large blocks.

This method can be extended to work in-place, if we remove P blocks of tuples from

the start of the input table and save them in private space. We start the partitioning of

the input from the (P ×B)th tuple, assuming we have B tuples per block. By the time any

partition is filled, the input pointer will have advanced enough for the output to safely use

the space of input we have already processed, without overwriting tuples we have not yet

accessed. After we process the remaining input, we also process the tuples that we initially

copied out. For each partition, only the last block of the block list can be non-full. Thus,

unused space has an upper bound of P ×B and is negligible compared to size of the input.

Storing the partitioning output in linked lists of blocks has a number of strong properties.

First, it uses the fast non-in-place out-of-cache partitioning. Second, it does not require the

pre-computation of a histogram. Third, it works in-place by ensuring no overlap between

input and output data. Finally, thread parallelism is straight-forward as we only need to

connect the T linked lists of blocks per partition generated among the T threads.

3.2.2.4 In-place Partitioning, Contiguous Segments, Shared

In order to partition and shuffle data in parallel inside the same segment, we need fine-grain

synchronization. Since using OS latches are overly expensive, we use atomic instructions.

Atomic fetch_and_add reads a memory location, adds some value to it, and stores it back

atomically, while returning its previous value. Imagine an array of items and multiple



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 65

threads where each item must be processed by exactly one thread. Each thread can safely

use item at index i, returned by invoking fetch_and_add(c, 1) on a shared counter c. Once

finished, the thread asks for the next item or terminates if i exceeds the number of items.

We apply the same idea to in-place partitioning using one shared counter for each partition

to represent the number of tuples swapped so far.

We use atomic fetch_and_add instructions on the shared counter of partition p to “lock”

the cell of the next yet unread item of partition p. First, we store the location of the tuple

that initiates the swap cycle. After swapping an arbitrary number of tuples, at some point

we will return to the original partition p. Then, we store the last tuple back to the initial

location, closing the swap cycle. Only the P counters are shared across threads.

As mentioned in Section 3.2.1, we define a swap cycle as a sequence of swaps that starts

by reading a key from a specific partition and after a number of swaps, returns to the same

partition to write a key in the initially read location. We cannot know in advance how

large a swap cycle will be, thus we cannot lock all locations the cycle will go through before

actually moving tuples. Imagine a scenario where the first partition has only one item found

in the last cell of the array. Then, one thread would perform a single swap cycle covering

all items before the last cell is reached and the cycle is closed.

To solve this problem, threads lock only one location at a time for a single swap. How-

ever, when the process is close to completion, multiple threads may compete for the same

swap cycles causing deadlocks. For example, assume we have one tuple per partition. If

thread t1 reads tuple kx (must go to location lx) from location ly (must bring ky here) and

t2 reads kz (must go to lz) from lx (must bring kx here), thread t1 will find no space for

kx, because the offset of partition X was incremented by t2 when it read kz. If t1 waits, t2

eventually reaches ky. Then, a deadlock occurs, since t1 holds (kx, ly) and t2 holds (ky, lx).

To solve the deadlock problem, threads never wait for any other threads. When a thread

reaches a full partition while swapping tuples, it saves both the last tuple of the swap cycle

and the initial (locked) location of the swap cycle. In the previous example, t1 records (kx,

ly) and t2 records (ky, lx). Algorithm 16 describes the overall process. We omit the final

step of shuffling the tuples that were recorded to avoid deadlocks. The step takes negligible

time as the number of recorded tuples is bounded by P ×T for P partitions and T threads.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 66

So far, we presented a way for multiple threads to partition items in-place concurrently,

but this solution is impractical if used as is. First, we make no use of buffering to improve

out-of-cache performance. Second, for each key we move to its destination, we update a

shared variable triggering cache invalidations on every tuple move. To make it practical,

we change the unit of transfer from tuples to blocks. Each block must have a fixed size and

all tuples must belong to the same partition. We generate such blocks using the technique

described in the previous section. Out-of-cache accesses are amortized by the block size, as

is the synchronization cost of accessing shared variables.

Algorithm 16: Synchronized in-place partitioning

1 o, p← 0

2 A← {} // set of yet active (unfinished) partitions

3 do

4 A← A ∪ {p}
5 O[p]← o // O the prefix sum of the histogram H (same for all threads)

6 o← o + H[p]

7 p← p + 1

8 while p 6= P
9 D ← {} // set of tuple and location pairs that would deadlock

10 loop

11 p1 ← any ∈ A

12 o1 ← atomic fetch and add(C[p1], 1) // atomically increment shared counter to lock swap location

13 if o1 < H[p1] then

14 o2 ← o1 + O[p] // compute (initial) location using offset within partition

15 t← T [o2] // load tuple from input to start swap cycle

16 p2 ← f(t) // compute output partition of 1st tuple

17 if p1 6= p2 then

18 do

19 o1 ← atomic fetch and add(C[p1], 1) // lock swap location

20 if o1 ≥ H[p2] then

21 D ← D ∪ {t, o2} // record the tuple and initial location to avoid deadlocks

22 continue loop // break out of the inner loop and continue the outer (main) loop

23 o1 ← o1 + O[p2] // compute location using offset within partition

24 T [i]←→ t // swap tuple

25 p2 ← f(t) // compute output partition of next tuple

26 while p1 6= p2
27 T [o1]← t

28 else

29 A← A \ {p} // already shuffled all tuples in current partition

30 if A = {} then
31 break loop // exit if all partitions are shuffled



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 67

3.2.3 Partitioning Across NUMA Regions

Moving RAM-resident data across multiple CPUs raises questions about the effectiveness

of NUMA RAM transfers. Accessing remote memory locations goes through an intercon-

nection channel that issues operations to remote RAM modules, increasing the latency.

Normally, random accesses are much slower than sequential access and the gap increases

when the accesses reference remote RAM regions and go through the CPU interconnection.

Prior work [Albutiu et al., 2012] proposed doing sequential accesses to remote memory,

since hardware pre-fetching hides the latency. To avoid imbalanced use of the NUMA layer

when all transfers are directed to a subset of CPUs, we can pre-schedule the transfers and

supervise them via synchronization to ensure load balancing [Li et al., 2013].

One way to make NUMA-oblivious code scale on multiple CPUs is to allocate both

arrays to be physically interleaved across all RAM regions. The OS can support interleaved

allocation, where the physical locations of a single array are interleaved across all NUMA

regions. Randomization of page placement balances accesses across the NUMA intercon-

nection, but precludes NUMA locality. Thus, if we do random accesses, we pay the extra

NUMA latency. Cache-line buffering, used by out-of-cache partitioning to avoid TLB misses

and facilitate write-combining, also mitigates the NUMA overhead. Still, we measured out-

of-cache partitioning to be up to 55% slower on four NUMA regions on interleaved space.

The overhead for accessing single tuples across NUMA regions is even higher.

A more NUMA-friendly allocation is to split space into large segments bound to a

specific region. We can have one segment per thread bound to its local NUMA region, or

one segment per NUMA region. We use the latter approach for sorting (see Section 3.3.1).

3.2.3.1 Non-in-place Partitioning

Using NUMA-bound segmented allocation for threads or CPUs and if extra space is allowed,

we can ensure that all tuples will cross the NUMA boundaries at most once. We use shared-

nothing partitioning locally and then use a separate step to shuffle across CPUs. We can use

the NUMA interconnection in a balanced way without manual schedules [Li et al., 2013].

We distribute each segment across all threads of the destination CPU, and do the transfers

in a per thread random order. Given N NUMA regions, the expected number of times a



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 68

tuple will be transferred across NUMA regions is N−1
N . This number is less than 1 because

1
N of tuples that are already on the right NUMA region never cross NUMA boundaries.

The NUMA-oblivious partitioning may perform faster than the 2-step method of NUMA-

local shared-nothing partitioning followed by shuffling across NUMA nodes, since out-of-

cache partitioning mitigates the latency cost by buffering. Depending on the number parti-

tioning passes, the number of NUMA regions, and the hardware, enforcing minimal transfers

across NUMA regions may not outperform NUMA-oblivious approaches.

3.2.3.2 In-place Partitioning

Assuming NUMA-bound segmented allocation, the only in-place variant where threads do

not work in a shared-nothing fashion is during block shuffling. During the phase of block

shuffling on multiple NUMA regions, threads can read and write blocks from all regions, but

all accesses are sequential, since the block is large enough to amortize the random access

penalty. In the worst case, the operating thread CPU, the source, and the destination

of the swapped block, will be on three different regions. Thus, the tuples can cross the

interconnection at most twice. Since collocations occur, the expected number of transfers is

2N 2−3N+1
N 2 for N NUMA regions, assuming N > 2. For example, with N = 4, we perform

1.3125 transfers per tuple on average, 75% more than the non-in-place variant.

3.2.4 Radix / Hash Histogram

Hash and radix partitioning are similar because the time required to compute the partition

function is trivial. Complicated hash functions are used to decrease the collisions in hash

tables. In our context, we need partitions of almost equal size that separate the keys

randomly. Thus, employing hash functions designed to minimize hash table collisions,

would waste CPU cycles without offering any advantage.

The radix function is a shift operation followed by a logical and. To isolate bit range

[x, y), we shift right by x, then mask with 2y−x−1. Using multiplicative hashing and P = 2n

partitions, we multiply with an odd factor and then shift by b − n for b-bit keys. In both

cases, computing the partition function only marginally affects performance.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 69

3.2.5 Range Histogram

For hash and radix partitioning, computing the destination partition comes almost at zero

cost, whereas range partitioning is more expensive [Wu et al., 2013]. To split into P ranges,

we need P-1 delimiters that define the lower and upper bounds of each partition. We sort

the P-1 delimiters and do a binary search for each input key. The difference from textbook

binary search is that we search ranges rather than keys. Thus, we omit equality comparisons

and do not exit the loop in less than logP steps even if an exact match is found earlier.

Scalar binary search is one example where being cache-resident is not fast enough to give

good performance. The array of P − 1 delimiters always remains resident in the L1 cache.

However, the delays from waiting to load a new delimiter to proceed to the next comparison

and the logarithmic number of loads that have to be performed, slow down range function

computation almost by an order of magnitude compared to hash and radix. Replacing

branches with conditional moves performs even worse, proving that the problem here is not

the branches, but the logarithmic number of cache accesses that are tightly coupled due to

data (or conditional control flow) dependencies and thus incur their full latency cost.

3.2.5.1 Range Partitioning Function, In SIMD Registers

We first show how the computation of range partitioning functions can be accelerated via

SIMD instructions, by doing small fanout range partitioning. Each SIMD register can hold

multiple values and perform comparisons with all the values at the same time.

In the first approach, we holds different delimiters in each SIMD register and we broad-

cast each input key to all lanes of another SIMD register. We can do a SIMD comparison,

convert the result to a bit-mask and search the least-significant-set-bit to see which delim-

iter is actually larger than the key. To extend the fanout, we can store W×R delimiters in

R×W-wide SIMD registers. We perform R SIMD comparisons and R−1 SIMD packs, then

extract and append the bitmasks. The fanout depends on the number of available registers.

In practice, we do not have that many registers before stack spilling occurs and, unlike

binary search that requires O(logP) time, this horizontal approach requires O(P/W) time.

An example of 17-way range partitioning is shown below. The 16 range delimiters (32-bit)

are stored in 4 SIMD registers (128-bit): del_ABCD, del_EFGH, del_IJKL, and del_MNOP.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 70

__m128i key = _mm_shuffle_epi32(_mm_cvt32_si128(keys[i++]), 0); // broadcast next 1 key

__m128i cmp_ABCD = _mm_cmpgt_epi32(key, del_ABCD); // compare with 16 delimiters

__m128i cmp_EFGH = _mm_cmpgt_epi32(key, del_EFGH);

__m128i cmp_IJKL = _mm_cmpgt_epi32(key, del_IJKL);

__m128i cmp_MNOP = _mm_cmpgt_epi32(key, del_MNOP);

__m128i cmp_A_to_H = _mm_packs_epi32(cmp_ABCD, cmp_EFGH); // pack to 1 SIMD register

__m128i cmp_I_to_P = _mm_packs_epi32(cmp_IJKL, cmp_MNOP);

__m128i cmp_A_to_P = _mm_packs_epi16(cmp_A_to_H, cmp_I_to_P);

int bitmask = _mm_movemask_epi8(cmp_A_to_P); // extract the bitmask of comparisons

int res = _bit_scan_forward(bitmask | 0x10000); // find the lowest set bit from bitmask

The transposed approach is broadcast each delimiter in a separate SIMD register and

compare against W keys from the input. We use the results from earlier comparisons to

blend delimiters into new custom delimiters. For instance, suppose we want to do 4-way

range partitioning using 3 delimiters d1 < d2 < d3. We first compare the keys with (the

SIMD register with broadcast) d2, then blend d1 with d3 to create a new delimiter d1|3.

Each lane will either have d1 or d3 based on the comparison of the input key with d2. Then,

we compare the keys with d1|3 and combine the results. This vertical approach can be seen

as a binary tree structure of depth logP with P − 1 delimiters. On each comparison, the

first half nodes of each level are blended with the other half, creating a new tree of depth

logP−1. The result is generated by bit-interleaving the D comparisons into ranges ∈ [0,P).

We show an 8-way range function for 4 32-bit keys using 7 delimiters del_1, . . . , del_7.

__m128i key = _mm_load_si128((__m128i*) &keys[i]); i += 4; // load next 4 32-bit keys

__m128i cmp_lvl_1 = _mm_cmpgt_epi32(key, del_4); // 1st level comparison

__m128i del_15 = _mm_blendv_epi8(del_1, del_5, cmp_lvl_1);

__m128i del_26 = _mm_blendv_epi8(del_2, del_6, cmp_lvl_1);

__m128i del_37 = _mm_blendv_epi8(del_3, del_7, cmp_lvl_1);

__m128i cmp_lvl_2 = _mm_cmpgt_epi32(key, del_26); // 2nd level comparison

__m128i del_1357 = _mm_blendv_epi8(del_15, del_37, cmp_lvl_2);

__m128i cmp_lvl_3 = _mm_cmpgt_epi32(key, del_1357); // 3rd level comparison

__m128i res = _mm_sub_epi32(_mm_setzero_si128(), cmp_lvl_1); // combine the results

res = _mm_sub_epi32(_mm_add_epi32(res, res), cmp_lvl_2);

res = _mm_sub_epi32(_mm_add_epi32(res, res), cmp_lvl_3);

The two variants are largely equivalent. The vertical approach requires P − 1 SIMD

registers to hold the delimiters and requires O(P) instructions for W keys. The horizontal

approach requires P/W registers to hold the delimiters and executes O(P/W) instructions

per key. We use both variants in the following section. We also use the vertical version to

combine range with radix partitioning functions (see Section 3.3.2.1).



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 71

3.2.5.2 Range Partitioning Function, In-Cache Index

Register-resident range partitioning is very fast, but the number of partitions we generate

is not enough to saturate the partitioning fanout. [Kim et al., 2010] studied fast tree-index

search using SIMD. To search each node, [Kim et al., 2010] performs a horizontal search

with one SIMD register. The node fanout increases from 2 to W making the tree shorter,

while node accesses are implemented with O(1) SIMD instructions rather than O(W) scalar

instructions. The scalar binary tree search performs very poorly in comparison.

We extend the idea of larger fanout to optimize range partitioning functions. A cache-

resident index tree does not need pointers thus we can remove them; each level of the tree

is a single sorted array. For example, a tree with 24 delimiters can be represented in 2

levels. The first level holds delimiters [d5, d10, d15, d20] and the 2nd level holds delimiters

[d1, d2, d3, d4], [d6, d7, d8, d9], [d11, d12, d13, d14], [d16, d17, d18, d19], and [d21, d22, d23, d24]. The

node distinction implied by the parentheses is not explicit, we simply accessing the array

at a different offset denotes a different node. Delimiters are never repeated across levels.

The array pointers representing the tree levels are kept in scalar registers and all tree

node accesses are “hard-coded” with ad-hoc code per tree level. Thus, we can design

trees with different fanout on each level based on the total number of range partitions.

We generate a menu of tree fanout configurations in order to be able to choose the best

partitioning fanout, similar to picking the number of bits for radix or hash partitioning.

The sensible configurations are the ones where we load and horizontally search k SIMD

registers, giving tree node fanout of the form k · W + 1. We can hold the zero level (root)

of the tree in registers during the operation using horizontal register search, but we found

that using vertical SIMD search to access the root is faster.

Assuming 32-bit keys and 128-bit SIMD registers (W = 4), we use 5-way or 9-way

fanouts on tree levels. A level with 17-way fanout is outperformed by two consecutive

levels with 5-way fanout, also increasing the fanout from 17 to 25. The best configurations

that work well with suitable out-of-cache partitioning fanouts are: (i) a 360-way range

partitioning function using a 3-level (8 × 5 × 9)-way tree search, (ii) a 1000-way function

using a 4-level (8×5×5×5)-way tree, and (iii) a 1800-way function using an (8×5×5×9)-way

tree. We show the code accessing the 360-way tree omitting the 8-way root.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 72

__m128i lvl_1 = _mm_load_si128((__m128i*) &index[res_0 << 2]); // access 1st level (5-way fanout)

__m128i cmp_1 = _mm_cmpgt_epi32(lvl_1, key);

int res_1 = _mm_movemask_ps(_mm_castsi128_ps(cmp_1));

res_1 = _bit_scan_forward(res_1 ^ 0x1FF);

res_1 += res_0 + (res_0 << 2);

// access 2nd level (9-way fanout) with an offset of 32 (the 1st level delimiters)

__m128i lvl_2_A = _mm_load_si128((__m128i*) &index[(res_1 << 3) + 32]);

__m128i lvl_2_B = _mm_load_si128((__m128i*) &index[(res_1 << 3) + 36]);

__m128i cmp_2_A = _mm_cmpgt_epi32(lvl_2_A, key);

__m128i cmp_2_B = _mm_cmpgt_epi32(lvl_2_B, key);

__m128i cmp_2 = _mm_packs_epi32(cmp_2_A, cmp_2_B);

__m128i cmp_2 = _mm_packs_epi16(cmp_2, _mm_setzero_si128());

int res_2 = _mm_movemask_epi8(cmp_2);

res_2 = _bit_scan_forward(res_2 ^ 0x1FFFF);

res_2 += res_1 + (res_1 << 3);

To maximize the instruction-level parallelism and overlap the cache accesses across dif-

ferent input keys, we unroll the loops of all tree level accesses to process 4 input keys at a

time. The root uses the vertical approach with an 8-way fanout and is unrolled to process

16 input keys at a time. We evaluated the best degree of loop unrolling experimentally

assuming 32-bit keys in a platform with 128-bit SIMD (W = 4).

3.3 Sorting Algorithms

3.3.1 Setting

Like most prior work, we operate on fixed-length keys and payloads. In read-only workloads

typical of data analytics, more complex types can be dictionary encoded into compact

integer types that preserve the key order [Raman et al., 2013; Willhalm et al., 2009]. Keys

and payloads reside in separate arrays, as would be typical of a column-store analytical

database. When the algorithm starts, we assume that our input is evenly divided among

the N NUMA regions in contiguous segments. All columns of the same tuple reside in the

same NUMA region. The requirement for N separate segments is because the operating

system either interleaves allocated memory across regions, or allocates space from one region

exclusively. To maximize performance, we use N contiguous segments, one per NUMA

region. The output is also a collection of B segments of sorted data, each residing in a

distinct NUMA region. All keys in region Ni have a smaller key than all keys in region Nj

for i < j. The sorted output is a logical concatenation of the N segments.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 73

3.3.2 Radixsort

Radixsort is one of the most efficient sorting algorithms and is based on radix partitioning.

The number of partitioning passes is dependent on the size of the key. Radixsort is typically

misrepresented as an O(n) worst-case algorithm. Theoretically, we need log n bits per value

to store n distinct values. Radixsort then needs O(log n) radix partitioning passes to sort

the data, taking O(n log n) time in total, same as comparison-based sorting. The advantage

of radixsort over comparison-based sorting is not due to its complexity, but because radix

partitioning is faster than range partitioning, especially if implemented näıvely.

3.3.2.1 Stable LSB Radixsort

The first sorting algorithm we present in this chapter is NUMA-aware least-significant-bit

(LSB) radixsort. If the size of key domain is D, we radix partitioning using the dlogDe bits.

Building on the partitioning techniques described in Section 3.2, we can readily present how

a NUMA-aware LSB radixsort works. First, we must ensure that during partitioning, we

never swap items with equal keys. The order of the items is defined by the bit range of

the radix function. All passes, with the exception of the initial pass, must be stable, i.e.

preserve the ordering of equal items. In-place partitioning is inherently not stable.

If we allocate the array across multiple NUMA regions at random, each tuple will be

transferred across NUMA boundaries several times. This design is clearly suboptimal. We

ensure that each tuple is transferred through the NUMA interconnection network exactly

once. In the first partitioning step, we use B-way range partitioning. The B − 1 delimiters

are acquired by uniform sampling. Since B is small and the logB bits cannot saturate the

partitioning fanout, we fill up with low order radix bits. The steps are described below:

1. Sample N − 1 range delimiters dividing the data equally across N NUMA regions.

2. Partition the data locally on each NUMA region using a combined range (N -way) and

radix function (see Section 3.2.2.1). Use enough bits to optimize the fanout per pass.

3. Shuffle the data across N NUMA regions (see Section 3.2.3.1).

4. Perform multiple radix partitioning passes locally per NUMA region to cover all logD

key domain bits (see Section 3.2.2.1). Use enough bits to optimize the fanout per pass.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 74

All data movement during any partitioning pass are based on parallel out-of-cache par-

titioning (see Section 3.2.2.1) between the threads of the same NUMA region only. Data

transfers across NUMA nodes happen only during the shuffling of the N ranges (see Sec-

tion 3.2.3.1). Threads operating on the same NUMA nodes always split the workload

in equal pieces, regardless of partition sizes and skew. The N − 1 range delimiters en-

sure equalized segment sizes across the N NUMA regions. Finally, to compute the mixed

range-radix partitioning function of the first phase, we use register-resident delimiters (see

Section 3.2.5.1) and concatenate the range function result with the low order radix bits.

The number of passes does not change; we only add a minor logN range partition bits. We

can also support balancing of workload across non-uniform CPUs by dividing the data to

B non-equal range partitions, if we can estimate the relative performance between CPUs.

When the key domain is dense (D ∼ n), LSB radixsort performs the minimum number

of passes. When the key domain is larger than the cardinality of the array, LSB radixsort

needs than log n passes, eliminating its advantage over other approaches.

3.3.2.2 In-place MSB Radixsort

The second sorting algorithm we present is in-place most-significant-bit (MSB) radixsort.

In MSB radixsort, the bits are processed high-to-low, rather than low-to-high as in LSB.

The partitioning passes are dividing the data to non-overlapping key ranges, a radix-based

analog to quicksort. The outputs of each pass are never interleaved. Since each pass does

not maintain the ordering of previous passes, stable partitioning is irrelevant.

The MSB radixsort can work in-place. As with large-scale in-place partitioning, we are

the first to propose an algorithm for large-scale in-place sorting. LSB radixsort is faster

than MSB radixsort on dense key domains, but the small performance gap justifies paying

a small price in time and in exchange save space to be used for other concurrent operators.

In the initial pass, we use shared segment in-place partitioning across all NUMA regions

(see Section 3.2.3.2). If the initial bit range does not manage to divide the data in a

balanced fashion, the later phases will either operate on unbalanced sub-array sizes, or

transfer data across NUMA regions more than once to re-balance work. Mixing radix with

range partitioning during the initial pass is a robust solution. Range partitioning ensures



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 75

load balancing is unaffected even if the high-order bits of the keys are always the same. Such

cases are not uncommon for databases that use fixed data types or schemas with larger data

types than necessary for the domain. The steps are described below:

1. Sample T − 1 range delimiters that divide the data equally across T threads. Add T ′

range delimiters (T ′ ≥ T ) generated from the log T ′ high-order bits.

2. Range partition (in parallel) generating linked lists of blocks (see Section 3.2.2.3).

3. Shuffle the blocks across all NUMA regions in-place (see Sections 3.2.2.4 and 3.2.3.2).

4. Sort each segment recursively in a shared-nothing fashion:

(a) If the (sub-)array is larger than the cache, use out-of-cache shared-nothing radix par-

titioning (see Section 3.2.2.1) and continue recursively for each partition.

(b) Otherwise, use in-place in-cache radix partitioning (see Section 3.2.1). Continue re-

cursively to cover the key bits, or use insertsort for tiny sub-arrays (< 10 tuples).

We divide the array across T ranges, where T is the number of threads, not the NUMA

regions. The T − 1 range delimiters are determined via sampling. We add log T bits in the

same way we added logN bits for LSB radixsort. We “hide” the extra bits by overlapping

with 2dlog T ′e radix partitions generated from the high dlog T ′e radix bits T ′ ≥ T .

After range partitioning and shuffling across NUMA regions, each thread sorts a parti-

tion recursively using both out-of-cache (see Section 3.2.2.1) and in-cache (see Section 3.2.1)

partitioning. When the sub-array of size n is smaller than the cache, we use ≈ log n radix

bits to generate parts of trivial size [Kim et al., 2009]. We use dlog ne − 2 bits and gen-

erate partitions of 4–8 tuples, sorted via insertsort. As a result, MSB radixsort covers

log min(D, n) bits, in contrast to LSB radixsort that covers logD bits.

3.3.3 Comparison-Based Sorting

The third sorting algorithm we present is comparison-based and builds on range partition-

ing. In contrast to radixsort, we rely solely on comparisons to remain independent of the

key domain size. Generally, comparison-based sorting allows for perfect load balancing and

higher efficiency under skew. The most important comparison-based algorithms are quick-

sort and mergesort. The latter has been optimized using SIMD [Chhugani et al., 2008].



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 76

3.3.3.1 Sorting In The Cache

Prior work [Balkesen et al., 2013a; Chhugani et al., 2008; Inoue et al., 2007; Satish et al.,

2010] has suggested SIMD-aware sorting. The proposed method [Balkesen et al., 2013a;

Chhugani et al., 2008; Satish et al., 2010] starts from sorting in SIMD registers, then

combines multiple registers using sorting networks or bitonic sort, then switches to merging.

Outside the database community, an approach that scales to the SIMD length has been

proposed [Inoue et al., 2007], initially using W -way comb-sort in-cache without comparing

keys across lanes, then transpose and merge all parts out-of-cache.

Optimally, we need O(n/W) log n SIMD instructions to execute O(n log n) comparisons

on W-way SIMD. Sorting networks and bitonic sorting scale to the SIMD length by re-

quiring O((n/W) log2 n) instructions. If we view the array as n/W vectors rather than n

keys and never compare keys across lanes, we need O((n/W) log (n/W)) SIMD compar-

isons. Afterwards, we merge the W arrays with n logW comparisons. In total, we need

O((n/W) log (n/W) + n logW) comparisons, which is very close to O((n/W) log n) and

better than bitonic sort. Combsort can be extended to operate on vectors of W tuples.

__m128i x = _mm_load_si128(&input_keys[i]);

__m128i y = _mm_load_si128(&input_keys[i + gap]);

_mm_store_si128(&input_keys[i], _mm_min_epu32(x, y));

_mm_store_si128(&input_keys[i + gap], _mm_max_epu32(x, y));

After W-wide combsort finishes, we merge the W lanes. We keep the “last” key from

the W arrays in a SIMD register. We also keep the location offsets and the payloads. On

each iteration, we find the lane of the minimum key, extract the payloads and the offset,

write the minimum tuple to the output, read the next tuple from i +W where i is the

location of the last minimum key, and replace the SIMD lane. We show one iteration with

32-bit keys on 128-bit SIMD below, omitting payloads for simplicity.

__m128i min_key = min_across(key); // find the min key and output it

_mm_stream_si32(output_keys++, _mm_cvtsi128_si32(min_key));

__m128i min_loc = min_across(_mm_or_si128(loc,_mm_xor_si128(mask_I,_mm_cmpeq_epi32(key, min_key))));

size_t i = _mm_cvtsi128_si32(min_loc); // load the next key and update the index

__m128i new_key = _mm_shuffle_epi32(_mm_cvtsi32_si128(input_keys[i + 4]), 0);

__m128i new_loc = _mm_add_epi32(min_loc, mask_4);

min_loc = _mm_cmpeq_epi32(min_loc, loc); // insert new key and location

key = _mm_blendv_epi8(key, new_key, min_loc);

loc = _mm_blendv_epi8(loc, new_loc, min_loc);



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 77

1

17

6

5

10

13

18

15

9

7

19

20

8

14

12

3

4

11

16

2

1

5

6

10

17

7

9

13

15

18

8

12

14

19

20

2

3

4

11

16

8 11 5 9 14 16 10 7 12 21 13 19 3 17 18 20 4 6 15

11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10

Input Array

Input
Array

Input
Array

Output Array 

Figure 3.2: SIMD comb-sort (4-way)

To compute the minimum key across a SIMD cell holding W keys we need logW com-

parisons and logW shuffle instructions. We show the implementation of min-across on Intel

SSE below for 4 32-bit keys (X, Y , Z, W , where A = min(X,Y ) and B = min(Z,W )):

__m128i min_across(__m128i key_XYZW) {
__m128i key_YXWZ = _mm_shuffle_epi32(key_XYZW, _MM_SHUFFLE(2,3,0,1));

__m128i key_AABB = _mm_min_epu32(key_XYZW, key_YXWZ);

__m128i key_BBAA = _mm_shuffle_epi32(key_AABB, _MM_SHUFFLE(1,0,3,2));

return _mm_min_epu32(key_AABB, key_BBAA); }

All steps are shown in Figure 3.2. Given W = 4, the merging step takes significantly

less time than the W-way combsort and skips the need for 2-way merging [Inoue et al.,

2007] or bitonic sort [Chhugani et al., 2008]. The interleaved arrays are transposed during

merging without using auxiliary space. The extra space is used to flush the sorted output,

bypassing the cache. The algorithm performs O((n/W) log (n/W) + n logW) comparisons.

3.3.3.2 Out-of-cache

Prior work [Balkesen et al., 2013a; Chhugani et al., 2008; Satish et al., 2010] argued merge-

sort as the most effective comparison-based sorting algorithm. Since merging two streams

on each pass is bounded by the RAM bandwidth, merging a larger number of arrays is a

better approach. Quick-sort splits the array using 2-way range partitioning optimized to

avoid histograms, but is also bounded by the RAM bandwidth when running out-of-cache.

We introduce a new variant for comparison sorting based on range partitioning that

uses a large fanout on each pass. Since radixsort can do a lot of radix partitions on each

pass, we could do the same for range partitioning. Until recently, this idea hit the wall of

slow out-of-cache partitioning, and, until now, the wall of slow range function computation.

The comparison-based algorithm we propose is quite similar to radixsort, but replaces



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 78

radix with range partitioning. The version we present here uses non-in-place partitioning,

thus, uses linear auxiliary space, similarly to merge-sort. The algorithm decides on a number

of range partitioning passes to range-split the data to cache-resident range parts.

To compute the range function, we build a specialized index in the cache (see Sec-

tion 3.2.5.2) and, alongside computing the histogram, we store the range partition for each

tuple to avoid re-computing it. While the tuples are actually moved, we (sequentially) read

the range partitions from the array where they are stored during range histogram genera-

tion. The data movement part of partitioning performs almost as fast as radix partitioning,

since scanning an additional short range array has a small cost. The boost in performance

is due to the fast range partition function. We describe the recursive steps below:

1. If in-cache, sort using SIMD combsort and return.

2. Sample range delimiters and generate histogram using the range function index.

3. Use out-of-cache range partitioning locally (see Section 3.2.2.1).

4. If 1st pass, shuffle across the N NUMA regions (see Section 3.2.3.1).

5. Continue recursively for each range partition.

Using the large fanout of partitioning is essential to avoid doing many passes bounded by

the RAM bandwidth. The alternative would be to use merging. Incremental merging pro-

posed in [Chhugani et al., 2008] is CPU-bound, but we transfer tuples logP times between

small intermediate buffers. More recent work that compares merging with partitioning

[Balkesen et al., 2013a], shows 16-way merging to be as fast as non-in-place out-of-cache

radix partitioning for up to 11-bits. As we will see experimentally, this advantage holds

also for range partitioning, using the efficient cache-resident range index that we propose.

To avoid skew and load balancing problems, we create more range partitions than the

total threads before we shuffle across NUMA regions. The threads can fine-grain share

the workload and the B segment sizes can have almost equal sizes. Also, to achieve range

partitions of balanced size [Ross and Cieslewicz, 2009], when key X is sampled twice or

more as a delimiter, we substitute the multiple repeats with X and X + 1, generating a

partition with only X tuples. If too many repeated delimiters are discarded, we switch to

a smaller range index. The single-key range partitions need no further processing.



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 79

3.4 Experimental Evaluation

All experiments are run on 4 Intel Xeon E5-4620 8-core CPUs at 2.2 GHz based on the

Sandy Bridge micro-architecture with 512 GB quad-channel DDR3 ECC RAM at 1333

MHz. Each CPU provides 16 hardware threads via 2-way simultaneous multi-threading

(SMT). Each core has a 32 KB L1 data cache and a 256 KB L2 cache. Each CPU has 8

MB L3 cache shared across the 8 cores. We measured the RAM bandwidth at 122 GB/s

for reading, 60 GB/s for writing, and 37.3 GB/s for copying.

The operating system is Linux 3.2 and the compiler is GCC 4.8 with -O3 optimization.

We use SSE (128-bit SIMD) instructions on AVX registers (256-bit), in order to use non-

destructive 3-operand instructions that improve pipeline performance. We do use 256-bit

SIMD because the platform supports 256-bit SIMD for floating point operations only. Unless

stated otherwise, we use all 64 hardware threads and the keys are uniform random. Also,

the keys and the payloads are stored on separate arrays.

In Figure 3.3a, we show the performance of the four variants of partitioning using 32-bit

keys and 32-bit payloads run in a shared-nothing fashion. The in-cache variants are bound

by the TLB capacity, thus, have poor performance for large fanout. When running out-of-

cache, the optimal cases are 5–6 bits (32–64 partitions). The out-of-cache variants increase

the optimal fanout to 10–12 bits, when non-in-place, and 9–10 bits, when in-place. Using

out-of-cache variants for small cache-resident array sizes incurs unnecessary overheads. The

optimal fanout is the one with the highest performance per partitioning bit (= logP, for

0

10

20

30

40

50

60

0
1
2
3
4
5
6
7
8

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	b
illi
on

tu
pl
es
	p
er
	se

co
nd
)

Number	of	partitions

Non-in-place	out-of-cache In-place	out-of-cache

Non-in-place	in-cache In-place	in-cache

(a) 32-bit keys and payloads

0

10

20

30

40

50

60

0
0.5
1

1.5
2

2.5
3

3.5
4

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	b
illi
on

tu
pl
es
	p
er
	se

co
nd
)

Number	of	partitions

Non-in-place	out-of-cache In-place	out-of-cache

Non-in-place	in-cache In-place	in-cache

(b) 64-bit keys and payloads

Figure 3.3: Throughput of out-of-cache radix partitioning (1010 tuples)



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 80

0

10

20

30

40

50

0

1

2

3

4

5

6

7

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	b
illi
on
	

tu
pl
es
	p
er
	se

co
nd
)

Number	of	partitions

Zipf

Uniform

Figure 3.4: Partitioning throughput with uniform random and Zipf data (θ = 1.2)

P-way partitioning) ratio. In Figure 3.3b, we show the performance of partitioning for 64-

bit keys and 64-bit payloads. Compared to the 32-bit case, partitioning is actually slightly

faster (in GB/s), since RAM accesses and computation overlap more effectively.

In Figure 3.4, we repeat the experiment of Figure 3.3a including runs with data that

follow the Zipf distribution with θ = 1.2. Under skew, some partitions are accessed more

often than others. Implicit caching of these partitions decreases the probability of cache

misses and TLB thrashes, improving performance. With less skew (θ < 1), we found no

significant difference in partitioning performance.

In Figure 3.5, we show the thread scalability of out-of-cache partitioning variants as-

suming a fanout of 1024. The algorithm scales almost linearly with the number of cores.

Noticeably, SMT threads give in-place partitioning a bigger performance boost compared

to non-in-place partitioning.

0

10

20

30

0

1

2

3

4

1 2 3 4 5 6 7 8 16

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	b
illi
on
	

tu
pl
es
	p
er
	se

co
nd
)

Threads	/	CPU						 				 			 				 				 		(SMT)

Non-in-place	(4	CPUs) In-place	(4	CPUs)
Non-in-place	(1	CPU) In-place	(1	CPU)

(a) 32-bit keys and 32-bit payloads

0

10

20

30

40

0
0.5
1

1.5
2

2.5
3

1 2 3 4 5 6 7 8 16

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	b
illi
on
	

tu
pl
es
	p
er
	se

co
nd
)

Threads	/	CPU						 				 			 				 				 		(SMT)

Non-in-place	(4	CPUs) In-place	(4	CPUs)
Non-in-place	(1	CPU) In-place	(1	CPU)

(b) 64-bit keys and 64-bit payloads

Figure 3.5: Scalability of out-of-cache radix partitioning (109 tuples, 1024-way)



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 81

0

30

60

90

120

0

8

16

24

32

128 256 512 1024 2048

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	b
illi
on
	

ke
ys
	p
er
	se

co
nd
)

Number	of	partitions

Range	 (index) Range	 (naive)
Radix Hash

(a) 32-bit keys

0

30

60

90

120

0

4

8

12

16

128 256 512 1024 2048

(In
	G
B	
pe
r	s
ec
on
d)

Th
ro
ug
hp
ut
	(
in
	b
illi
on
	

ke
ys
	p
er
	se

co
nd
)

Number	of	partitions

Range	 (index) Range	 (naive)
Radix Hash

(b) 64-bit keys

Figure 3.6: Throughput of histogram generation (1010 keys)

In Figure 3.6, we show the performance of histogram generation for all variants of parti-

tioning. Radix and hash partitioning operate roughly at the memory bandwidth. Range par-

titioning using the configured range function index (see Section 3.2.5.2) improves 4.95–5.8X

compared to binary search with 32-bit keys (Figure 3.6a). With 64-bit keys (Figure 3.6b),

the range function index speeds-up the process 3.17–3.4X over scalar code, despite the limi-

tation of only 2-way 64-bit operations. The speed-up decreases because scalar binary search

doubles its performance (in GB/s), fully shadowing the RAM accesses.

In Figure 3.7a, we show the performance of the three sorting variants that we propose,

using tuples with a 32-bit key and a 32-bit payload. LSB denotes LSB radixsort, MSB

denotes MSB radixsort and CMP denotes comparison-sort. MSB is 10–20% slower than

the fastest LSB and maximizes when the array exceeds the domain size, using only radix

partitioning in the cache. Comparison-based sorting is slower but still comparable.

0
1
2
3
4
5
6

0

200

400

600

800

1 2.5 5 10 25 50

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	m

illi
on
	

tu
pl
es
	p
er
	se

co
nd
)

Number	of	tuples	 (in	billions)

LSB MSB CMP

(a) 32-bit keys and 32-bit payloads

0
1
2
3
4
5
6

0

100

200

300

400

0.5 1.25 2.5 5 12.5 25

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	m

illi
on
	

tu
pl
es
	p
er
	se

co
nd
)

Number	of	tuples	 (in	billions)

LSB MSB CMP

(b) 64-bit keys and 64-bit payloads

Figure 3.7: Throughput of all three sorting methods



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 82

0

1

2

3

4

5

6

0

200

400

600

800

1 2 3 4 5 6 7 8 16

(in
	G
B	
pe
r	
se
co
nd
)

Th
ro
ug
hp
ut
	(
in
	m

illi
on

tu
pl
es
	p
er
	se

co
nd
)

Threads	per	CPU							 				 				 				 			 				 				 			(SMT)

LSB	- 4	CPUs
CMP	- 4	CPUs
LSB	- 1	CPU
CMP	- 1	CPU

Figure 3.8: Sorting scalability (109 tuples, 32-bit keys and 32-bit payloads)

In Figure 3.7b, we show the speed of all variants for 64-bit keys and 64-bit payloads.

These algorithms are most useful in cases where data-to-query time is important and com-

pression is too expensive, or when tuples change rapidly and cannot be compressed. MSB

radixsort is faster than LSB, as it needs less partition passes. When we reach the cache,

we create n/4 to n/8 partitions and then sort 4–8 items using insert-sort. Our advantage

over hybrid approaches, such as MSB switching to LSB [Wassenberg and Sanders, 2011], is

that the latter will do more passes for sparse keys that are not free, even if cache-resident.

Comparison-sort, like MSB radixsort, needs fewer passes than LSB. Range partitioning per-

forms closer to radix, since the data movement costs twice, while the range histogram is less

affected. On the other hand, in-cache SIMD sorting is more expensive, since each 128-bit

SIMD register can hold two 64-bit keys and cannot be much faster than scalar code.

In Figure 3.8, we show the scalability of both LSB and CMP. CMP benefits more from

SMT threads than LSB. Using all hardware threads, the speed-up of 4 CPUs over 1 CPU

is 3.13X for LSB and 3.29X for CMP. On 4 CPUs, we cannot achieve a 4X speedup due to

the extra step of shuffling across NUMA regions. The step is omitted on 1 CPU.

LSB radixsort is immune to skew due to always splitting the input equally among

threads. Comparison-based sorting is in fact significantly faster under skew. For 1010 tuples

following the Zipf distribution, LSB is 5% faster for θ = 1 and 15% faster for θ = 1.2. CMP

is 30% faster for θ = 1 and 80% faster for θ = 1.2 outperforming both variants of radixsort.

MSB can be affected negatively, but not until high skew (θ ≥ 1.2). If excessive key repeats

affect the balance across the N NUMA regions, we can identify these keys during sampling

and create single key partitions across NUMA regions [Ross and Cieslewicz, 2009].



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 83

0

5

10

15

20

25

30

LSB CMP MSB LSB CMP

Ti
m
e	
(in
	s
ec
on
ds
)

Pre-allocated Not	pre-allocated

Allocation Histogram Partition

NUMA	Shuffle Recursive	MSB Combsort

(a) 32-bit keys and payloads

0

10

20

30

40

50

60

LSB CMP MSB LSB CMP

Ti
m
e	
(in
	s
ec
on
ds
)

Pre-allocated Not	 pre-allocated

Allocation Histogram Partition

NUMA	Shuffle Recursive	MSB Combsort

(b) 64-bit keys and payloads

Figure 3.9: Execution time per sorting algorithm phase (1010 tuples)

In Figure 3.9, we show the execution time spent on each step of the algorithm and also

show the additional cost of each algorithm when auxiliary memory is not pre-allocated.

MSB outperforms LSB radixsort when auxiliary space is not already available. CMP needs

only two range partitioning passes to split into sub-arrays that are smaller than the cache.

However, it still spends ∼ 40% of the total execution time to sort the sub-arrays in the

cache using SIMD combsort.

In Figure 3.10, we compare NUMA-aware and NUMA-oblivious variants of sorting al-

gorithms. The effect of the NUMA layer is dependent on the number of partitioning passes.

A pass can be more than 50% slower on NUMA-interleaved memory. Using an extra pass

for NUMA shuffling always helps. LSB radixsort is ≈ 25% faster when NUMA-aware, even

0

0.25

0.5

0.75

1

1.25

1.5

1.75

0

10

20

30

40

50

60

70

LSB LSB CMP CMP LSB LSB CMP CMP

Sp
ee
du
p	
(N
U
M
A-
aw

ar
e

vs
.	N

U
M
A-
ob
liv
io
us
)

Ti
m
e	
(in
	s
ec
on
ds
)

32-bit	key	&	32-bit	paylod				 				 	64-bit	key	&	64-bit	payload	

Histogram Partition NUMA	Shuffle Combsort

Figure 3.10: NUMA-aware vs. NUMA-oblivious sorting (1010 tuples)



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 84

0

1

2

3

4

0

800

1600

2400

3200

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

SI
M
D	
sp
ee
du
p

Th
ro
ug
hp
ut
	(
in
	m

illi
on
	

tu
pl
es
	p
er
	se

co
nd
)

Array	size	(in	cache)

Scalar SIMD Speedup

Figure 3.11: Performance of scalar and SIMD comb-sort (32-bit keys and 32-bit payloads)

if only 3 passes are required for 32-bit keys. When using 64-bit keys, being NUMA-aware

is more than 50% faster. Finally, the effect on comparison sort is smaller (10–15%), since

range histograms are CPU-bound and the number of passes is minimal.

In Figure 3.11, we show the performance of SIMD combsort using 32-bit keys and 32-bit

payloads. The input is split in smaller sub-arrays and we sort each sub-array independently

in a single thread. The process is the same as the last phase of CMP. The speedup of SIMD

combsort over the scalar version is 2.9X on average, which is fairly close to the 4X upper

bound (W = 4) for 32-bit keys and 128-bit SIMD registers.

Large-scale sorting has been recently used for sort-merge-join operators. [Albutiu et

al., 2012] performs an in-place MSB radix partitioning pass using a simpler variant of in-

place in-cache radix partitioning, then uses introsort [Musser, 1997] to sort the partitions.

This hybrid approach operates in-place, but is neither purely comparison-based nor purely

a radixsort. In-place radixsort is 2–3X faster than introsort on 32-bit keys, and a single

radix partitioning step still leaves most of the work for introsort. [Balkesen et al., 2013a],

that improves over [Albutiu et al., 2012], uses similar hardware to ours (4 Intel Sandy

Bridge CPUs, 32 cores with SMT, NUMA memory). For 1 billion tuples, [Balkesen et al.,

2013a] shows a sorting rate of 350 million tuples per second using merging, compared to

our comparison-based sorting that sorts 540 million tuples per second. Again for 1 billion

tuples, [Balkesen et al., 2013a] shows a sorting rate of 675 million tuples per second using

non-in-place MSB radix partitioning out of the cache, compared to our non-in-place LSB

radixsort that sorts 740 million tuples per second. Thus, we outperform prior work on both

radix- and comparison-based sorting. Furthermore, [Albutiu et al., 2012] and [Balkesen



CHAPTER 3. IN-MEMORY PARTITIONING AND LARGE-SCALE SORTING 85

et al., 2013a] implicitly assume that the key value range covers the entire key domain, as

MSB radix partitioning is not combined with range partitioning to guarantee load balancing

across threads. The MSB radix partitioning pass can be rendered useless if the high-order

bits are not uniform random. Neither work considers large key domains.

The performance of SIMD-optimized mergesort in [Chhugani et al., 2008] drops by 12.4%

when sorting 228 keys (1 GB) compared to 227, and in [Balkesen et al., 2013a] by 25% when

sorting 230 tuples (8 GB) compared to 229. The performance of our comparison-based

sorting algorithm drops by 13% when sorting 25 billion tuples (186.26 GB) compared to 1

billion (7.45 GB). Thus, our optimized range partitioning is more scalable than merging on

large-scale comparison-based sorting.

3.5 Conclusion

We studied a wide menu of partitioning variants across all layers of the memory hierarchy,

introduced large-scale in-place partitioning, and provided guarantees for minimal transfers

across NUMA regions on platforms with multiple processors. We designed a SIMD-base

range index to optimize the computation of range partitioning function, making range

partitioning comparably fast with radix or hash partitioning.

By combining multiple partitioning variants, we designed three large-scale sorting al-

gorithms that are the fastest to date: a stable LSB radixsort, an in-place MSB radixsort,

and a comparison-based sorting algorithm based on range partitioning. Our evaluation on

large-scale arrays with billions of tuples suggests that (i) LSB radixsort is best on dense

key domains and is immune to skew, (ii) MSB radixsort is best on sparse key domains or

when saving memory space is important, and (iii) comparison-based sorting is guarantees

optimal load balancing and higher performance under skew.

Our work can serve as a tool for designing other large-scale database operations by

combining the most suitable partitioning variants. In-place partitioning offers a valuable

trade-off between space and time. Range partitioning guarantees load balancing regard-

less of skew or the key domain. Enforcing minimal transfers across NUMA boundaries

guarantees efficiency and scalability on future even more parallel hardware.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 86

Chapter 4

Lightweight Compression

Alongside Fast Scans

4.1 Introduction

The increase in main-memory capacity has allowed small to medium-sized databases to fit

in main memory and the bottleneck has shifted from disk access to the memory bandwidth.

In-memory query execution has raised the bar and vendors strive to provide real-time eval-

uation of analytical queries, even if a large portion of the database is accessed.

Column stores are a structural evolution of analytical database systems in order to

optimize for the memory bandwidth bottleneck. By storing each column separately, we

maximize the portion of useful data transferred for queries that access a few columns. To

optimize the data fetching rate, we have to maximize both the useful data per unit of

transfer and the rate of transfers by avoiding random accesses.

Sequential memory scans are preferred over random accesses. Dropping the indexes al-

together in favor of linear table scans is now a sensible design [Raman et al., 2013]. Cache-

conscious joins, sorting, and aggregation also eliminate non-sequential accesses, while facil-

itating thread scalability. By tuning each operator to the underlying hardware, database

systems maximize performance close to the hardware limit. In this context, memory band-

width is the most important bottleneck.

Analytical databases are compressed, not only to fit the data in main memory, but



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 87

also to improve beyond the memory bandwidth. Compression schemes allow operators to

process the data directly on the compressed format [Raman et al., 2013; Willhalm et al.,

2009]. The most common scheme is dictionary compression. In its pure form, the n distinct

values of each column are kept in a sorted dictionary and instead of storing the actual

column values of each tuple, we store the dictionary indexes as codes using dlog ne bits.

Joins and selections can process the compressed codes instead of the actual values. The

predicate constants present in the query are also converted into dictionary codes using the

sorted dictionary, maintaining the same comparison order.

There are multiple approaches regarding the storage layout of dictionary codes. In the

standard horizontal bit packing, we can accelerate scans by wasting space to ensure word-

alignment and allow for in-register data-parallel predicate evaluation [Johnson et al., 2008].

Otherwise, we can still unpack the fully packed codes efficiently using SIMD instructions

[Willhalm et al., 2009]. To achieve optimal scan performance by even skipping some parts

of the data, we must pack the bits vertically [Li and Patel, 2013] by interleaving them.

However, the vertical layout is too expensive to generate and incurs prohibitive costs for

extracting a large portion of tuples for cases with high selectivity.

In this chapter, we study both the horizontal and the vertical bit packing layout, focusing

on three operations: packing, unpacking, and selection scans. We optimize the operations

on the horizontal layout, including the word-aligned variant, by using instructions that

are only available in recent mainstream CPUs and achieve significantly better instruction

efficiency. Our novel contribution is the design and implementation of the packing and

unpacking operations on the vertical bit packing layout using SIMD instructions. Our ap-

proach increases performance by more than an order of magnitude. Finally, we compare all

approaches and highlight respective strengths and weaknesses and conclude that while hor-

izontal bit packing is highly competitive, vertical bit packing combines the fastest selection

scans while being comparably fast for packing and unpacking. Our work offers deep insights

on these layouts and extends the trade-off options for lightweight database compression.

The rest of the chapter is organized as follows. In Sections 4.2 and 4.3, we discuss

horizontal and vertical bit packing respectively. In Section 4.4, we present our experimental

evaluation and we conclude in Section 4.5.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 88

4.2 Horizontal Bit Packing

Horizontal bit packing stores an array of integer codes using a constant number of bits. Each

integer code points to the same column value (by index) in a dictionary of unique values for

the column. We need b = dlogne bits to represent n distinct values. In horizontal encoding,

the bits per code are stored contiguously. For example, if b = 4 and we want to pack codes

3 (0011), 5 (0101), 7 (0111), and 9 (1001), we would pack them as: 1001011101010011.

4.2.1 Scalar Packing and Unpacking

Packing 32-bit codes to b-bit codes is shown below in C. We iterate over the unpacked

codes and construct the next packed word using a 64-bit scalar register. We branch once

the processor word with packed codes is full, store the word to output, and restart filling the

word with new codes. We also handle cases where codes span across two processor words.

void compress(const uint32_t* uncompressed, int8_t bits, size_t tuples, uint64_t* compressed) {
uint64_t word = 0; // the word of packed codes

int8_t word_bits = 0; // current number of used bits in the word of packed codes

size_t i = 0, o = 0;

do { // pack one code per iteration

uint64_t code = uncompressed[i++]; // load next code from input

word |= code << word_bits; // insert code in word of packed codes

word_bits += bits; // update the number of used bits in the word

if (word_bits >= 64) { // if we exceed the size of the word

compressed[o++] = word; // store the previous word of packed codes

word_bits -= 64;

word = code >> (bits - word_bits); // reset the word with remaining bits from the last code

}
} while (i != tuples);

}

We can optimize this methods for each code size individually. We can loop unroll the

packing of the next 32 codes, use constant stride shifts and bitwise operations to pack the

codes, and remove the branch instructions completely [Lemire and Boytsov, 2015; Zukowski

et al., 2006]. We do not evaluate such optimizations here.

The scalar code for unpacking the horizontal layout is shown below. We load and

process one 64-bit processor word at a time. Once we process all packed words from the

64-bit processor word, we perform a branch to fetch the next 64-bit word. The bits of a

dictionary code may span across two words so we may to stitch pieces.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 89

void decompress(const uint64_t* compressed, int8_t bits, size_t tuples, uint32_t* uncompressed) {
uint64_t word = 0; // the word of packed codes

int8_t word_bits = 0; // current number of used bits in the word of packed codes

const uint64_t max_code = (1 << bits) - 1; // mask to clear the high-order bits of unpacked codes

size_t i = 0, o = 0;

do { // unpack one code per iteration

uint64_t code = word & max_code; // copy the code and clear the high-order bits

word >>= word_bits; // shift the word of packed codes

word_bits -= bits; // update the number of used bits in the word of packed codes

if (word_bits < 0) { // if the word is out of bits

uint64_t next_word = compressed[i++]; // read next word of packed codes

word = next_word >> (0 - word_bits); // ignore bits of last code from word

word_bits += 64;

code |= (next_word << word_bits) >> (64 - bits); // stitch bits for the last code

}
uncompressed[o++] = code;

} while (o != tuples);

}

Similarly to packing, we can also unroll the loop of unpacking, use constant stride shifts,

and eliminate the branches [Lemire and Boytsov, 2015; Zukowski et al., 2006].

4.2.2 Word-Aligned Scalar Scanning

Based on earlier work [Johnson et al., 2008; Lamport, 1975], scanning the packed format

of dictionary codes to evaluate selective predicates can be done directly on the packed

format without unpacking using scalar code. The method uses two observations on binary

arithmetic first made by [Lamport, 1975]. First, the C1 6= C2 boolean expression in b-bit

arithmetic is equal to the overflow bit of (C1 xor C2) + (2b − 1). Second, the C1 < C2

expression is equal to the overflow bit of (C1 xor (2b − 1)) + C2.

To parallelize the predicate evaluation, we pack b′ = b64/(b+ 1)c codes per 64-bit word.

Each code uses b+ 1 bits. The extra bit per code is the overflow bit that allows predicate

evaluation to occur in parallel for all the b′ codes packed in the processor word. The overflow

bit also ensures that the addition does not propagate a carry to the following b+ 1 bits of

the next packed code. Packing and unpacking this format are simplified by using an inner

loop to pack the b′ codes per 64-bit word. However, the remaining 64 − b′ · (b + 1) bits at

the end of each word are wasted, in addition to the extra bit per b-bit code that we utilize

as an overflow bit.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 90

The scalar code for evaluating the C1 ≤ column ≤ C2 selective predicate on the word-

aligned horizontal packed layout is shown below. C1 and C2 are query constants.

void scan(const uint64_t* compressed, int8_t bits, size_t tuples,

uint64_t* bitmap, uint32_t min, uint32_t max) {
const uint64_t mask_min = repeat(min, bits + 1); // repeat min every b+1 bits

const uint64_t mask_max = repeat(max, bits + 1); // repeat max every b+1 bits

const uint64_t mask_1_0b = repeat(1 << bits, bits + 1); // set highest bit every b+1 bits

const uint64_t mask_0_1b = mask_1_0b - (mask_1_0b >> bits); // reset highest bit every b+1 bits

const int8_t bm_bits = 64 / (bits + 1); // packed codes per 64-bit word

const size_t words = tuples / bm_bits; // number of packed 64-bit words

uint64_t bm_word = 0;

int8_t bm_word_bits = 0; // horizontal bit packing for the output bitmap

size_t i = 0, o = 0;

do { // scan one packed word per iteration

uint64_t word = compressed[i++];

uint64_t cmp_lt_min = mask_min + (word ^ mask_0_1b); // evaluate x < min

uint64_t cmp_gt_max = word + (mask_max ^ mask_0_1b); // evaluate max < x

// combine the results: (x < min or x > max) = not(x >= min and x <= max)

word = _pext_u64(cmp_lt_min | cmp_gt_max, mask_1_0b); // extract highest bit per b+1 bits

bm_word |= word << bm_word_bits; // pack the predicate result bits into the bitmap

bm_word_bits += b_bits; // this is the same as regular horizontal packing

if (bitmap_word_bits >= 64) {
bitmap[o++] = ~bm_word; // not(value < min or value > max) = (value >= min and value <= max)

bm_word_bits -= 64;

bm_word = word >> (bm_bits - bm_word_bits);

}
} while (i != words);

[...] // process (up to) one more 64-bit word with outstanding tuples

}

The helper function repeat(x,y) replicates x every y bits in a 64-bit word. The

_pext_u64(x,y) instruction extracts and compacts bits from x. The target bits are de-

noted by y. We use the instruction to extract the overflow bits of the packed codes and

compact them in the low-order bits of the output. The instruction is supported in all

mainstream CPUs based on the Haswell micro-architecture or more recent.

We execute very few scalar instructions per processor word to evaluate the selective

predicate for b′ codes. As a result, selection scans are bound by the memory bandwidth,

and performance is reduced proportionally to the percentage of wasted space.

We can also use this technique on the fully packed format by using special masks to avoid

bits spilling across the packed words. We do not evaluate this approach since horizontal

layouts can be efficiently unpacked in SIMD code.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 91

4.2.3 SIMD Unpacking and Scanning

Based on earlier work [Willhalm et al., 2009], unpacking the horizontal layout can be done

efficiently in SIMD code without wasting space. We use the same layout we used in Sec-

tion 4.2.1. We can replicate the packed bytes of the packed format in SIMD lanes and

unpack one code per lane. If each SIMD register fits W unpacked codes, we unpack W

codes at a time using the following steps:

1. Load the next W · b bits from the packed input in a SIMD register. If W ≡ 0 mod 8,

load the next b bytes using an unaligned (byte-aligned) SIMD load.

2. Shuffle the bytes to align codes at specific byte lanes of the SIMD register. Assuming

32-bit (unpacked) codes, bytes 4i to 4i+ 3 of the i-th 32-bit lane are pulled from bytes

j to j + 3 of the loaded vector, where j = bi× b÷ 8c.

3. Shift the (unpacked) codes per SIMD lane to clear low-order bits from other (packed)

codes. The i-th lane is shifted right by ((i× b) mod 8).

4. Bitwise-and the (unpacked) codes per SIMD lanes with 2b − 1 to clear the high-order

bits that belong to the next (packed) codes.

5. Store the W unpacked codes or use them to evaluate selective predicates.

We show how to generate the constant masks that can be pre-computed and placed in

the source file. We use 256-bit (AVX2) SIMD and assume 32-bit (unpacked) codes (W = 8).

int32_t shift[31][8]; // shift stride to clear low-order bits of 32-bit (unpacked) words

int8_t shuffle_lo[31][32]; // byte permutation masks for lower half of AVX register

int8_t shuffle_hi[31][32]; // byte permutation masks for lower half of AVX register

for (size_t b = 0; b != 31; ++b) { // for each possible number of bits

for (size_t i = 0; i != 8; ++i) { // for each SIMD lane with an (unpacked) word

for (size_t j = 0; j != 4; ++j) { // for each byte in the (unpacked) word

int8_t byte_dest = (i * bits) / 8 + j; // the destination of the byte

if (byte_dest < 16) { // if byte is part of the lower half in the AVX register

shuffle_lo[b][i * 4 + j] = byte_dest; // destination of lower half byte

shuffle_hi[b][i * 4 + j] = -1; // clear byte during AVX byte permutation

} else { // if byte is part of the upper half in the AVX register

shuffle_lo[b][i * 4 + j] = -1; // clear byte during AVX byte permutation

shuffle_hi[b][i * 4 + j] = byte_dest - 16; // destination of upper half byte

}
}
shift[b][i] = (i * bits) / 8;

}
}



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 92

void decompress_16(const uint8_t* compressed, int8_t bits, size_t tuples, uint32_t* uncompressed) {
const __m256i mask_shuffle = _mm256_loadu_si256((__m256i*) shuffle_lo[bits]); // constant masks

const __m256i mask_shift = _mm256_loadu_si256((__m256i*) shift[bits]);

const __m256i mask_and = _mm256_set1_epi32((1 << bits) - 1);

size_t i = 0, o = 0;

do {
__m256i data = _mm_loadu_si128((__m128i*) &compressed[i]); i += bits; // load 128 bits

data = _mm256_permute4x64_epi64(data, _MM_SHUFFLE(1,0,1,0)); // broadcast to 256 bits

data = _mm256_shuffle_epi8(data, mask_shuffle); // place codes in the right SIMD lanes

data = _mm256_srlv_epi32(data, mask_shift); // shift left to clear low-order bits

data = _mm256_and_si256(data, mask_and); // mask (bitwise-and) to clear high-order bits

_mm256_store_si256((__m256i*) &uncompressed[o], data); // store unpacked codes

} while ((o = o + 8) != tuples);

}

The SIMD code for unpacking horizontally bit packed codes using 256-bit (AVX2) SIMD

is shown above. In our evaluation, we manually unroll the loop four times to eliminate most

instruction latencies and maximize IPC. Specifically for AVX2 SIMD, byte shuffling permutes

bytes within each 128-bit half of the 256-bit register but not across the two halves. To shuffle

bytes across the entire 256-bit register, we broadcast each half and shuffle it separately. We

then blend the two halves. If b ≤ 16, we only need the lower 128-bit half of the 256-bit

register. If 16 < b ≤ 26 (or b = 28), we need to process both halves of the AVX2 register.

This case is shown below. If b ∈ {27, 29, 30, 31}, we need more instructions to unpack 8

codes, because the 32-bit shifts exceed the boundaries of 32-bit SIMD lanes.

void decompress_26(const uint8_t* compressed, int8_t bits, size_t tuples, uint32_t* uncompressed) {
const __m256i mask_shuffle_lo = _mm256_loadu_si256((__m256i*) shuffle_lo[bits]); // masks

const __m256i mask_shuffle_hi = _mm256_loadu_si256((__m256i*) shuffle_hi[bits]);

const __m256i mask_shift = _mm256_loadu_si256((__m256i*) shift[bits]);

const __m256i mask_and = _mm256_set1_epi32((1 << bits) - 1);

size_t i = 0, o = 0;

do {
// input progresses by 8 (packed) codes = 8b bits = b bytes

__m256i data = _mm256_loadu_si256((__m256i*) &compressed[i]); i += bits; // load 256 bits

// broadcast lower (128-bit) half of (256-bit) AVX register to both halves

__m256i data_lo = _mm256_permute4x64_epi64(data, _MM_SHUFFLE(1,0,1,0));

// broadcast upper (128-bit) half of (256-bit) AVX register to both halves

__m256i data_hi = _mm256_permute4x64_epi64(data, _MM_SHUFFLE(3,2,3,2));

data_lo = _mm256_shuffle_epi8(data_lo, mask_shuffle_lo); // permute bytes of lower half

data_hi = _mm256_shuffle_epi8(data_hi, mask_shuffle_hi); // permute bytes of upper half

data = _mm256_or_si256(data_lo, data_hi); // merge halves

data = _mm256_srlv_epi32(data, mask_shift); // align to 32-bit integer boundaries

data = _mm256_and_si256(data, mask_and); // clear high-order bits

_mm256_store_si256((__m256i*) &uncompressed[o], data); // store unpacked codes

} while ((o = o + 8) != tuples);

}



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 93

Evaluating the C1 ≤ column ≤ C2 predicate and extracting a bitmask adds 4 more

instructions. Previous work using 128-bit SIMD (SSE) reported 10 instructions per code

[Li and Patel, 2013], which is also due to SIMD variable stride shifts being emulated via

SIMD multiplications that are considerably more expensive instructions.

By viewing the input as W interleaved streams of packed codes, we can extend the

optimized per b compressing and decompressing [Zukowski et al., 2006] to use SIMD in-

structions [Lemire and Boytsov, 2015]. Each stream is processed by one of the W SIMD

lanes. Compression is much faster, assuming we are not memory bound. On the other

hand, decompression saves very few instructions compared to the version presented above.

4.3 Vertical Bit Packing

In vertical bit packing [Li and Patel, 2013], the b bits per code are not stored contiguously,

but are interleaved for groups of k codes. The bits of the next k codes are interleaved in

b k-bit words and the i-th word has the i-th bit of each code. The layout allows predicate

evaluation on the packed format and executes at most the same order of instructions as

word-aligned horizontal bit packing (Section 4.2.2), but without wasting any bits. Processor

word alignment is guaranteed by setting k to be a multiple of a processor word length.

4.3.1 Scalar Packing and Unpacking

Scalar C code for vertical bit packing with k = 64 is shown below. We extract one bit

at a time and add it to the packed word. The process is repeated b times per code. The

algorithm runs in O(nb) time because we pack one bit per code at a time.

void compress(const uint32_t* uncompressed, int8_t bits, size_t tuples, uint64_t* compressed) {
size_t i, o, b1, b2, b = bits;

for (i = o = 0; i != tuples; i += 64, o += b) {
for (b1 = b - 1; 0 <= (ssize_t) b1; --b1) {

uint64_t word;

for (b2 = 63; 0 <= (ssize_t) b2; --b2) {
word = (word << 1) + ((uncompressed[i + b2] >> b1) & 1);

}
compressed[o + b1] = word;

}
}

}



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 94

void decompress(const uint64_t* compressed, int8_t bits, size_t tuples, uint32_t* uncompressed) {
size_t i, o, b1, b2, b = bits;

for (i = o = 0; o != tuples; i += b, o += 64) {
for (b1 = 0; b1 != 64; ++b1) {

uint32_t code = 0;

for (b2 = 0; b2 != b; ++b2) {
code += code + ((compressed[i + b2] >> b1) & 1);

}
uncompressed[o + b1] = code;

}
}

}

Unpacking the vertical layout is symmetrical and is shown above. We build each un-

packed code by extracting one bit per packed word at a time. No matter how much we

optimize the scalar code here, the vertical layout is still at least an order of magnitude

slower than the horizontal layout, for both packing and unpacking.

4.3.2 SIMD Packing

The simplest version of SIMD vertical bit packing holds all k unpacked codes in SIMD

registers and extract one bit per lane from each SIMD register. The process is repeated b

times for b-bit codes. If the CPU core provides 16 256-bit registers, we can use 8 to hold

k = 64 unpacked codes. We process k unpacked codes at a time with the following steps:

1. Load the next k words in k/W SIMD registers.

2. Shift left the loaded k/W SIMD registers by 32− b for 32-bit (unpacked) codes.

3. Repeat b times:

(a) Extract the W sign bits per register into a bitmask for all k/W registers.

(b) Store (append) the k/W bitmasks (k bits) to the output.

(c) Double the k/W SIMD registers.

SIMD code is significantly faster than scalar code. The time complexity is reduced from

O(nb) to O(nb/W). Additionally, we avoid reloading the unpacked codes several times from

the L1 cache but keep them resident in SIMD registers instead. We extract multiple bits per

instruction, executing b/W bit extraction instructions per code rather than b. To further

improve performance, we pack each byte of the packed codes in fewer SIMD registers and

extract bits using 8-bit lanes. The steps to unpack k codes are described below:



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 95

1. Load the next k words in k/W SIMD registers.

2. Shift the k/W SIMD registers left by 32− b bits.

3. Repeat db÷ 4e times:

(a) Pack the high-order byte per 32-bit lane from k/W SIMD registers into k/4W registers.

(b) Repeat 8 times or until out of bits:

i. Extract the k/4W sign bits per register into a bitmask into for k/4W registers.

ii. Store (append) the k/4W (scalar) bitmasks (k bits) to the output.

iii. Double the k/4W SIMD registers.

(c) Shift the k/W registers right by 8 bits per 32-bit lane.

SIMD vertical packing (AVX2) is shown below for k = 64. By using 8-bit SIMD lanes to

extract bits, we reduce the SIMD instructions to pack 64 codes from (16b+8) to (10b+30).

void compress(const uint32_t* uncompressed, int8_t bits, size_t tuples, uint64_t* compressed) {
const __m128i mask_shift = _mm_cvtsi32_si128(32 - bits);

const __m256i mask_order = _mm256_set_epi32(7,3,6,2,5,1,4,0);

const int8_t bytes = (bits + 7) / 8, bits_in_last_byte = bits & 7;

size_t i = 0, o = 0;

do { // pack k = 64 codes per iteration

__m256i r1 = _mm256_load_si256((__m256i*) &uncompressed[i]); // load 64 32-bit integers

r1 = _mm256_sll_epi32(r1, mask_shift); // shift left to move b-th bit as MSB (sign bit)

[...] // repeat for r2, r3, ..., r8 (14 lines omitted)

int8_t outer_loops = bytes;

do { // process codes using 8-bit (byte) SIMD lanes

__m256i s1 = _mm256_srli_epi32(r1, 24); // isolate the high order byte as the low byte

[...] // repeat for s2, s3, ..., s8 (7 lines omitted)

__m256i s12 = _mm256_packus_epi32(s1, s2); // pack 32-bit into 16-bit in 1/2 of registers

[...] // repeat for s34, s56, and s78 (3 lines omitted)

__m256i s1234 = _mm256_packus_epi16(s12, s34); // pack 16-bit into 8-bit in 1/4 of registers

__m256i s5678 = _mm256_packus_epi16(s56, s78);

s1234 = _mm256_permutevar8x32_epi32(s1234, mask_order); // restore order polluted by packs

s5678 = _mm256_permutevar8x32_epi32(s5678, mask_order);

int8_t inner_loops = (outer_loops != 1) ? 8 : bits_in_last_byte;

do { // extract one bit at a time per byte lane

uint64_t lo = (unsigned) _mm256_movemask_epi8(s1234);

uint64_t hi = (unsigned) _mm256_movemask_epi8(s5678);

s1234 = _mm256_add_epi8(s1234, s1234); // shift bytes left by one bit

s5678 = _mm256_add_epi8(s5678, s5678);

compressed[o++] = lo | (hi << 32); // store compressed format 64-bit word at a time

} while (--inner_loops);

r1 = _mm256_slli_epi32(r1, 8); // shift the input registers left by 1 byte

[...] // repeat for r2, r3, ..., r8 (7 lines omitted)

} while (--outer_loops);

} while ((i = i + 64) != tuples);

}



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 96

4.3.3 SIMD Unpacking

Unpacking the vertical bit packed format is based on the same principles as packing but

performs the inverse operation. Instead of extracting one bit per SIMD lane, we convert

the packed bits to masks in SIMD lanes and insert one bit per SIMD lane in the SIMD

registers that hold the k unpacked codes.

1. Set the next k codes in k/W SIMD registers to zero.

2. Repeat b times:

(a) Load the next k bits from the input.

(b) Convert k bits to {0,-1} masks in k/W registers.

(c) Double the k/W registers and subtract the masks.

3. Append the k/W registers to the output.

Similarly to bit packing, we do not reload the input multiple times but keep the output

unpacked codes in SIMD registers. To improve the number of bits inserted per instruction,

we use smaller SIMD lanes again. We extract bits in byte lanes that are then up-converted

and inserted in the k/W output registers. The steps per k codes are shown below:

1. Set the next k codes in k/W SIMD registers to zero.

2. Repeat db/4e times:

(a) Reset k/4W SIMD registers to zero.

(b) Repeat 8 times or until out of bits:

i. Load the next k bits from the (packed) input.

ii. Convert k bits to {0,-1} byte masks in k/4W registers.

iii. Double the k/4W registers and subtract the byte masks.

(c) Shift the k/W registers left by 8 bits per 32-bit lane.

(d) Up-convert 8-bit lanes in k/4W registers to 32-bit lanes.

(e) Merge (bitwise-or) the up-converted registers with the unpacked codes.

3. Store (append) the k/W registers holding the unpacked codes to the output.

The code for unpacking using 256-bit SIMD (AVX) intrinsic is shown below. We execute

18b + 30 SIMD instructions per 64 codes, which is O(nb). However, because we are, we

compress the codes as fast as O(n) SIMD horizontal unpacking.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 97

void decompress(const uint64_t* compressed, int8_t bits, size_t tuples, uint32_t* decompressed) {
const uint64_t m4 = 0x404040404040404ll, m8 = 0x808080808080808ll, mC = 0xC0C0C0C0C0C0C0Cll;

const __m256i mask_shuffle_lo = _mm256_set_epi64x(m8, 0, m8, 0);

const __m256i mask_shuffle_hi = _mm256_set_epi64x(mC, m4, mC, m4);

const __m256i mask_bit = _mm256_set1_epi64x(0x8040201008040201ll);

size_t i = 0, o = 0;

do {
__m256i r1 = _mm256_setzero_si256(); // reset registers holding unpacked words

[...] // repeat for r2, r3, ..., r8 (7 lines omitted)

int8_t bit = bits;

do { // iterate over bytes of packed words

__m256i r_lo = _mm256_setzero_si256(); // reset registers holding last byte of unpacked words

__m256i r_hi = _mm256_setzero_si256();

do { // iterate over bits per byte of packed words

__m256i b = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &packed[i++]));

__m256i b_lo = _mm256_shuffle_epi8(b, mask_shuffle_lo); // convert bits to {0/-1} bytes

__m256i b_hi = _mm256_shuffle_epi8(b, mask_shuffle_hi);

b_lo = _mm256_cmpeq_epi8(_mm256_and_si256(b_lo, mask_bit), mask_bit);

b_hi = _mm256_cmpeq_epi8(_mm256_and_si256(b_hi, mask_bit), mask_bit);

r_lo = _mm256_sub_epi8(_mm256_add_epi8(r_lo, r_lo), b_lo); // append bit to byte

r_hi = _mm256_sub_epi8(_mm256_add_epi8(r_hi, r_hi), b_hi);

} while (--bit & 7);

r1 = _mm256_slli_epi32(r1, 8); // shift the output registers left by 1 byte

[...] // repeat for r2, r3, ..., r8 (7 lines omitted)

// merge 1 byte per code after up-converting first 8 out of 32 bytes per register

r1 = _mm256_or_si256(r1, _mm256_cvtepu8_epi32(_mm256_castsi256_si128(r_lo)));

r2 = _mm256_or_si256(r2, _mm256_cvtepu8_epi32(_mm256_castsi256_si128(r_hi)));

r_lo = _mm256_permute4x64_epi64(r_lo, _MM_SHUFFLE(0,3,2,1)); // rotate for next 8/32 bytes

r_hi = _mm256_permute4x64_epi64(r_hi, _MM_SHUFFLE(0,3,2,1));

[...] // repeat for rest 24 out of 32 bytes per register (18 lines omitted)

} while (bit);

_mm256_store_si256((__m256i*) &uncompressed[o], r1); // store (unpacked) codes

[...] // repeat for r2, r3, ..., r8 (7 lines omitted)

} while ((o = o + 64) != tuples);

}

4.3.4 Selection Scan

Predicate evaluation on vertically bit packed data can proceed directly on the packed format

without unpacking. Equality to a constant is evaluated as the bitwise-and of the bitwise-

xnor of all b bits of the k words with the bits of the constant. To evaluate less-than or

greater-than, we find the highest order bit that the column value differs from the constant

and copy the target bit of the constant, for less-than, or its inverse, for greater-than.

Using w-bit processor words, we need O(nb/w) instructions to evaluate selective pred-

icates with simple comparisons. However, we can avoid accessing all b w-bit words per k



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 98

codes. Instead, once we have found a mismatching bit per code for all w codes, we can stop

without looking into the lower-order bits.

For the selective predicate column = C (C a query constant) the probability for one

code to reach the i-th word, assuming uniform random data, is 21−i. For any of the w codes

to reach the i-th word, the probability P (X ≥ i) is:

P (X ≥ i) = 1− (1− 21−i)w

For the predicate C1 ≤ column ≤ C2, the probability for one code to reach the i-th

word is 1− (1− 21−i)2 and for any of the w codes:

P (X ≥ i) = 1− (1− [1− (1− 21−i)2])w = 1− (1− 21−i)2w

The expected number of w-bit words accessed for w codes using b bits is:

E[X] =
b∑

i=1

P (X = i) · i =
b∑

i=1

P (X ≥ i)

void scan(const uint64_t* compressed, int8_t bits, size_t tuples,

uint64_t* bitmap, uint32_t min, uint32_t max) {
const int64_t mask_min = (int64_t) (min << (64 - bits)); // shift query constants ...

const int64_t mask_max = (int64_t) (max << (64 - bits)); // placing target bit as sign bit

size_t i = 0, o = 0, b = bits;

do {
uint64_t gt_min = 0; // indicates if code is greater than the min constant

uint64_t lt_max = 0; // indicates if code is less than the max constant

uint64_t eq_min = -1; // indicates if code is (yet) equal to min constant

uint64_t eq_max = -1; // indicates if code is (yet) equal to max constant

uint64_t min_bit = mask_min; // used to broadcast bit of min constant

uint64_t max_bit = mask_max; // used to broadcast bit of max constant

size_t j = 0;

do { // iterate over all bits

uint64_t word = compressed[i + j];

uint64_t neq_min_bit = word ^ (uint64_t) (min_bit >> 63); // compare with broadcast sign bit

uint64_t neq_max_bit = word ^ (uint64_t) (max_bit >> 63);

gt_min |= neq_min_bit & min_bit & word; // update greater-than and less-than bitmaps

lt_max |= neq_max_bit & max_bit & ~word;

eq_min &= ~neq_min_bit; // update equality condition

eq_max &= ~neq_max_bit;

if ((eq_min | eq_max) == 0) break; // early termination

bit_min += bit_min; // shift constants to bring next bit as sign bit

bit_max += bit_max;

} while (++j != b);

bitmap[o++] = (gt_min | eq_min) & (lt_max | eq_max); // combine comparison results

} while (o != tuples);

}



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 99

Scalar code for scanning to evaluate C1 ≤ column ≤ C2 is shown above. The shifts by

63 broadcast the sign bit. Extending the code to use SIMD instructions is trivial if we use

a larger k. In such a case, the number of instructions per code is reduced, but the register

width w is increased and so is the number of w-bit words accessed per w codes.

Scanning less than b words does not improve performance, due to cache line granularity

of RAM accesses and hardware prefetching. Bitweaving [Li and Patel, 2013] addresses this

problem by vertically packing b′ < b bits at a time separately. The most extreme approach

is to store each bit separately [Wong et al., 1985]. Here, we increase k to place low-order

and high-order bits of codes in distant cache lines.

Setting k > w can be handled by all vertical bit packing operations with little overhead,

if w|k. For packing, we store the w-bit packed words with a k/w stride. For unpacking

and scanning, we load the packed w-bit words with a k/w stride. Processing the first w

codes out of k would place packed words for the few next runs of w codes in the L1 cache

and would be loaded from the L1 in the next runs. When k exceeds one cache line of L

bits, in order to find the number of cache line accesses, we use the same E[X] formula by

setting w = L. Also, to compensate for hardware prefetching of neighbor cache lines, we

increase k beyond one cache line up to the available L1 capacity. Finally, we can use SIMD

for scanning without increasing the false prefetches.

When fewer tuples are extracted, performance differs when selectivity is low enough to

skip cache lines. Then, vertical bit packing with k ≥ L can be O(b) times slower than

horizontal, since we access 1 cache line per code bit rather than 1–2 cache lines per code.

4.4 Experimental Evaluation

The platform we use has one Intel Xeon E3-1275v3 CPU at 3.5 GHz based on the Haswell

micro-architecture. The CPU has 4 cores with 2-way SMT with 256-bit AVX2 SIMD. The

RAM is dual-channel ECC DDR3 at 1600 MHz with 21.8 GB/s load bandwidth. We compile

with ICC 15 using -O3. We use uniform random data since most methods are invariant to

the input value distribution. Simple integer compression schemes that vary b across groups

of codes (e.g. frame-of-reference), are easy extensions adding negligible overhead.



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 100

0.2

1

5

25

125

b	= 1 6 11 16 21 26 31 1 6 11 16 21 26 31 1 6 11 16 21 26 31

Th
ro
ug
hp
ut

(in
	b
illi
on
	c
od
es
	p
er
	

se
co
nd
)	
[lo
gs
ca
le
]

Packing			 				 			 Unpacking Scanning

Uncompressed

Horizontal	 (Full)

Vertical	 (k	=	64)

Vertical	 (k	=	8192)

Horizontal	 (Word)

SIMD	code

Scalar	code

Figure 4.1: Throughput of packing, unpacking, and scanning for horizontal and vertical bit
packing using scalar and SIMD code (multi-threaded)

In Figure 4.1, we measure the throughput of packing, unpacking, and scanning using

both the horizontal and the vertical bit packing layout. We vary b and use all hardware

threads. If we materialize the output in memory, we saturate the RAM bandwidth for both

packing and unpacking, thus, we exclude it and compute a checksum instead. For scanning,

we evaluate the C1 ≤ column ≤ C2 predicate and materialize the ouput bitmap in memory.

Packing typically saturates the bandwidth by loading the unpacked input. Word-aligned

horizontal packing is faster than the fully packed version. Packing to the vertical bit packed

layout in SIMD code executes O(nb) operations, but still saturates the bandwidth, even if

b = 32. The vectorization speedup is 1.1–27.4X and is maximized for b = 32.

Unpacking the horizontal layout is faster than unpacking the vertical layout (k = 64) by

1.4–1.6X, if both are written in SIMD code, except for b = 9 and b = 10 that get a speedup

of 1.8X and 1.7X respectively. The SIMD speedup is 1.9–8.4X for horizontal and 11–20X

for the vertical layout. Increasing k to 8192 makes unpacking 10–15% slower. For larger b,

vertical unpacking in scalar code is prohibitively slow. For smaller b, unpacking one code

at a time in scalar code is compute-bound.

Scanning the vertical layout in scalar code is faster than scanning the horizontal in

SIMD by 1.1–3.4X for b ≤ 5, while the opposite is true by 1.05–1.25X for 6 ≤ b ≤ 12. For

larger b, both methods saturate the bandwidth. The word-aligned layout loses performance

by accessing a larger data footprint. Evaluating the predicates after horizontally unpacking

in SIMD reduces performance by ∼ 30% for b ≤ 5 down to ∼ 5% for b > 16. With k = 64,

even if we access 8–9 words in 1–2 cache lines per 64 codes, we prefetch all cache lines.

By increasing k beyond a single cache line, we process 10–11 bits per code, but minimize



CHAPTER 4. LIGHTWEIGHT COMPRESSION ALONGSIDE FAST SCANS 101

0.04

0.2

1

5

25

125

b	= 1 6 11 16 21 26 31 1 6 11 16 21 26 31 1 6 11 16 21 26 31

Th
ro
ug
hp
ut

(in
	b
illi
on
	c
od
es
	p
er

se
co
nd
)	
[lo
gs
ca
le
]

Packing			 				 			 Unpacking Scanning

Uncompressed

Horizontal	 (Full)

Vertical	 (k	=	64)

Vertical	 (k	=	8192)

Horizontal	 (Word)

SIMD	code

Scalar	code

Figure 4.2: Throughput of packing, unpacking, and scanning for horizontal and vertical bit
packing using scalar and SIMD code (single-threaded)

the false prefetches. Performance is constant for larger b and outperforms all other methods.

For b = 32, scanning the vertical layout effectively (logically) doubles the RAM bandwidth.

Also, with b = 32, we can also encode the actual (32-bit) column values, not the dictionary

codes, while still allowing selection scans to be executed twice as fast.

In Figure 4.2, we repeat the experiment of Figure 4.1 in a single thread to simulate

higher memory bandwidth, making most methods compute-bound. Using multiple threads

makes us memory-bound and reduces the gap between horizontal and vertical unpacking.

Vertical scanning gets 1.9–3.6X speedup from SIMD and exposes the early exit for b ≥ 9

if k = 64 and for b ≥ 12 for k = 8192, matching the analysis of Section 4.3.4. Scanning

uncompressed data gets a 5X speedup from SIMD and is close to the fastest, highlighting

that lightweight compression is of limited use when we are not memory-bound.

4.5 Conclusion

We studied multiple bit packing layouts employed for light- weight compression. For hori-

zontal bit packing, we considered both the word-aligned and the fully packed variant, and

optimized previous techniques using the latest scalar and SIMD instructions. For verti-

cal bit packing, we designed and implemented efficient packing and unpacking, by placing

multiple codes in SIMD registers and by maximizing the number of bit movements per

instruction. All variants are compared for packing, unpacking, and scanning. While the

horizontal schemes are highly competitive, vertical bit packing combines the fastest scans

with comparably fast packing and unpacking, extending the available trade-off options.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 102

Chapter 5

Advanced SIMD Vectorization

Techniques

5.1 Introduction

Real time analytics are the steering wheels of big data driven business intelligence. Database

customer needs have extended beyond OLTP with high ACID transaction throughput, to

interactive OLAP query execution across the entire database. As a consequence, vendors

offer fast OLAP solutions, either by rebuilding a new DBMS for OLAP [Raman et al., 2013;

Stonebraker et al., 2005], or by improving within the existing OLTP-focused DBMS.

The advent of large main-memory capacity is one of the reasons that blink-of-an-eye

analytical query execution has become possible. Query optimization used to measure blocks

fetched from disk as the primary unit of query cost. Today, the entire database can often

remain main-memory resident and the need for efficient in-memory algorithms is apparent.

The prevalent shift in database design for the new era are column stores [Manegold et al.,

2000a; Raman et al., 2013; Stonebraker et al., 2005]. They allow for higher data compression

in order to reduce the data footprint, minimize the number of columns accessed per tuple,

and use column oriented execution coupled with late materialization [Abadi et al., 2007] to

eliminate unnecessary accesses to RAM resident columns.

Hardware provides performance through three sources of parallelism: thread parallelism,

instruction level parallelism, and data parallelism. Analytical databases have evolved to



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 103

take advantage of all sources of parallelism. Thread parallelism is achieved, for individual

operators, by splitting the input equally among threads [?; Balkesen et al., 2013a; Blanas et

al., 2011; Cieslewicz et al., 2010; Kim et al., 2009; Satish et al., 2010; Ye et al., 2011], and in

the case of queries that combine multiple operators, by using the pipeline breaking points

of the query plan to split the materialized data in chunks that are distributed to threads

dynamically [Leis et al., 2014; Raman et al., 2013]. Instruction level parallelism is achieved

by applying the same operation to a block of tuples [Boncz et al., 2005] and by generating

and compiling query specific code, converting pipelined operators into tight nested loops

[Krikellas et al., 2010; Neumann, 2011]. Data parallelism is achieved individually for each

operator by using SIMD instructions [Chhugani et al., 2008; Kim et al., 2010; Ross, 2007;

Willhalm et al., 2009; Zhou and Ross, 2002].

The different sources of hardware parallelism were developed as a means to deliver more

performance within the same power budget available per chip. Mainstream CPUs have

evolved regarding all sources of parallelism, featuring massively superscalar pipelines, out-

of-order execution of tens of instructions, and advanced SIMD capabilities, all replicated

across multiple cores on each CPU chip. For example, the Intel Haswell micro-architecture

can issue up to 8 micro-operations per cycle, has 192 reorder buffer entries for out-of-order

execution, supports 256-bit SIMD instructions, has two levels of private caches per core as

well as a large shared cache, and scales up to 18 cores per chip.

Concurrently with the evolution of mainstream CPUs, a new approach on processor

design has surfaced. The design, named the many-integrated-cores (MIC) architecture,

uses cores with a smaller area (transistors) and power footprint by removing the massively

superscalar pipeline, out-of-order execution, and the large L3 cache. Each core is based on

a Pentium 1 processor with a simple in-order pipeline, but is augmented with wide SIMD

registers, advanced SIMD instructions, and simultaneous multi-threading that is essential

to hide the high load and instruction latency of SIMD instructions. Since each core has a

smaller area and power footprint, more cores can be packed in the chip.

The MIC design was originally intended as a GPU [Seiler et al., 2008], but now tar-

gets high performance computing applications. Using a high FLOPS machine to execute

compute-intensive algorithms with superlinear complexity is self-evident. Executing ana-



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 104

lytical queries in memory, however, consists of data-intensive linear algorithms that mostly

“move” rather than “process” data. Earlier work to add SIMD in database operators has

either focused on sequential access operators such as index scans [Zhou and Ross, 2002],

linear scans [Willhalm et al., 2009], bucketized hash probes [Raman and Swart, 2006], multi-

way trees with nodes that match the SIMD register layout [Kim et al., 2010], or optimized

specific operators, such as sorting [Chhugani et al., 2008; Inoue et al., 2007], by using ad-hoc

SIMD vectorization techniques that are useful only for a specific problem.

Here, we present the basic design principles for extendible SIMD vectorization of in-

memory database operators, without modifying the logic or the data layout of the baseline

scalar algorithm. The baseline algorithm is defined here as the standard scalar imple-

mentation with the best time complexity. Formally, assume an algorithm that solves a

problem with optimal complexity, a basic scalar implementation, and a SIMD vectorized

implementation. We say that the algorithm can be fully vectorized, if the vectorized imple-

mentation executes O(f(n)/W) SIMD instructions instead of O(f(n)) scalar instructions

where W is the vector length, excluding random memory accesses that are by definition

not data-parallel. We define fundamental vector operations that are frequently reused in

the vectorizations and are implemented using advanced SIMD instructions, such as non-

contiguous loads (gathers) and stores (scatters). The fundamental operations that are not

directly supported by the hardware can be emulated at a performance penalty.

We implement vectorized operators in the context of main-memory databases: selection

scans, hash tables, and partitioning, which are combined to build more advanced operators:

sorting and joins. These operators cover a large portion of the time needed to execute

analytical queries in main memory. For selection scans, we show branchless tuple selection

and in-cache buffering. For hash tables, we study both building and probing across using

multiple hashing schemes. For partitioning, we describe histogram generation, including

all partitioning function types: radix, hash, and range. We also describe data shuffling,

including inputs larger than the cache. Many of the above operators are combined to build

sorting and hash join operators, in multiple variants, in order to highlight the impact of

SIMD vectorization on determining the best algorithmic design for each operator.

We compare our vectorized implementations of in-memory database operators against



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 105

the respective state-of-the-art scalar and vector techniques, by evaluating on a Intel Xeon

Phi co-processor codenamed Knights Corner (KNC) and on mainstream CPUs based on the

Haswell micro-architecture. We use the sorting and join operator to compare an Intel Xeon

Phi 7120P (KNC) co-processor (61 P54C cores at 1.238 GHz, 300 Watts TDP) against four

high-end CPUs based on the Sandy Bridge micro-architecture (4 × 8 Sandy Bridge cores

at 2.2 GHz, 4× 130 Watts TDP), and found that they have similar performance, but on a

different power budget, since the co-processor spends almost half the energy.

The second generation of Intel Xeon Phi codenamed Knights Landing (KNL) is both

available as a PCI-e co-processor and as a stand-alone CPU, and supports more advanced

SIMD instructions (AVX-512) that are also supported by the latest mainstream CPUs.

Here, we do not focus on evaluating Intel Xeon Phi platforms as co-processing accelerators

bound by the PCI-e bandwidth, such as GPGPUs, but as alternative CPU designs that are

both fast and power efficient for executing analytical database workloads.

We summarize our contributions for this chapter:

• We introduce design principles for efficient vectorization of in-memory database op-

erators and define fundamental vector operations that are frequently reused.

• We design and implement vectorized selection scans, hash tables, and partitioning,

that are combined to design and build sorting and multiple join variants.

• We compare our implementations against state-of-the-art scalar and vectorized tech-

niques. We achieve up to an order of magnitude speedups by evaluating on Xeon Phi

as well as on mainstream CPUs.

• We show the impact of vectorization on the algorithmic design of in-memory operators,

as well as the architectural design and power efficiency of hardware, by making simple

cores comparably fast to complex cores.

The rest of the chapter is organized as follows. In Sections 5.3, 5.4, 5.5, and 5.6, we

discuss the vectorization of selection scans, hash tables, Bloom filters, and partitioning. In

Section 5.7, we discuss algorithmic designs for sorting and multiple hash join variants. In

Section 5.8, we present our experimental evaluation. In Section 5.9, we discuss how SIMD

vectorization relates to SIMT in GPGPUs and we conclude in Section 5.10.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 106

5.2 Fundamental Operations for Vectorization

5.2.1 Logical Design

We define the fundamental vector operations used vectorize database operators. The first

two operations, termed selective load and selective store, are spatially contiguous memory

accesses that load or store values using a subset of vector lanes. The last two operations are

spatially non-contiguous memory loads and stores, termed gathers and scatters respectively.

  

A B C D E F G H I J K L M N O P

B D F G I K N O P

01010110 0100111
vector

memory
mask

Figure 5.1: Selective store operation

Selective stores write a specific subset of the vector lanes to a memory location contigu-

ously. The subset of vector lanes to be written is decided using a vector or scalar register

as the mask, which must not be limited to a constant.

  

A B C D E F G H I J K L M N O P

R S T U VW X Y Z

0101011010100111

A R C S E T U H V J W L M X Y Z

vector

vector
mask

memory

Figure 5.2: Selective load operation

Selective loads are the symmetric operation that involves loading from a memory location

contiguously to a subset of vector lanes based on a mask. The lanes that are active in the

mask are overwritten. The inactive lanes in the mask retain their previous values.

  

C J A M % T R @ M ! P B P J ^ X

2 9 0 12 30 19 17 27 12 26 15 1 15 9 31 23

A B C D E F G H I J K L M N O P Q R S T U VW X Y Z ! @ # $ % ^

memory

index
vector

value
vector

Figure 5.3: Gather operation

Gather operations load values from non-contiguous locations. The inputs are a vector of

indexes and an array pointer. The output is a vector with the values of the respective array



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 107

cells. By adding a mask as an input operand, we define the selective gather that operates

on a subset of lanes. The inactive mask lanes retain their previous contents.

  

A B C D E F G H I J K L M N O P

2 9 0 12 30 19 17 27 12 26 15 1 15 9 31 23

C L A N I M G F P J H E O

memory

value
vector

index
vector

Figure 5.4: Scatter operation

Scatter operations store values to non-contiguous memory locations. The inputs are (i)

a vector of indexes, (ii) the base pointer of the array, and (iii) a vector of values to store.

If multiple vector lanes point to the same location, we assume that the rightmost value is

eventually written. By adding a mask as an input we can store lanes selectively.

Gathers and scatters are not executed in parallel because the (L1) cache allows 1–2

accesses per cycle. ExecutingW cache accesses per cycle is an impractical hardware design.

Thus, non-contiguous memory accesses are excluded from theO(f(n)/W) rule. In fact, some

hardware implementations for gather and scatter operations invoke O(W) instructions.

Gathers are supported on mainstream CPUs based on the Haswell and the Skylake

micro-architectures via the AVX2 (256-bit) SIMD instruction set but scatters are not.

CPUs based on the Sandy Bridge micro-architecture or older support neither. We can

emulate gathers and scatters using scalar loads and stores respectively. The overhead may

not be forbidding since hardware gathers and scatters are also O(W operations. Selective

loads and stores are not directly supported in AVX2, but they can be implemented via

vector permutations in O(1) SIMD instructions. The latest CPUs directly support all four

operations via the AVX-512 (512-bit) SIMD instruction set.

5.2.2 Gather/Scatter Implementation

In the AVX2 256-bit SIMD instruction set, gathers are invoked via a single hardware in-

struction (vpgatherdd) loading up to 8 32-bit values in 8 32-bit SIMD lanes. On first

generation Xeon Phi co-processors (KNC) with 512-bit SIMD (neither AVX2 nor AVX-

512), the same instruction will access only one cache line each time we invoke it. To load

values from multiple cache lines, we repeat until all W lanes are processed. If all memory



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 108

locations are in the same cache line, we invoke the instruction only once. If all memory

locations are in different cache lines, we invoke the instruction once per lane.

An implementation for loading 16 32-bit values on a 512-bit SIMD register in a KNC

co-processor is shown below. In this example, the rax scalar register holds the array pointer.

The 512-bit zmm0 SIMD register holds the indexes and zmm1 holds the loaded values. k1

is a 16-bit bitmask (or boolean vector) set by kxnor. Each call to vpgatherdd finds the

leftmost set bit in k1, extracts the index of the respective 32-bit lane from zmm0, identifies

all other 32-bit lanes that point to the same cache line, loads the values from the cache line

in zmm1, and resets the respective bits in k1. The jknzd branches back to re-invoke the

instruction until k1 has no set bits. Note that gathers in AVX-512 need no such loop.

kxnor %k1, %k1

loop: vpgatherdd (%rax, %zmm0, 4), %zmm1 {%k1}
jknzd loop, %k1

Scatters are implemented similarly to gathers, although they are not supported in AVX2.

During a scatter operation, if multiple lanes of the index vector point to the same location,

the value in the rightmost lane is written last overwriting any values from other lanes.

In any case, all respective bits in k1 are reset. In KNC where the scatter operations are

implemented as loops of scatter instructions, we can detect multiple references to the same

cache line by checking if multiple bits of k1 were reset, but we cannot distinguish between

conflicts and distinct writes in the same cache line.

Non-selective gathers and scatters first set all bits in k1. Selective gathers and scatters

use k1 and zmm1 as both inputs and outputs to load a subset of lanes determined by k1.

The rest lanes in zmm1 not set in k1 are unaffected. In AVX2, k1 is also a 256-bit vector

where the highest bit denotes whether the lane is active. In AVX-512, k1 is a bitmask.

Both latency and throughput of gathers and scatters is determined by the number of

cache lines accessed. Assuming all cache lines are in L1, the operation is faster if the

locations are assembled in fewer cache lines. On KNC, gathering values to fewer lanes from

the same cache line reduces the latency of the instruction [Hofmann et al., 2014]. On the

other hand, executing multiple gather and scatter operations in the same loop by invoking

multiple (KNC) gather and scatter instructions offers no performance benefit.

Gathers and scatters can be emulated via scalar loads and stores. We did a careful



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 109

implementation of gathers using other vector instructions and used it in linear probing and

double hashing tables. We found that we lose up to 13% probing performance compared

to the hardware gathers, which reduces as the table size increases. When the loads are not

cache resident, there is no noticeable difference, which is expected since gathers and scatters

go through the same memory access path as loads and stores to a single location.

5.2.3 Implementing Selective Loads / Stores

In AVX-512, selective loads and stores are implemented via a single SIMD instruction that

issues an unaligned (byte-aligned) load or store to memory. For instance, the vpexpandd

instruction is a selective load of 32-bit lanes. The vpcompressd instruction is a selective

store of 32-bit SIMD lanes. KNC only supports aligned memory accesses. Selective loads

and stores are split to two instructions, once for the lower and one for the upper cache

line, assuming the selective load spans across two cache lines. The implementation of the

selective load operation for KNC co-processors assuming 32-bit SIMD lanes is shown below.

void _mm512_mask_packstore_epi32(int32_t* ptr, __mmask16 mask, __m512i vec) {
_mm512_mask_packstorelo_epi32(&ptr[0], mask, vec):

_mm512_mask_packstorehi_epi32(&ptr[16], mask, vec); }

The symmetric selective store implementation for KNC co-processors is shown below.

__m512i _mm512_mask_loadunpack_epi32(__m512i vec, __mmask16 mask, const int32_t* ptr) {
vec = _mm512_mask_loadunpacklo_epi32(vec, mask, &ptr[0]):

vec = _mm512_mask_loadunpackhi_epi32(vec, mask, &ptr[16]);

return vec; }

In AVX2, selective loads and stores are not mapped to specific instructions. The ba-

sic SIMD operation we need is the ability to shuffle a register using lane indexes pro-

vided by another register. For example, if our vector of values is [A,B,C,D,E,F,G,H], and

the boolean vector of active lanes is [0,1,0,1,0,1,1,1], we re-order the input vector to

[B,D,F,G,H,A,C,E]. For this operation, we need the permutation vector [1,3,5,6,7,0,2,4].

The permutation mask is loaded from a lookup table using the boolean vector bitmask as an

index (11101010 = 234 here). If the SIMD register hasW lanes, the lookup table needs 2W

entries. In AVX2, assuming 32-bit lanes (W = 8), we need 28 = 256 permutation vectors.

We store each vector using 8 bytes. Thus, the lookup table has a footprint of 2 KB and

remains L1 resident. For 64-bit lanes (W = 4), the lookup table is merely 128 bytes.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 110

5.2.4 Algorithmic Notation

We now explain the notation we use for vectorized algorithmic descriptions in this chapter.

Vector operations with boolean results generate bitmasks (boolean vectors) as output, which

are regular scalar variables. For example, m ← ~x < ~y generates bitmask m. The m ←

true assignment sets all W bits of m. Vectors used as array indexes denote a gather or

a scatter. For example, ~x ← A[y] is a contiguous vector load, while ~x ← A[~y] denotes a

gather. Selective loads and stores as well as selective gathers and scatters use a bitmask as

a subscript in the assignment. For example, ~x←m A[y] is a selective load, while ~x←m A[~y]

is a selective gather. |m| denotes the bit population count of m and |T | is the cardinality

of table T . If-then-else statements, such as ~x ← m ? ~y : ~z, use vector blending. Finally,

scalar values in vector expressions assume constant vectors generated out of the main loop.

For example, ~x← ~x+ k and m← ~x > k uses a vector with k broadcast to all W lanes.

5.3 Selection Scans

Linear scans are replacing traditional unclustered indexes as the means of executing se-

lections in modern in-memory DBMSs [Raman et al., 2013]. Advanced optimizations for

selection scans include using lightweight bit compression [Willhalm et al., 2009] to reduce

the data footprint and save RAM bandwidth, generating statistics to skip data regions [Ra-

man et al., 2013], and scanning of bitmaps or zonemaps to skip cache lines [Sidirourgos and

Kersten, 2013]. Nevertheless, basic linear scans remain the core operation of selections. We

show a simple example of a selection scan using the naive branching approach. We assume

X ≤ Tk ≤ Y is the selective predicate and X, Y are query constants.

Algorithm 17: Selection Scan (Scalar - Branching)

1 i, o← 0 // input and output index

2 do

3 k ← Tk[i] // load key columns from input

4 if k ≥ X and k ≤ Y then

5 T ′
k[o]← k // store key columns to the output

6 T ′
v[o]← Tv[i] // copy payload columns to output

7 o← o + 1

8 i← i + 1

9 while i 6= |T |



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 111

Algorithm 18: Selection Scan (Scalar - Branchless)

1 i, o← 0 // input and output index

2 do

3 k ← Tk[i] // load key columns from input

4 v ← Tv[i] // load payload columns from input

5 i← i + 1

6 T ′
k[o]← k // store key columns to output (may be overwritten)

7 T ′
v[o]← v // store payload columns to output

8 m1 ← k ≥ X ? 1 : 0 // get the boolean result as {0,1} conditional flag

9 m2 ← k ≤ Y ? 1 : 0 // get the boolean result as {0,1} conditional flag

10 o← o + (m1 & m2) // update the output index without branching (bitwise-and)

11 while i 6= |R|

The performance of linear scans for selections has been associated with branch mis-

predictions, given any implementation similar to Algorithm 17. [Ross, 2004] showed that

converting control flow to data flow can improve performance by removing branches to elim-

inate branch mispredictions. Nevertheless, if the selectivity is either too low or too high,

branch mispredictions are rare and branches are preferable. As a result, the best approach

depends on the selectivity. Algorithm 18 shows how branches can be eliminated altogether.

However, since we fully eliminate branches inside the main loop, we have to access both key

and payload columns and evaluate all selective predicates eagerly for every tuple.

Vectorized selection scans use selective stores to store the lanes that satisfy the selection

predicates. We use SIMD instructions to evaluate the predicates resulting in a bitmask

of the qualifying lanes. Partially vectorized selection extracts one bit at a time from the

bitmask and accesses the corresponding tuple. Instead, we use the bitmask to selectively

store the qualifying tuples to the output vector at once.

When the selectivity is low, we should avoid accessing payload columns to save mem-

ory bandwidth. Note that when the branch is speculatively executed, the hardware may

still needlessly load payloads incurring the bandwidth cost. Instead, we use a small cache

resident buffer to store the indexes of qualifying tuples (rids) instead of the actual tuples.

When the buffer is full, we reload the rids from the buffer, gather the tuples from the base

columns, and flush to the output. This approach is shown in Algorithm 19.

When we store data on RAM with no intent to reuse it soon, we use non-temporal stores

to save bandwidth. Mainstream CPUs provide non-temporal stores that bypass the higher

cache levels and increase the RAM bandwidth for storing data. KNC co-processors do not



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 112

support non-temporal stores in scalar code, but provide an instruction to overwrite a cache

line with a vector without loading the cache line first. This technique requires the vector

length to match the cache line but eliminates the need for write-combining buffers.

The code for selection scans assuming 32-bit keys and payloads in KNC. The selective

condition is X ≤ Tk ≤ Y . The buffer must be small enough to be L1 resident. The

analog of non-temporal stores on KNC co-processors is the vmovnrngoaps instruction (with

intrinsic _mm512_storenrngo_ps) that overwrites a complete cache line in RAM without

first loading it in the cache. For all such mechanisms to work, the input and output columns

must be aligned in cache line boundaries. The same loop is almost identical in AVX-512

code. In AVX2, the implementation of selective loads and stores is based on permutations.

Algorithm 19: Selection Scan (Vector)

1 ~r ← {0, 1, 2, 3, ...,W − 1} // input indexes (rids) in vector

2 i, o, b, b′′ ← 0 // input, output, and buffer index

3 do

4 ~k ← Tk[i] // load vectors of key columns

5 m← (~k ≥ X) & (~k ≤ Y ) // predicates to mask

6 B[b]←m ~r // (selective) store rids to buffer

7 b← b + |m|
8 if b > |B| −W then

9 b′ ← 0

10 do

11 ~i′ ← B[b′] // load input indexes from buffer

12 ~k ← Tk[~r′] // dereference (gather) column values

13 ~v ← Tv[~r′]

14 T ′
k[o]← ~k // flush to output using non-temporal stores

15 T ′
v[o]← ~v

16 b′ ← b′ +W
17 o← o +W // update output index

18 while b′ 6= |B| −W

19 ~p← B[b′] // move extra indexes to front of buffer

20 B[0]← ~p

21 b← b− b′ // update buffer index

22 ~r ← ~r +W // update vector of rids

23 i← i +W
24 while i 6= |T |
25 while b′′ 6= b do

26 i← B[b′′] // flush items remaining in buffer

27 b′ ← b′′ + 1

28 T ′
k[o]← Tk[i]

29 T ′
v[o]← Tv[i]

30 o← o + 1



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 113

int32_t buffer_rids[BUF_SIZE] __attribute__((aligned(64))); // aligned buffer to store rids

__m512i rid = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);

size_t i = 0, o = 0, b = 0;

do {
__m512i key = _mm512_load_epi32(&input_keys[i]); // load key column

__mmask16 k = _mm512_cmpge_epi32_mask(key, mask_X); // evaluate column >= X

k = _mm512_mask_cmple_epi32_mask(k, key, mask_Y); // evaluate and merge column <= Y

_mm512_mask_packstore_epi32(&buffer_rids[j], k, rid); // (selective) store to buffer

b += _mm_countbits_64(_mm512_mask2int(m)); // update the buffer index

if (b > BUF_SIZE - 16) { // flush the buffer

size_t bb = 0;

do {
__m512i rid_b = _mm512_load_epi32(&buffer_rids[bb]); // load back rids from buffer

__m512 key_b = _mm512_i32gather_ps(rid_b, input_keys, 4); // dereference 32-bit keys

__m512 val_b = _mm512_i32gather_ps(rid_b, input_vals, 4); // dereference 32-bit payloads

_mm512_storenrngo_ps(&output_keys[bb + o], key_b); // (non-temporal) store keys to output

_mm512_storenrngo_ps(&output_vals[bb + o], pay_b); // (non-temporal) store payloads to output

} while ((bb = bb + 16) != BUF_SIZE - 16);

_mm512_store_epi32(rids_buf, _mm512_load_epi32(&rids_buf[b])); // move to the front of buffer

o += bb, b -= bb; // update the output and the buffer index

}
rid = _mm512_add_epi32(rid, mask_16); // update the rids

} while ((i = i + 16) != tuples);

[...] // flush tuples from the buffer

5.4 Hash Tables

Hash tables are essential for the in-memory execution of joins and group-by aggregations

since they allow for constant time key lookups. In hash joins, the “inner” relation is used to

build a hash table and the “outer” relation probes the hash table to find matching tuples by

hashing the join keys. In group-by aggregation, hash tables are used either to map tuples

to unique group ids or to update partial aggregates by hashing the group-by attributes.

SIMD instructions have been proposed as a way to probe bucketized hash tables [Ross,

2007], i.e. hash tables with multiple keys and payloads per bucket. Instead of comparing

against a single key at a time, we place multiple keys per bucket and compare them to the

probing key with SIMD instructions. We use the term horizontal vectorization to describe

the approach of comparing a single input key with multiple keys per bucket. Scalar loads

should be as fast as contiguous vector loads, thus, the cost of bucketized probing diminishes

to extracting the right payload. [Ross, 2007] showed that bucketized hash tables based on

cuckoo hashing [Pagh and Rodler, 2004] can support load factors close to 100%.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 114

Horizontal vectorization, if we expect to probe fewer than W buckets on average per

key, is wasteful. For example, a 50% full hash table with one match per key accesses ≈ 1.5

buckets on average to find the match if we use linear probing. In such a case, comparing

one input key against multiple keys in the hash table bucket cannot yield high performance

improvement and takes no advantage of the increasing SIMD register size.

Here, we propose a generic form of hash table vectorization termed vertical vectorization

that can be applied to any hash table variant without altering the hash table layout. The

fundamental principle is to process a different input key per vector lane. All vector lanes

process different keys from the input and access different hash table locations.

The variants we discuss are linear probing (Section 5.4.1), double hashing (Section 5.4.2),

and cuckoo hashing (Section 5.4.3). For the hash function, we use multiplicative hashing,

which requires two multiplications, or for 2n buckets, a multiplication a one shift instruction.

Multiplication costs very few cycles in modern CPUs and is supported in SIMD.

5.4.1 Linear Probing

Linear probing is an open addressing scheme that traverses the table linearly until an empty

bucket is found. In the hash table buckets, we store keys and payloads but no pointers.

The scalar code for probing the hash table is shown in Algorithm 20.

Algorithm 20: Linear Probing - Probe (Scalar)

1 i, j ← 0 // input and output index

2 do

3 k ← Sk[i] // load key and payload from outer (probing) relation

4 v ← Sv[i]

5 i← i + 1

6 h← (k · f) × ↑ |H| // multiplicative hashing

7 while Hk[h] 6= kE do

8 if k = Hk[h] then

9 TRv[o]← Hv[h] // (joined) inner values

10 TSv[o]← v // (joined) outer values

11 Tk[o]← k // (joined) keys

12 o← o + 1

13 h← h + 1 // go to next bucket (linear probing)

14 if h = |H| then
15 h← 0 // reset if last bucket

16 while i 6= |S|



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 115

Algorithm 21: Linear Probing - Probe (Vector)

1 i, o← 0 // input and output index (o and ~o are different variables)

2 m← true // use all vector lanes

3 do

4 ~k ←m Sk[i] // (selective) load new outer keys

5 ~v ←m Sv[i] // (selective) load new outer payloads

6 i← i + |m|
7 ~h← (~k · f) × ↑ |H| // multiplicative hashing

8 ~o← m ? 0 : (~o + 1) // increment (or reset) linear probing offsets

9 ~h← ~h + ~o // add linear probing offsets

10 m← ~h < |H| // find overflowing lanes

11 ~h← m ? ~h : (~h− |H|) // fix overflows (vector blend)

12 ~kH ← Hk[~h] // gather keys from hash table buckets

13 ~vH ← Hv[~h] // gather payloads from hash table buckets

14 m← ~kH = ~k // find matching keys

15 Tk[o]←m
~k // (selective) store matching keys

16 TSv[o]←m ~v // (selective) store outer payloads for matches

17 TRv[o]←m ~vH // (selective) store inner payloads for matches

18 o← o + |m|
19 m← ~kH = kE // reuse lanes that reached an empty bucket

20 while i + |m| ≤ |Sk|

The vectorized procedure for probing a hash table assuming linear probing for collisions

is shown in Algorithm 21. Our vectorization principle is to process a different key per

SIMD lane using gathers to access the hash table. Assuming W vector lanes, we process

W different input keys on each loop. Instead of using a nested loop to find all matches

for the W keys before loading the next W keys, we reuse vector lanes as soon as we know

there are no more matches in the table, by (selective) loading new keys from the input to

replace finished keys. Thus, each key executes the same number of loops as in scalar code.

Every time a match is found, we use selective stores to write to the output the vector lanes

that have matches. In order to support each key having executed an arbitrary number of

loops already, we keep a vector of offsets that maintain how far each key has searched in

the table. When a key is overwritten, the offset is reset to zero.

A simpler approach would be to process W keys at a time and use a nested loop to find

all matches. However, the inner loop would be executed as many times as the maximum

number of buckets accessed by any one of the W keys, underutilizing the SIMD lanes, since

the average number of accessed buckets of W keys can be significantly smaller than the

maximum. By reusing SIMD lanes dynamically, we are reading the input “out-of-order”.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 116

__mmask16 k = _mm512_int2mask(0xFFFF); // set to use all vector lanes initially

__m512i key, val, off; // state (keys, payloads, and offsets)

size_t i = 0, j = 16, o = 0;

do { // process 16 tuples at a time in vectorized code

key = _mm512_mask_loadunpack_epi32(key, k, &outer_keys[i]); // load new keys reusing vector lanes

val = _mm512_mask_loadunpack_epi32(val, k, &outer_vals[i]); // load new payloads

i += j; // increment input using the number of reused lanes

__m512i loc = _mm512_mullo_epi32(key, mask_factor); // hash keys (multiplicative hashing)

loc = _mm512_mulhi_epu32(loc, mask_buckets);

off = _mm512_mask_xor_epi32(off, k, off, off); // reset linear probing offset for reused lanes

loc = _mm512_add_epi32(loc, off); // add linear probing offset

off = _mm512_add_epi32(off, mask_1); // increment linear probing offsets

k = _mm512_cmpge_epi32_mask(loc, mask_buckets); // find overflowing lanes

loc = _mm512_mask_sub_epi32(loc, k, loc, mask_buckets); // fix overflowing lanes

__m512i key_H = _mm512_i32gather_epi32(loc, &hash_table[0].key, 8); // gather hash bucket keys

__m512i val_H = _mm512_i32gather_epi32(loc, &hash_table[0].val, 8); // gather payloads

k = _mm512_cmpeq_epi32_mask(key, key_H); // find matching lanes

_mm512_mask_packstore_epi32(&join_keys[j], k, key); // (selective) store join keys to output

_mm512_mask_packstore_epi32(&join_outer_vals[j], k, val); // (selective) store outer payloads

_mm512_mask_packstore_epi32(&join_inner_vals[j], k, val_H); // (selective) store inner payloads

o += _mm_countbits_64(_mm512_mask2int(k)); // update the output index

k = _mm512_cmpeq_epi32_mask(key_H, mask_empty); // find which lanes reached an empty bucket

j = _mm_countbits_64(_mm512_mask2int(k)); // count the reusable lanes

} while (i + j <= tuples); // check if at least 16 tuples remain to process in SIMD code

[...] // process the final (15 or less) tuples in scalar code

The KNC implementation for hash table probing is shown above. The input has 32-bit

keys and payloads and each hash table bucket has a 32-bit key and a 32-bit payload.

Building a hash table assuming linear probing to deal with collisions is similar to probing.

In order to insert a new tuple, we iterate over buckets starting from the hash location until

we reach an empty bucket. The standard scalar approach is shown in Algorithm 22.

Algorithm 22: Linear Probing - Build (Scalar)

1 i← 0 // input index

2 do

3 k ← Rk[i] // load inner keys

4 v ← Rv[i] // load inner payloads

5 i← i + 1

6 h← (k · f) × ↑ |H| // multiplicative hashing

7 while Hk[h] 6= kE do

8 h← h + 1 // go to next hash bucket (linear probing)

9 if h = |H| then
10 h← 0 // reset to first hash bucket if last

11 Hk[h]← k // set hash table keys

12 Hv[h]← v // set hash table payloads

13 while i 6= |R|



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 117

Algorithm 23: Linear Probing - Build (Vector)

1 ~l← {1, 2, 3, ...,W} // vector with unique values per lane

2 i← 0

3 m← true // use all vector lanes

4 do

5 ~k ←m Rk[i] // (selective) load new inner keys

6 ~v ←m Rv[i] // (selective) load new inner payloads

7 i← i + |m|
8 ~h← (k · f) × ↑ |H| // multiplicative hashing

9 ~o← m ? 0 : (~o + 1) // increment or reset linear probing offsets

10 ~h← ~h + ~o // add linear probing offsets

11 m← ~h < |H| // fix overflows

12 ~h← m ? ~h : (~h− |H|)
13 ~kH ← Hk[~h] // gather keys from hash buckets

14 m← ~kH = kE // find empty hash buckets

15 T [~h]←m
~l // detect scatter conflicts

16 ~lH ←m Hk[~h]

17 m← m & (~l = ~lH)

18 Hk[~h]←m
~k // scatter inner keys to hash buckets

19 Hv[~h]←m ~v // scatter inner payloads to hash buckets

20 while i + |m| ≤ |R|

The vector code for building a hash table is shown in Algorithm 23. The basics of

vectorized probe and build of linear probing hash tables are the same. We process different

input keys per vector lane and on top of gathers, we now also use scatters to store the

keys non-contiguously. We access the input “out-of-order” to reuse lanes as soon as keys

are inserted. To insert tuples, we first gather to check if the buckets are empty and then

scatter the tuples only if the bucket is empty. The tuples that accessed a non-empty bucket

increment an offset vector in order to search the next bucket in the next loop. We assume

a bucket is empty if the key is equal to the special value kE .

In order to ensure that multiple tuples will not try to fill the same empty bucket, we

add a conflict detection step before scattering the tuples. Two lanes are conflicting if they

point to the same location. However, we do not need to identify both lanes but rather the

leftmost one that would get its value overwritten by the rightmost during the scatter. To

identify these lanes, we scatter arbitrary values using a vector with unique values per lane

(e.g., [1, 2, 3, . . . ,W]). Then, we gather using the same index vector. If the gathered value

matches the (unique) scattered value, we can safely scatter to that lane. The conflicting

lanes are handled like non-matching lanes; they probe the next bucket in the following loop.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 118

If the input keys are unique (e.g., join on a candidate key), we can scatter the keys to the

table and gather them back to find the conflicting lanes instead of a constant vector with

unique values per lane, saving one scatter operation. Also, the AVX-512 SIMD instruction

set provides instructions to implement conflict detection directly in registers with O(1)

instructions. For instance, the vpconflictd instruction performs an all-to-all comparison

across all 32-bit lanes of the SIMD register. Thus, we can save the extra scatter and gather.

The hash table uses a row-oriented format storing interleaved keys and values per bucket.

To reduce the number of cache accesses, we can pack multiple gathers into fewer wider

gathers. For example, assuming 32-bit keys and 32-bit payloads, the two 16-way 32-bit

gathers can be replaced with two 8-way 64-bit gathers. The same applies to scatters.

For both probing and building, selective loads and stores assume there are enough items

in the input to saturate the vector register. To process the last items in the input, we switch

to scalar code. The last items are bounded in number by W, which is negligible compared

to the total number of input tuples. Thus, the overall throughput is unaffected.

The KNC implementation for building a linear probing hash table with 32-bit keys and

payloads is shown above. Conflict detection uses gathers and scatters as in Algorithm 23.

__mmask16 k = _mm512_int2mask(0xFFFF); // set to use all vector lanes initially

__m512i key, val, off; // state (keys, payloads, and offsets)

size_t i = 0, j = 16;

do { // process 16 input tuples at a time

key = _mm512_mask_loadunpack_epi32(key, k, &inner_keys[i]); // load new keys reusing vector lanes

val = _mm512_mask_loadunpack_epi32(val, k, &inner_vals[i]); // load new payloads

i += j; // increment input using the number of reused lanesxr

__m512i loc = _mm512_mullo_epi32(key, mask_factor); // hash keys (multiplicative hashing)

loc = _mm512_mulhi_epu32(loc, mask_buckets);

off = _mm512_mask_xor_epi32(off, k, off, off); // reset linear probing offset for reused lanes

loc = _mm512_add_epi32(loc, off); // add linear probing offsets

off = _mm512_add_epi32(off, mask_1); // increment linear probing offsets

k = _mm512_cmpge_epi32_mask(off, mask_buckets); // find overflowing lanes

off = _mm512_mask_sub_epi32_mask(off, k, off, mask_buckets); // fix overflowing lanes

__m512i key_H = _mm512_i32gather_epi32(loc, &hash_table[0].key, 8); // gather keys

k = _mm512_cmpeq_epi32_mask(key_H, mask_empty); // check if buckets are empty

_mm512_mask_i32scatter_epi32(&hash_table[0].key, k, loc, mask_unique, 8); // detect conflits

key_H = _mm512_mask_i32gather_epi32(key_H, k, loc, table, 8);

k = _mm512_mask_cmpeq_epi32_mask(k, key_H, mask_unique);

_mm512_mask_i32scatter_epi32(&hash_table[0].key, k, loc, key, 8); // scatter keys

_mm512_mask_i32scatter_epi32(&hash_table[0].val, k, loc, val, 8); // scatter payloads

j = _mm_countbits_64(_mm512_mask2int(k)); // count number of reused lanes

} while (i + j <= tuples); // check if at least 16 tuples remain to process in SIMD code

[...] // process last (15 or less) tuples in scalar code



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 119

5.4.2 Double Hashing

Duplicate keys in hash tables can be handled by storing the payloads in a separate table,

or by repeating the keys. The first approach works well when most matching keys are

repeated. The second approach works well with mostly unique keys, but suffers from clus-

tering duplicate keys in the same region, if linear probing is used. Double hashing uses a

second hash function to distribute collisions so that the number of accessed buckets is close

to the number of true matches. We can use the latter approach in both cases. Comparing

multiple hash table layouts based on the number of repeats is not the focus of this work.

In double hashing, the primary hash function h1 always takes values in [0, b) for b buckets.

For 0 ≤ i < b collisions, the hash bucket locations are given by the formula h = (h1 + i ·h2)

mod b. If b = 2n and h2 is odd, then h takes every value in [0, b) for 0 ≤ i < b and the

same bucket is never repeated. Because enforcing b = 2n may waste too much space, we

can ensure the same property if b is prime. If h2 takes values in [1, b), then h2 is always

co-prime with b and h also takes every value in [0, b). Since each bucket is unique within

[0, b), we can avoid modulos and fix the overflows by subtracting b from h when h ≥ b.

Algorithm 24 describes scalar hash table probing using this double hashing scheme.

Algorithm 24: Double Probing - Probe (Scalar)

1 i, o← 0

2 do

3 k ← Sk[i] // load outer key

4 v ← Sv[i] // load outer payload

5 i← i + 1

6 h← (k · f1) × ↑ |H| // primary hash function (|H| is a prime)

7 if Hk[h] 6= kE then

8 h′ ← (k · f2) × ↑ (|H| − 1) + 1 // secondary hash function

9 do

10 if k = Hk[h] then

11 TRv[o]← Hvals[h] // store inner payload

12 TSv[o]← v // store outer payload

13 Tk[o]← k // store (joined) key

14 o← o + 1

15 h← h + h′
// combine primary and secondary function

16 if h ≥ |H| then
17 h← h− |H| // fix overflow

18 while Hk[h] 6= kE

19 while i 6= |S|



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 120

Algorithm 25: Double Hashing - Probe (Vector)

1 i, o← 0

2 m← true // use all vector lanes

3 do

4 ~k ←m Sk[i] // (selective) load new outer keys

5 ~v ←m Sv[i] // (selective) load new outer keys

6 i← i + |m|
7 ~f ← m ? f1 : f2 // pick multiplicative factor

8 ~b← m ? |H| : (|H| − 1) // pick number of buckets

9 ~h′ ← (~k × ↓ ~f) × ↑ ~b
10 ~h← m ? ~h′ : (~h + ~h′ + 1) // combine primary and secondary function

11 m← ~h < |H| // find overflows

12 ~h← m ? ~h : (~h− |H|) // fix overflows

13 ~kH ← Hk[~h] // gather keys from hash table buckets

14 ~vH ← Hv[~h] // gather payloads from hash table buckets

15 m← ~kH = ~k // find matching keys

16 Tk[o]←m
~k // (selective) store keys for matches

17 TSv[o]←m ~v // (selective) store outer payloads for matches

18 TRv[o]←m ~vT // (selective) store inner payloads for matches

19 o← o + |m|
20 m← ~kH = kE // reuse lanes that reached an empty bucket

21 while i + |m| ≤ |S|

Algorithm 25 shows the double hashing scheme in vectorized code. Here, m is the subset

of vector lanes that have probed at least one bucket. Linear probing uses the linear probing

offsets ~o as part of the state, double hashing uses the last hash bucket locations ~h instead. To

switch between the primary and the secondary hash function, we simply switch to a different

multiplicative hash factor. To ensure that the hash functions are pairwise independent, we

pick random odd multiplicative hash factors that satisfy: (f1 − f2) mod 4 = 2.

In each iteration of the vectorized implementation, we either compute the primary or

the secondary hash function for each input key in the SIMD vector but not both. To

use stronger hash functions (e.g. to avoid flooding), the two functions must use the same

instructions but remain pairwise independent. We can either generate multiple instances

by changing constants or by initializing with different seeds.

Building the hash table with double hashing is largely equivalent to linear probing.

We omit showing the algorithm since the modification can be derived by comparing Algo-

rithms 21 and 25. For completeness, we show the KNC implementation of probing a double

hashing table below. The changes compared to linear probing are minimal.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 121

__mmask16 k = _mm512_int2mask(0xFFFF); // set to use all vector lanes initially

__m512i key, val, loc; // state (keys, payloads, and previous hash bucket locations)

size_t i = 0, j = 16, o = 0;

do { // process 16 tuples at a time in vectorized code

key = _mm512_mask_loadunpack_epi32(key, k, &outer_keys[i]); // load new keys reusing vector lanes

val = _mm512_mask_loadunpack_epi32(val, k, &outer_vals[i]); // load new payloads

i += j; // increment input using the number of reused lanes

__m512i fac = _mm512_mask_blend_epi32(k, mask_factor_2, mask_factor_1); // pick hash factor

__m512i buc = _mm512_mask_blend_epi32(k, mask_buckets_minus_1, mask_buckets); // pick buckets

__m512i loc_O = _mm512_add_epi32(loc, mask_1); // increment old hashes

loc = _mm512_mulhi_epu32(_mm512_mullo_epi32(key, fac), buc); // compute hashes

loc = _mm512_mask_add_epi32(loc, _mm512_knot(k), loc, loc_O); // combine hashes

k = _mm512_cmpge_epi32_mask(loc, mask_buckets); // find overflows

loc = _mm512_mask_sub_epi32(loc, k, loc, mask_buckets); // fix overflows

__m512i key_H = _mm512_i32gather_epi32(loc, &hash_table[0].key, 8); // gather hash bucket keys

__m512i val_H = _mm512_i32gather_epi32(loc, &hash_table[0].val, 8); // gather payloads

k = _mm512_cmpeq_epi32_mask(key, key_H); // find matching lanes

_mm512_mask_packstore_epi32(&join_keys[j], k, key); // (selective) store join keys to output

_mm512_mask_packstore_epi32(&join_outer_vals[j], k, val); // (selective) store outer payloads

_mm512_mask_packstore_epi32(&join_inner_vals[j], k, val_H); // (selective) store inner payloads

o += _mm_countbits_64(_mm512_mask2int(k)); // update the output index

k = _mm512_cmpeq_epi32_mask(key_H, mask_empty); // find which lanes reached an empty bucket

j = _mm_countbits_64(_mm512_mask2int(k)); // count the reusable lanes

} while (i + j <= tuples); // check if at least 16 tuples remain to process in SIMD code

[...] // process the final (15 or less) tuples in scalar code

5.4.3 Cuckoo Hashing

Cuckoo hashing [Pagh and Rodler, 2004] is another hashing scheme that uses multiple hash

functions. and is the only hash table scheme that has been vectorized in previous work

[Ross, 2007], as a means to allow multiple keys per bucket (horizontal vectorization). Here,

we study cuckoo hashing to compare our (vertical vectorization) approach against previous

work [Ross, 2007; Zukowski et al., 2006]. We also show that complicated control flow logic,

such as cuckoo table building, can be transformed to data flow vector logic.

Algorithm 26 shows the scalar algorithm for probing cuckoo hashing tables. For each

input key, we probe up to two hash buckets in order to find a match. Since we search up

to two buckets, we only need a branch to handle collisions, instead of an inner loop.

When probing cuckoo tables in scalar code, we can avoid the branching by always access-

ing both buckets and combining their values using bitwise logic. This approach eliminates

branching at the expense of always accessing both buckets, but [Zukowski et al., 2006]

showed it to be faster than other implementations on mainstream CPUs at the time.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 122

Algorithm 26: Cuckoo Hashing - Probe (Scalar)

1 i, o← 0

2 do

3 k ← Sk[i] // load outer key

4 h← (k · f1) × ↑ |H| // 1st hash function

5 if k 6= Hk[h] and Hk[h] 6= kE then

6 h← (k · f2) × ↑ |H| // 2st hash function

7 if k = Hk[h] then

8 Tk[o]← k // store (joined) key

9 TSv[o]← Sv[i] // store outer payload

10 TRv[o]← Hv[h] // store inner payload

11 o← o + 1

12 i← i + 1

13 while i 6= |S|

Vectorized cuckoo table probing is shown in Algorithm 27. We do not reuse a subset of

vector lanes per iteration, we always process W new keys, accessing the input “in-order”.

As a result, vectorized cuckoo table probing is stable to the order of probing relation. To

probe the hash table, we gather the bucket based on the first hash function for all keys.

For the lanes where the keys do not match and the buckets are empty, we gather based on

the second function. Eagerly accessing both buckets is wasteful since selective gathers are

already branchless. Note that we skip the second bucket if the first bucket is empty.

Algorithm 27: Cuckoo Hashing - Probe (Vector)

1 i, o← 0

2 do

3 ~k ← Skeys[i] // load outer keys

4 ~v ← Svals[i] // load outer payloads

5 i← i +W
6 ~h1 ← (~k · f1) × ↑ |H| // 1st hash function

7 ~h2 ← (~k · f2) × ↑ |H| // 2nd hash function

8 ~kH ← Hk[~h1] // gather keys from 1st hash bucket

9 ~kH ← Hk[~h2] // gather payloads from 1st hash bucket

10 m← (~k 6= ~kH) & (~kH 6= kE) // find lanes to access the 2nd bucket

11 ~kH ←m Hk[~h2] // gather keys from 2nd hash bucket if 1st not matching

12 ~vH ←m Hv[~h2] // gather payloads from 2nd hash bucket if 1st not matching

13 m← ~k = ~kH // find matching keys

14 Tk[o]←m
~k // (selective) store (joined) keys

15 TSv[o]←m ~v // (selective) store outer payloads

16 TRv[o]←m ~vH // (selective) store inner payloads

17 o← o + |m|
18 while i 6= |S|



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 123

size_t i = 0, o = 0;

do { // process 16 (new) probing keys per iteration

__m512i key = _mm512_load_epi32(&outer_keys[i]); // load input keys

__m512i val = _mm512_load_epi32(&outer_vals[i]); // load input payloads

// compute both hash functions using different multiplicative hash factors

__m512i loc_1 = _mm512_mulhi_epu32(_mm512_mullo_epi32(key, mask_factor_1), mask_buckets);

__m512i loc_2 = _mm512_mulhi_epu32(_mm512_mullo_epi32(key, mask_factor_2), mask_buckets);

__m512i key_H = _mm512_i32gather_epi32(loc_1, &hash_table[0].key, 8); // gather 1st bucket keys

__m512i val_H = _mm512_i32gather_epi32(loc_1, &hash_table[0].val, 8); // gather payloads

__mmask16 k = _mm512_cmpneq_epi32_mask(key, key_H); // find lanes where keys are not matching ...

k = _mm512_mask_cmpneq_epi32_mask(k, key, mask_empty); // and also do not point to empty buckets

// (selective) gather for keys and payloads from bucket using 2nd hash function

key_H = _mm512_mask_i32gather_epi32(key_H, k, loc_2, &hash_table[0].key, 8);

val_H = _mm512_mask_i32gather_epi32(val_h, k, loc_2, &hash_table[0].val, 8);

k = _mm512_cmpeq_epi32_mask(key, key_H); // find lanes with matching keys

_mm512_mask_packstore_epi32(&join_keys[j], k, key); // (selective) store join keys to output

_mm512_mask_packstore_epi32(&join_outer_vals[j], k, val); // (selective) store outer payloads

_mm512_mask_packstore_epi32(&join_inner_vals[j], k, val_H); // (selective) store inner payloads

o += _mm_countbits_64(_mm512_mask2int(k)); // update the output index

} while ((i = i + 16) != tuples);

The KNC implementation of cuckoo table probing with 32-bit keys and 32-bit payloads

is shown above. In contrast to linear probing and double hashing, we do not use selective

loads as the input is read “in order”. We simplify the code using separate 32-bit gathers

for keys and payloads. In practice, we access key–payload pairs using 64-bit gathers.

Building a cuckoo hashing table, shown in Algorithm 28, is more involved than probing.

Algorithm 28: Cuckoo Hashing - Build (Scalar)

1 i← 0

2 do

3 k ← Rk[i] // load inner key

4 v ← Rv[i] // load inner payload

5 i← i + 1

6 h← (k · f1) × ↑ |H| // 1st hash function

7 if Hk[h] 6= kE then

8 h← (k · f2) × ↑ |H| // 2nd hash function

9 while Hk[h] 6= kE do

10 Hk[h]←→ k // swap current key with key in hash bucket

11 Hv[h]←→ v // swap current payload with payload in hash bucket

12 h1 ← (k · f1) × ↑ |H| // 1st hash function

13 h2 ← (k · f1) × ↑ |H| // 2nd hash function

14 h← h1 + h2 − h // find alternative hash bucket

15 Hk[h]← k // store key in hash bucket

16 Hv[h]← v // store payload in hash bucket

17 while i 6= |S|



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 124

We always place the tuple in the first hash bucket if empty. Otherwise, we try the 2nd

bucket. If both buckets are full, we have to create space for the new tuple. We choose one

of the two buckets that the new tuple can be placed (here the 2nd) and swap it with the

tuple there. Now we have to insert the new tuple that we swapped out by searching the

alternative bucket. We may swap many tuples before we reach an empty bucket. To avoid

infinite loops, we set a bound on the total iterations and, if reached, we rebuild the table.

Vectorized cuckoo table building is described in Algorithm 29. In each iteration, we

reuse vector lanes to load new tuples from the input. The lanes we cannot reuse hold tuples

that were either displaced from the hash table or were conflicting. In each iteration, the

new tuples look for an empty bucket using the first and then the second hash function. The

tuples that were carried from the previous iteration use the alternative hash function. After

we scatter the tuples to the buckets, we gather back the keys to detect conflicts, taking

advantage of the fact that keys are unique. The conflicting lanes and the lanes with newly

displaced tuples are passed through to the next iteration. The remaining lanes are reused.

Algorithm 29: Cuckoo Hashing - Build (Vector)

1 i← 0

2 m← true // initially reuse all lanes

3 do

4 ~k ←m Rk[i] // (selective) load new inner keys reusing lanes

5 ~v ←m Rv[i] // (selective) load new inner payloads

6 i← i + |m| // increment input index by number of reused lanes

7 ~h1 ← (~k · f1) × ↑ |H| // compute 1st hash function

8 ~h2 ← (~k · f2) × ↑ |H| // compute 2nd hash function

9 ~h← ~h1 + ~h2 − ~h // compute alternative hash function (for old tuples)

10 ~h← m ? ~h1 : h // use 1st hash function for new tuples

11 ~kH ← Hk[~h] // gather keys from hash buckets for new and old tuples

12 ~vH ← Hv[~h] // gather payloads from hash buckets for new and old tuples

13 m← m & (~kH 6= kE) // use 2nd function if new tuple and 1st bucket not empty

14 ~kH ←m Hk[~h2] // (selective) gather keys from 2nd hash bucket

15 ~vH ←m Hv[~h2] // (selective) gather payloads from 2nd choice hash bucket

16 ~h← m ? ~h2 : ~h // merge locations

17 Hk[~h]← ~k // scatter keys to hash buckets

18 Hv[~h]← ~v // scatter payloads to hash buckets

19 m← ~k 6= Hk[~h] // gather (unique) keys back to detect conflicts

20 ~k ← m ? ~kH : ~k // retain keys of conflicting lanes

21 ~v ← m ? ~vH : ~v // retain payloads of conflicting lanes

22 m← ~k = kE // reuse lanes where swapped buckets were empty

23 while i + |m| ≤ |R|



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 125

__mmask16 k = _mm512_int2mask(0xFFFF); // set to use all vector lanes initially

__m512i key, val, loc; // state (keys, payloads, and last hash locations)

size_t i = 0, j = 16, l = [...]; // upper bound in iterations to avoid infinite loops

do { // process 16 tuples at a time

key = _mm512_mask_loadunpack_epi32(key, k, &inner_keys[i]); // load new keys reusing vector lanes

val = _mm512_mask_loadunpack_epi32(val, k, &inner_vals[i]); // load new payloads

i += j; // update input index and compute both hash functions

__m512i loc_1 = _mm512_mulhi_epu32(_mm512_mullo_epi32(key, mask_factor_1), mask_buckets);

__m512i loc_2 = _mm512_mulhi_epu32(_mm512_mullo_epi32(key, mask_factor_2), mask_buckets);

loc = _mm512_sub_epi32(_mm512_add_epi32(loc_1, loc_2), loc); // alternative bucket for old tuples

loc = _mm512_mask_blend_epi32(k, loc, loc_1); // search 1st hash bucket for new tuples

__m512i key_H = _mm512_i32gather_epi32(loc, &hash_table[0].key, 8); // gather keys

__m512i val_H = _mm512_i32gather_epi32(loc, &hash_table[0].val, 8); // gather payloads

k = _mm512_mask_cmpneq_epi32_mask(k, key_H, mask_empty); // search 2nd if new and 1st was full

// (selective) gather of keys and payloads from the 2nd hash bucket

key_H = _mm512_mask_i32gather_epi32(key_H, k, loc_2, &hash_table[0].key, 8);

val_H = _mm512_mask_i32gather_epi32(val_H, k, loc_2, &hash_table[0].val, 8);

loc = _mm512_mask_blend_epi32(k, loc, loc_2); // merge 2nd hash function

_mm512_i32scatter_epi32(&hash_table[0].key, loc, key_H, 8); // scatter keys to table

_mm512_i32scatter_epi32(&hash_table[0].val, loc, val_H, 8); // scatter payloads to table

__m512i key_C = _mm512_i32gather_epi32(loc, &hash_table[0].key, 8); // gather back (unique) keys

k = _mm512_cmpneq_epi32_mask(key, key_C); // detect conflicting lanes

key = _mm512_mask_blend_epi32(k, key, key_H); // retain keys of conflicting lanes

val = _mm512_mask_blend_epi32(k, val, val_H); // retain payloads of conflicting lanes

k = _mm512_cmpeq_epi32_mask(key, mask_empty); // reuse lanes where buckets were empty

j = _mm_countbits_64(_mm512_mask2int(k)); // count number of reused lanes

} while (i + j <= tuples && --l); // check if at least 16 tuples remain to process in SIMD code

[...] // process last tuples in scalar code if upper bound of iterations was not reached

The KNC implementation for building a cuckoo table with 32-bit keys and 32-bit pay-

loads is shown above. Build failures a cuckoo table can occur even for low load factors. If

we know the number of inner tuples in advance, we can set a suitable load factor. If we

still fail, we modify the hash function and retry without resizing. Note that cuckoo hashing

does not require the hash functions to be homomorphic as we always compute both.

5.5 Bloom Filters

Bloom filters [Bloom, 1970] are an essential data structure for semi-joins, i.e. applying

selective conditions across tables before the join. A tuple qualifies from the Bloom filter, if

k specific bits are set in the filter, based on k hash functions. In the scalar implementation,

we process one input key at a time k bits by computing hash functions iteratively. If a bit

is not set, we proceed directly to the next tuple. This short-circuit logic is essential for high

performance, as most tuples will fail in the first or second bit test, assuming high selectivity.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 126

size_t i = 0, o = 0;

do {
int32_t key = input_keys[i]; // load input key

size_t f = 0; // check one hash function at a time

do {
size_t h = (key * hash_factor[f]) >> hash_shift; // multiplicative hashing

asm goto( // inline assembly in C code

"btl %1,(%0)\n\t" // load bit from memory and test if set

"jnc %l[bit_not_set]" // jump to label if bit is not set

:: "r"(bloom_filter), "r"(h) : "cc" : bit_not_set); // compiler jargon for inline assembly

} while (++f != hash_functions); // tuple qualifies since all bits are set

output_vals[o] = input_vals[i]; // copy payload to output

output_keys[o++] = key; // store key to output

bit_not_set:; // label to jump to if any key fails

} while (++i != tuples);

We show the scalar implementation of probing a Bloom filters in the (scalar) assembly

of mainstream CPUs (x86). The input has 32-bit keys and 32-bit payloads. We use multi-

plicative hashing and assume the Bloom filter has 2n bits with n ≤ 32. To test a specific

bit in the bitmap, we use the x86 instruction bt and avoid doing shift and bitwise-and to

separate the word index and the bit offset. In contrast to hash tables, building a Bloom

filter is uninteresting and should take negligible time compared to probing.

To access a bitmap in SIMD, we use the smallest possible SIMD gather lane supported

by the hardware. We test the lane against a bitmask with the single target bit set. For

instance, if the smallest gather lane is 32-bit integers, we gather the 32-bit word containing

the target bit using the bit offset divided by 32. We also create a bitmask using the bit

offset modulo 32. Checking the target bit in the gathered word is trivial.

Eagerly testing all k bits per input tuple using all k hash functions to determine whether

the tuple qualifies the Bloom filter or not, is a very wasteful approach. Early aborting of

tuples that failed a bit test are essential to performance for cases with high selectivity.

To maintain this property, we must not vectorize accesses for the same key. To vectorize

accesses across keys, we use the same approach of vertical vectorization that we used for

hash tables, where we process different input keys per SIMD vector lane. Also, different

vector lanes are not necessarily tied to the same hash function. In each iteration, each

key may be checking a different hash function, thus we keep the hash function index as

part of the state. Generally, we cannot assume a specific pattern of failures, as the flow is

dependent on both the input data and the configuration.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 127

__mmask16 k = _mm512_int2mask(0xFFFF); // set to use all lanes initially

__m512i key, val, fun; // state (keys, payloads, and hash function index)

size_t i = 0, j = 16, o = 0;

do { process 16 tuples at a time

key = _mm512_mask_loadunpack_epi32(key, k, &input_keys[i]); // load new keys reusing vector lanes

val = _mm512_mask_loadunpack_epi32(val, k, &input_vals[i]); // load new payloads

i += j; // increment input using the number of reused vector lanes

fun = _mm512_mask_xor_epi32(fun, k, fun, fun); // reset hash function index for reused lanes

__m512i fac = _mm512_permutevar_epi32(fun, mask_factors); // pick multiplicative hash factor

__m512i bit = _mm512_srl_epi32(_mm512_mullo_epi32(key, fac), mask_shift); // hash function

// get 32-bit word containing target bit from Bloom filter by dividing bit offset by 32

__m512i bit_div = _mm512_i32gather_epi32(_mm512_srli_epi32(bit, 5), bloom_filter, 4);

// create 32-bit bitmask with only target bit set using the bit offset modulo 32

__m512i bit_mod = _mm512_sllv_epi32(mask_1, _mm512_and_epi32(bit, mask_31));

k = _mm512_test_epi32_mask(bit_div, bit_mod); // test target bit in Bloom filter

fun = _mm512_add_epi32(fun, mask_1); // increment hash function index

// find qualifying lanes that checked all bits by using all hash functions

__mmask16 kk = _mm512_mask_cmpeq_epi32_mask(k, fun, mask_hash_functions);

_mm512_mask_packstore_epi32(&output_keys[j], kk, key); // (selective) store qualifying keys

_mm512_mask_packstore_epi32(&output_vals[j], kk, val); // (selective) store qualifying payloads

k = _mm512_kor(_mm512_knot(k), kk); // reuse lane if bit was not set or tuple qualified

j = _mm_countbits_64(_mm512_mask2int(k)); // count number of reused lanes

} while (i + j <= tuples); // check if at least 16 tuples remain to process in SIMD code

[...] // process (15 or less) tuples remaining in scalar code

The KNC implementation for probing Bloom filters is shown above. As in the scalar

code, we assume 32-bit keys, 32-bit payloads, and 2n bits in the Bloom filter. Using stronger

hash functions than multiplicative hashing is also possible, but, similarly to double hashing,

they need to have the same code. We can vary the hash function seed or some function

constants, provided they guarantee that the instances are pairwise independent.

5.6 Partitioning

Partitioning is essential for query execution in modern hardware to execute in-memory

database operators in a cache-conscious way. Both hash join and group-by aggregation can

use hash partitioning to split the input into non-overlapping parts that can be distributed

among threads and fit in the small but fast caches [?; Balkesen et al., 2013a; Blanas et

al., 2011; Kim et al., 2009; Manegold et al., 2002]. In Chapter 3, we studied various types

of partitioning depending on the partition function, the layout of the output, the use of

auxiliary space, and the memory layer that the partitioning variant is designed to run on.

We also showed that partitioning is synonymous to efficient sorting.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 128

5.6.1 Radix / Hash Histogram

Prior to moving any data, in order to partition into contiguous segments, we use a histogram

to set the boundaries for each partitioning. To compute the histogram, we increment a

count based on the partition function of each key. Provided we use a hash function such as

multiplicative hashing, hash partitioning becomes equally fast to radix partitioning.

Algorithm 30: Hash Partitioning - Histogram

1 ~o← {0, 1, 2, 3, ...,W − 1}
2 i, p← 0

3 do

4 ~k ← Tk[i] // load keys

5 i← i +W
6 ~h← (~k · f) × ↑ P // hash partitioning function

7 ~h← (~h · W) + ~o // split index to point to replicated histograms

8 ~c← H ′[~h] // gather the histogram counts

9 H ′[~h]← ~c + 1 // increment and scatter the histogram counts

10 while i 6= |T |
11 do

12 ~c← H ′[p · W] // load W counts of partition

13 H[p]← sum across(~c) // reduce into single result

14 p← p + 1

15 while p 6= P

Vectorized histogram generation, shown in Algorithm 30, uses gathers and scatters to

increment counts. However, if k > 1 lanes scatter to the same location, the count will be

incremented by 1 instead of k. To avoid conflicts, we replicate the histogram and isolate

each lane. Lane j increments H ′[i · W + j] instead of H[i]. In the end, the W histograms

are merged. If the histograms do not fit in the L1, we use 1-byte counts and flush to wider

counts when they overflow. The KNC implementation assuming 32-bit keys is shown below.

const __m512i mask_lane_offset = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);

size_t i = 0, p = 0;

do { // process 16 tuples at a time

__m512i key = _mm512_load_epi32(&keys[i]); // load keys

__m512i pid = _mm512_mulhi_epu32(_mm512_mullo_epi32(key, mask_factor), mask_partitions);

// compute locations in replicated histograms by multiplying by 16 and adding the lane offset

__m512i loc = _mm512_or_epi32(_mm512_slli_epi32(pid, 4), mask_lane_offset);

__m512i cnt = _mm512_i32gather_epi32(loc, histogram_x16, 4); // update the replicated histograms

_mm512_i32scatter_epi32(histogram_x16, loc, _mm512_add_epi32(cnt, mask_1), 4);

} while ((i = i + 16) != tuples);

do { // merge partial histograms

histogram[p] = _mm512_reduce_add_epi32(_mm512_load_epi32(&histogram_x16[p << 4]));

} while (++p != partitions);



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 129

5.6.2 Range Histogram

Radix and hash partitioning functions are significantly faster than range partitioning func-

tions. In range partitioning, we use binary search over a sorted array of delimiters than

divide the ranges. Although the array is cache-resident, binary search is O(logP) and the

accesses are dependent on each other exposing the cache hit latency in the critical path.

Branch elimination in scalar code only marginally improves performance.

In Section 3.2.5.2, we proposed a range index where each node has multiple splitters

that are compared against one input key using SIMD comparisons. Each node is at least as

wide as a vector and scalar code is used for index arithmetic and to access the nodes. The

SIMD index can be viewed as horizontal vectorization of binary search.

The vertical vectorization of binary search processes W input keys in parallel and uses

gather instructions to load the splitters from the sorted array, as shown in Algorithm 31.

The search path is computed by blending vectors of “low” and “high” indexes.

Algorithm 31: Range Partitioning - Histogram

1 ~o← {0, 1, 2, 3, ...,W − 1}
2 i, p← 0

3 do

4 ~k ← Tk[i] // load the next keys

5 i← i +W
6 ~rL ← 0 // “low” index of binary search

7 ~rH ← P // “high” index of binary search

8 j ← dlogPe // binary search across P range partitions

9 do

10 ~r ← (~rL + ~rH) >> 1 // compute “mid” index

11 ~d← D[~r − 1] // gather delimiters from sorted array D

12 m← ~k > ~d // compare input keys with delimiters

13 ~rL ← m ? ~r : ~rL // merge “low” index with “mid” index

14 ~rH ← m ? ~rH : ~r // merge “high” index with “mid” index

15 j ← j − 1

16 while j 6= 0

17 ~r ← ~o + (~rL · W) // location in replicated histograms

18 ~c← H ′[~r] // gather the histogram counts

19 H ′[~r]← ~c + 1 // increment and scatter the histogram counts

20 while i 6= |T |
21 do

22 ~c← H ′[p · W] // load W counts of partition

23 H[p]← sum across(~c) // reduce into single result

24 p← p + 1

25 while p 6= P



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 130

const __m512i mask_lane_offset = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);

size_t i = 0, p = 0;

do { // process 16 tuples at a time

__m512i key = _mm512_load_epi32(&keys[i]); // load keys

__m512i pid_L = _mm512_setzero_epi32(); // low index for binary search

__m512i pid_H = mask_partitions; // high index for binary search

size_t j = ceil_log_partitions;

do { // inner loop for binary search

__m512i pid = _mm512_srli_epi32(_mm512_add_epi32(pid_L, pid_H), 1); // mid index

__m512i del = _mm512_i32gather_epi32(loc, &delimiters[-1], 4); // gather delimiters

__mmask16 k = _mm512_cmpgt_epu32(key, del); // compare against delimiters

loc_L = _mm512_mask_blend_epi32(k, pid_L, pid); // update low index

loc_H = _mm512_mask_blend_epi32(k, pid, pid_H); // update high index

} while (--j);

// compute locations in replicated histograms by multiplying by 16 and adding the lane offset

__m512i pid = _mm512_or_epi32(_mm512_slli_epi32(pid_L, 4), mask_lane_offset);

__m512i cnt = _mm512_i32gather_epi32(loc, histogram_x16, 4); // update the replicated histograms

_mm512_i32scatter_epi32(histogram_x16, loc, _mm512_add_epi32(cnt, mask_1), 4);

} while ((i = i + 16) != tuples);

do { // merge partial histograms

histogram[p] = _mm512_reduce_add_epi32(_mm512_load_epi32(&histogram_x16[p << 4]));

} while (++p != partitions);

The KNC implementation of range partitioning assuming 32-bit keys is shown above.

Note that these implementations are identical using AVX-512, the latest SIMD instruction

set supported by the latest mainstream CPUs and Intel Xeon Phi platforms.

5.6.3 Data Shuffling

The data shuffling phase of partitioning involves the actual movement of tuples. To gen-

erate the output partitions in contiguous space, we maintain an array of partition offsets,

initialized by the prefix sum of the histogram. The offset array is updated for every tuple

transferred to the output. We described many variants of shuffling in Section 3.2.

Vectorized data shuffling uses gathers and scatters to increment the offset array and

scatters the tuples to the output. However, if k > 1 vector lanes have tuples that belong

to the same partition, the offset would be incremented by 1 instead of k. Also, the k input

tuples would be (over)written to the same output location.

To resolve the conflicts, we compute a vector of offsets that serialize the tuples in the

same input vector that belong to the same output partition. The process is described in

Algorithm 32 and uses multiple rounds of gathers and scatters, assuming that the hardware

does not provide specialized vector instructions for detecting conflicts.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 131

Algorithm 32: Conflict Serialization w/o Hardware Support

1 ~v ← {W − 1,W − 2,W − 3, . . . , 0} // mask with unique values also used to reverse vector lanes

2 ~h′ ← permute(~h, ~m) // reverse lanes of hashes

3 ~c← 0 // serialization offsets (output)

4 m← true

5 do

6 T [~h′]←m ~v // detect conflicts using array T

7 ~v′ ←m T [~h′] m← m & (~v 6= ~v′) // update conflicting lanes

8 ~c← m ? (~c + 1) : ~c // increment offsets for conflicting lanes

9 while m 6= false

10 return permute(~c,~v) // reverse counts to original order

We scatter unique values per lane to an array with P entries for P partitions. Then, we

gather using the same indexes and compare against the scattered vector to find conflicts.

We increment the conflicting lanes and repeat the process for these lanes only until no

lanes conflict. Note that even if W iterations are executed, the total number of accesses

to distinct memory locations is always W, i.e., if ai is the number of accesses to distinct

memory locations in iteration i, then
∑
ai = W. Thus, conflict detection runs in up to

O(W) CPU cycles, same as the worst case for any individual W-way gather or scatter.

__m512i serialize_offsets(__m512i pid, int32_t* array, [...]) { // inlined with masks as arguments

__mmask16 k = _mm512_int2mask(0xFFFF); // use all lanes initially

__m512i val, off = _mm512_setzero_epi32(); // reset offsets

__m512i loc = _mm512_permutevar_epi32(pid, mask_reverse); // reverse lanes with partition ids

do {
_mm512_mask_i32scatter_epi32(array, k, loc, mask_reverse, 4); // scatter unique values per lane

val = _mm512_mask_i32gather_epi32(val, k, loc, array, 4); // gather back scattered values

k = _mm512_cmpneq_epi32_mask(val, mask_reverse);

off = _mm512_mask_add_epi32(off, k, off, mask_1); // increment offsets

} while (!_mm512_kortestz(k, k)); // until no conflicts remain

return _mm512_permutevar_epi32(off, mask_reverse); // reverse offsets back to original order

} // code for KNC (Intel Xeon Phi 1st generation co-processors)

The KNC implementation of the above loop is shown above. In AVX-512, we can

serialize the conflicts via conflict detection instructions without gathers and scatters. The

vpconflictd instruction (with intrinsic _mm512_conflict_epi32) compares all 32-bit lanes

to all previous 32-bit lanes in the 512-bit SIMD register. The output register has a 16-bit

bitmask per 32-bit lane denoting the conflicts. Lane i conflicts with lane j if i > j and

their values match. Then the bitmask in lane i will have the jth bit set. We need 8 AVX-

512 instructions to serialize conflicts; 7/8 perform the bit population count, if not directly

supported. AVX defines _mm512_popcnt_epi32 but it is not supported in KNL processors.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 132

__m512i serialize_conflicts(__m512i pid, [...]) { // inlined with masks as arguments

__m512i x = _mm512_conflict_epi32(pid); // create 15-bit bitmasks of conflicts per 32-bit lane

__m512i y = _mm512_srli_epi32(x, 5); // shift bits 6 to 10 to the low-order bits

__m512i z = _mm512_srli_epi32(x, 10); // shift bits 11 to 15 to the low-order bits

// count set bits in ranges using 32-way permutation using 5 low-order bits of index register

x = _mm512_permutex2var_epi32(mask_bit_pop_count_L, x, mask_bit_pop_count_H); // bit range [1,5]

y = _mm512_permutex2var_epi32(mask_bit_pop_count_L, y, mask_bit_pop_count_H); // bit range [6,10]

z = _mm512_permutex2var_epi32(mask_bit_pop_count_L, z, mask_bit_pop_count_H); // bit range [11,15]

return _mm512_add_epi32(_mm512_add_epi32(x, y), z); // add the counted set bits

} // code in AVX-512 SIMD (latest mainstream CPUs and latest Intel Xeon Phi platforms)

In the KNC implementation for conflict serialization, we reverse the lanes before the

rounds of scatters and gathers. Since the value of the rightmost lane per distinct scatter

location persists, but we want the value of the leftmost lanes (in the original order) to

be written. For k lanes pointing to the same partition, the rightmost lane will have a

serialization offset of k−1. Thus, by writing the serialization offset plus 1, we can also update

histograms correctly without replicating the counts. In the case of data shuffling, we update

the prefix sum of histograms. Furthermore, because the conflicts are written in leftmost to

rightmost lane order, the shuffling operation is stable. Stable partitioning is essential when

we execute multiple partitioning passes iteratively and use the same partition function from

low-order to high-order bits. The most prominent example is LSB radixsort. Vectorized

data shuffling is shown in Algorithm 33, extending the scalar version in Algorithm 12. Note

that we transfer tuples from the input to the output table directly without buffering, thus,

this algorithm works well only when both the input and the output are cache-resident.

Algorithm 33: Radix Partitioning - Shuffling

1 O ← prefix sum(H) // partition offsets from histogram

2 i← 0

3 do

4 ~k ← Tk[i] // load input keys

5 ~v ← Tv[i] // load input payloads

6 i← i +W
7 ~h← (~k << s1) >> s2 // compute partition function

8 ~o← O[~h] // gather output offsets

9 ~c← serialize conflicts(~h,O)

10 ~o← ~o + ~c // add serialization offsets

11 O[~h]← ~o + 1 // scatter incremented offsets

12 T ′
k[~o]← ~k // scatter keys to output

13 T ′
v[~o]← ~v // scatter payloads to output

14 while i 6= |T |



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 133

5.6.4 Buffered Data Shuffling

Data shuffling, as described so far, is fast if the input and the output is cache resident, but

falls into performance pitfalls if out of the cache. As we explained in Section 3.1, (i) we

suffer from TLB thrashing when the partitioning fanout exceeds the TLB capacity [Mane-

gold et al., 2000b], (ii) we trigger many cache conflicts [Satish et al., 2010] and in the worst

case, may be bound by the size of the cache associativity set, and (iii) we pollute the cache

with output data we will not reuse, reducing the effective memory bandwidth [Wassenberg

and Sanders, 2011]. The vectorized implementation of simple non-buffered shuffling im-

proves performance, but suffers from the same performance pitfalls as the scalar version.

Here, vectorization improves performance compared to its scalar counterpart, but does not

overcome cache inefficiencies. In short, vectorization is orthogonal to other optimizations.

To address these inefficiencies when shuffling data larger than the cache, we apply the

out-of-cache partitioning techniques described in Section 3.2. We use cache-resident buffers

with a footprint small enough to remain cache-resident. If the buffers can hold B tuples

per partition, we reduce the cache and TLB misses to 1/B. If the buffers are flushed with

non-temporal stores, we facilitate hardware write-combining and avoid polluting the cache

with output data. The partitioning fanout is bounded by the cache capacity in order to

ensure the buffer remains cache-resident. In vectorized code, we set B = W to ensure we

move data to memory in cache line units while maximizing the partitioning fanout.

The improvement of vectorized buffered shuffling shown in Algorithm 34 over vectorized

unbuffered shuffling shown in Algorithm 33, is scattering the tuples to the cache resident

buffer rather than directly to the output. For each vector of tuples, once the tuples are

scattered, we iterate over the partitions that the currentW input tuples belong to, and flush

to the output when all available buffer slots are filled. The scalar version is Algorithm 14.

Since multiple tuples can be written to the buffer for the same partition on each iteration,

writing up toW tuples to buffers withW slots can cause overflows. We identify which vector

lanes will not cause overflow and store tuples there using selective scatters. After flushing

buffers that are full, we scatter the remaining tuples. We identify which vector lanes point to

partitions with full buffers using the output index by inferring which lanes scattered to the

last slots of buffers per partition. Thus, we also ensure that we will not flush the same buffer



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 134

twice. Flushing occurs “horizontally” for one partition at a time, after selectively storing

the partitions in the stack, and is done by streaming stores to avoid polluting the cache with

output data [Wassenberg and Sanders, 2011]. Note that we are storing to multiple outputs,

thus, output buffering (see Section 5.3) is already part of the algorithm. If partitioning does

not need to be stable, instead of conflict serialization, we detect and process conflicting lanes

during the next loop. Performance is slightly increased since few conflicts normally occur

per loop. Finally, as in hash tables, if we have keys and rids on separate arrays, we use

fewer and wider scatters by interleaving the two columns before scattering to the buffers.

Algorithm 34: Radix Partitioning - Buffered Shuffling

1 O ← prefix sum(H) // partition offsets from histogram

2 i← 0

3 do

4 ~k ← Tk[i] // load tuples from input

5 ~v ← Tv[i]

6 i← i +W
7 ~h← (~k << s1) >> s2 // compute radix function

8 ~o← O[~h] // gather partition offsets

9 ~c← serialize conflicts(~h,O)

10 ~o← ~o + ~c // add serialization offsets

11 O[~h]← ~o + 1 // scatter incremented offsets

12 ~o← ~o mod W // buffer offsets in partition

13 m← ~o <W // find lanes that do not overflow the buffers

14 ~o′ ← ~o + (~h · W) // buffer offsets across partitions

15 Bk[~o′]←m
~k // scatter tuples to buffer if not overflowing

16 Bv[~o′]←m ~v

17 m← ~o = (W − 1) // find lanes pointing to full buffers to be flushed

18 if m 6= false then

19 P [0]←m
~h // (selective) store partition ids with full buffers

20 j ← 0

21 do

22 p← P [j]

23 j ← j + 1

24 o← O[p]− (O[p] mod W)−W // output location

25 ~k′ ← Bk[p · W] // load tuples from buffer

26 ~v′ ← Bv[p · W]

27 T ′
k[o]← ~k′

// (non-temporal) store tuples to output

28 T ′
v[o]← ~v′

29 while j 6= |m|
30 m← ~o ≥ W // find overflowing lanes

31 Bk[~o′ −W]←m
~k // scatter tuples to buffer

32 Bv[~o′ −W]←m ~v

33 while i 6= |T |



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 135

int32_t flush_pids[16] __attribute__((aligned(64))); // buffer to store flushing partition ids

size_t i = 0;

do { // process 16 tuples at a time

__m512i key = _mm512_load_epi32(&input_keys[i]); // load keys and payloads from input

__m512i val = _mm512_load_epi32(&input_vals[i]);

__m512i pid = _mm512_srlv_epi32(_mm512_sllv_epi32(key, mask_shift_1), mask_shift_2); // radix

__m512i off_O = _mm512_i32gather_epi32(par, offsets, 4); // gather output offsets

__m512i off_S = serialize_conflicts(pid, offsets, [...]); // serialize conflicts (inlined)

__m512i off_B = _mm512_and_epi32(off_O, mask_15); // in-buffer offsets

off_O = _mm512_add_epi32(off_O, mask_1); // increment output offsets

off_O = _mm512_add_epi32(off_O, off_S); // add serialization offsets to output offsets

off_B = _mm512_add_epi32(off_B, off_S); // add serialization offsets to buffer offsets

_mm512_i32scatter_epi32(offsets, par, off_O, 4); // scatter back incremented output offsets

__mmask16 k = _mm512_cmplt_epi32_mask(off_B, mask_15); // find non-overflowing lanes

buf_O = _mm512_or_epi32(buf_O, _mm512_slli_epi32(pid, 4)); // find offsets across buffers

// (selective) scatter of keys and payloads to buffer for non-overflowing lanes

_mm512_mask_i32scatter_epi32(buffer_keys, k, off_B, key, 4);

_mm512_mask_i32scatter_epi32(buffer_vals, k, off_B, val, 4);

__mmask16 kk = _mm512_cmpeq_epi32_mask(buf_off, mask_15); // scattered to last buffer slot

if (_mm512_kortestz(kk, kk)) continue; // skip if nothing to flush

_mm512_mask_packstorelo_epi32(flush_pids, kk, par); // (selective) store partitions to flush

size_t j = 0, f = _mm_countbits_64(_mm512_mask2int(kk)); // count flushing lanes

do { // flush data from buffer to one partition at a time

size_t p = flush_pids[j]; // which partition to flush

size_t o = (offsets[p] & -16) - 16; // compute output offset of flushing partition

__m512 key_B = _mm512_load_ps(&buffer_keys[p << 4]); // load keys from the buffers

__m512 val_B = _mm512_load_ps(&buffer_vals[p << 4]); // load payloads from the buffers

_mm512_storenrngo_ps(&output_keys[o], key_B); // (non-temporal) store keys to output

_mm512_storenrngo_ps(&output_vals[o], val_B); // (non-temporal) store payloads to output

} while (++j != f);

k = _mm512_knot(k); // lanes that would overflow the buffers

// (selective) scatter of keys and payloads to buffer for overflowing lanes

_mm512_mask_i32scatter_epi32(&buffer_keys[-16], k, off_B, key, 4);

_mm512_mask_i32scatter_epi32(&buffer_vals[-16], k, off_B, val, 4);

} while ((i = i + 16) != tuples);

[...] // cleanup buffers by flushing any remaining tuples

The KNC implementation of stable buffered data shuffling for stable radix partitioning

of 32-bit keys and 32-bit payloads is shown above. Both the input and the output have to be

aligned at cache line boundaries. After the main loop, we synchronize (for multiple threads)

and flush any tuples remaining in the buffers. Depending on the data type, the number

of items we store in the cache-resident buffer varies. To partition 8-bit, 16-bit, 32-bit, and

64-bit columns, we buffer 64, 32, 16, and 8 items in the buffer of each partition. Specifically

for 64-bit columns, since we process W = 16 tuples per iteration but 16 64-bit values can

span across two cache lines, we scatter the tuples to the buffers in 3 phases instead of 2.

The code is almost identical in AVX-512 except for the change in conflict serialization.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 136

5.7 Sorting and Hash Joins

Sorting is used in databases as a subproblem for join and aggregation. Sorting is also used for

declustering, index building, compression, and duplicate elimination. Recent work showed

that large-scale sorting is synonymous to partitioning. Radixsort and comparison sorting

based on range partitioning have comparable performance, by maximizing the fanout to

minimize the number of partition passes. Here, we implemented vectorized LSB radixsort,

the fastest method for 32-bit keys (see Section 3.4). We enable thread parallelism by

executing partitioning in a shared-nothing. By using vectorized buffered partitioning, we

also enable data parallelism.

Hash joins are the most frequent operators in analytical queries and can be expensive

enough to dominate query execution time. Recent work has focused on comparing main-

memory equi-joins, namely sort-merge join and hash join. The former is dominated by

sorting [Balkesen et al., 2013a; Kim et al., 2009]. In the baseline hash join, the inner relation

is built into a hash table using the join key and the outer relation is probed through the hash

table to find matches. Partitioning can be applied to hash join forming multiple variants

with different strengths and weaknesses. Here, we design three hash join variants using

different degrees of partitioning that also allow for different degrees of vectorization. Because

the inputs are much larger than the cache, we use buffered shuffling during partitioning (see

Section 5.6.4).

In the first hash join variant termed no partition, we completely avoid the use of par-

titioning. Tuples from the inner relation are inserted in a single hash table shared across

all threads. To avoid race conditions, we use atomic compare_and_swap operations. The

threads are synchronized once after building the hash table. The probing phases does not

modify the hash table and does not require atomics. The overall operation is only partially

vectorized because atomic operations are not supported in SIMD instructions.

In the second hash join variant termed min partition, we use partitioning to eliminate

the need for atomics and allow for full vectorization. Before the hash table is built, we

partition the inner relation into T parts, one per thread. Each thread builds its own hash

table without atomics. During probing, we pick both which hash table (out of T ) to search

and which bucket to search within that hash table. The algorithm can be fully vectorized.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 137

We only slightly modify the code to probe across the T hash tables.

In the third hash join variant termed max partition, we partition both input relations

until the inner relation parts are small enough to fit in a cache-resident hash table. In the

initial partitioning phase, we split both relations to T parts, one per thread. Then, each

thread further partitions a part in one or more passes. The resulting parts are used to build

and probe hash tables in the cache. The algorithm can be fully vectorized.

5.8 Experimental Evaluation

We use three platforms throughout our evaluation shown in Table 5.1. The 61-core KNC

co-processor hosts most experiments, providing 512-bit SIMD including both gathers and

scatters. We use a mainstream Haswell CPU to compare our SIMD vectorized implementa-

tions against scalar and state-of-the-art SIMD implementations. The CPU supports AVX2

256-bit SIMD which includes gathers. However, because a single 4-core Haswell CPU is

not the same scale of the 61-core KNC co-processor we use four 8-core Sandy Bridge CPUs

with comparable processing power and memory bandwidth in order to measure aggregate

performance and power efficiency.

Platform Processor(s) 1 co-processor 1 CPU 4 CPUs

Processor Model (Intel) Xeon Phi 7120P Xeon E3-1275v3 Xeon E5-4620

(Core) Clock Frequency 1.238 GHz 3.5 GHz 2.2 GHz

Hardware Threads (Cores × SMT) 61× 4 4× 2 (4× 8)× 2

(Core) Micro-Architecture KNC (P54C) Haswell Sandy Bridge

Pipeline Issue Width 2-way 8-way 6-way

Reorder Buffer Entries N/A 192 168

L1 Cache Size per Core 32 + 32 KB 32 + 32 KB 32 + 32 KB

L2 Cache Size per Core 512 KB 256 KB 256 KB

L3 Cache Size (Total) N/A 8 MB 4× 16 MB

RAM Capacity 16 GB 32 GB 512 GB

RAM Load Bandwidth 212 GB/s 21.8 GB/s 122 GB/s

RAM Copy Bandwidth 80 GB/s 9.3 GB/s 38 GB/s

SIMD Register Width 512-bit 256-bit 128-bit

Gather / Scatter Support Yes / Yes Yes / No No / No

Thermal Design Power 300 W 84 W 4× 130 W

Table 5.1: Experimental platforms for advanced SIMD vectorization experiments



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 138

To compile for the KNC co-processor, we use ICC 15 with the -mmic flag. We also set

the -no-vec flag to avoid automatic vectorization. To compile for mainstream CPUs, we

use either ICC 15 or GCC 4.9, the fastest per case. We always use -O3 optimization. For

the Haswell CPU, we use -mavx2 for AVX2 256-bit SIMD. For the Sandy Bridge CPUs

we use -mavx for SSE4 128-bit SIMD with VEX encoding that supports non-destructive

3-operand instructions. The KNC co-processor runs Linux 2.6 as an embedded OS, the

Haswell platform runs Linux 3.13 and the Sandy Bridge platform runs Linux 3.2.

Unless specified otherwise, we use all available hardware threads, including SMT, to

minimize memory load and instruction latencies. All data are synthetically generated to be

uniform random, which matches the most common analytical database benchmarks, such as

TPC-H, and are not particularly favorable to any specific operation. As a matter of fact, we

already showed that partitioning and sorting are both faster under skew (see Section 3.4).

5.8.1 Selection Scans

Figure 5.5 shows the performance of selection scans on the KNC co-processor and the

Haswell CPU. The input table consists of 32-bit keys and 32-bit payloads and the selective

condition on the key column is kmin ≤ k ≤ kmax, as shown in Section 5.3, where kmin

and kmax are query constants. We vary the selectivity and measure the throughput of

six selection scan versions, two scalar with and without branching [Ross, 2004], and four

vectorized using two orthogonal design choices. First, we either select the qualifying tuples

by extracting one bit at a time from the bitmask, or use vector selective stores. Second, we

either access both keys and payloads during predicate evaluation and buffer all the columns

of qualifying tuples, or we load the key column only and buffer the rids of qualifying tuples,

used later during buffer flushing to dereference the actual column values.

On the KNC co-processor, vector code is an order of magnitude faster than scalar code,

whereas on the Haswell CPU, the speedup is ∼ 2X. Low selectivities are faster because

loading from RAM is faster than copying, and payload accesses are skipped. Branch elimi-

nation improves performance on the Haswell CPU, but decreases performance on the KNC

co-processor. On Haswell, all vector variant are similar and saturate the memory band-

width, while the branchless scalar code catches up on 10% selectivity or more. On KNC,



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 139

0

1

2

3

4

5

6

0

8

16

24

32

40

48

0 1 2 5 10 20 50 10
0 0 1 2 5 10 20 50 10
0

KNC	co-processor Haswell	CPU

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s	
pe
r	
se
co
nd
)

Selectivity	 (%)

Scalar	
(branching)

Scalar	
(branchless)

Vector	(bit	
extract,	 tuples)

Vector	(selective	
store,	 tuples)

Vector	(bit	
extract,	 rids)

Vector	(selective	
store,	 rids)

Figure 5.5: Selection scan throughput on KNC and Haswell (32-bit key and 32-bit payload)

accessing the payload columns alongside the keys dominates performance if the selectiv-

ity is low, while using selective stores instead of extracting one tuple at a time dominates

performance if the selectivity is high. On the simple P54C (Pentium 1) cores of the KNC

co-processor, vectorization is essential to saturate the memory bandwidth. On the complex

cores of mainstream CPUs, vectorization remains useful if the selectivity is lower than 5%.

5.8.2 Hash Tables

In the next sets of experiments, we evaluate hash table vectorization. The first set of

experiments measures the probing throughput and compares our approach with other state-

of-the-art scalar and vectorized approaches, on both the KNC co-processor and the Haswell

CPU. The second set of experiments evaluates building and probing of private (per thread)

hash tables, similarly to the last phase of partitioned hash joins, on the KNC co-processor.

In Figure 5.6, we measure the hash table probing throughput using linear probing (LP)

and double hashing (DH). The input are the probing 32-bit keys and the output are the

32-bit payload stored in the hash table. The hash table buckets store a 32-bit key and a

32-bit payload and the load factor is 50%. All keys from the input have a matching key in

the hash table. We evaluate both horizontal and vertical vectorization. Horizontal vector

code refers to bucketized hash table where each input key is compared against multiple table

keys [Ross, 2007]. Vertical vector code refers to processing a different input key per vector

lane. Our vertical vectorization approach is up to 6X faster on the KNC co-processor, and

we achieve a smaller speedup for cache-resident hash tables on the Haswell CPU.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 140

0
0.5
1
1.5
2
2.5
3
3.5

0
2
4
6
8
10
12
14

4	
KB
 

16
	K
B

64
	K
B

25
6	
KB

1	
M
B 

4	
M
B

16
	M

B
64
	M

B

4	
KB
 

16
	K
B

64
	K
B

25
6	
KB

1	
M
B 

4	
M
B

16
	M

B
64
	M

B

KNC	co-processor	 		 Haswell	CPU

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s	
pe
r	
se
co
nd
)

Hash	table	size

LP	Scalar

DH	Scalar

LP	Vector	
(horizontal)

DH	Vector	
(horizontal)

LP	Vector	
(vertical)

DH	Vector	
(vertical)

Figure 5.6: Throughput of hash table probing on KNC and Haswell using linear probing
(LP) and double hashing (DH) (shared, 32-bit key input → 32-bit payload output)

Figure 5.7 shows the probing throughput of cuckoo hashing, with the same setting

as Figure 5.6. The scalar versions are either branching or branchless [Zukowski et al.,

2006], and the vector versions are either horizontal or vertical. In the vertical approach, we

evaluate two vertical techniques, loading both buckets for every tuple and blending them, or

loading the second bucket only if needed. In scalar code, the branchless version [Zukowski

et al., 2006] is slower than the branching version on both KNC and Haswell. Notably,

the branching version would be faster than the branchless on Haswell if we only compiled

with ICC; ICC produced higher quality branching code while GCC produced higher quality

branchless code. The version based on vertical vectorization is 5X faster than scalar code

on KNC and 1.7X on Haswell, while being consistently better than horizontal vectorization.

0
0.5
1
1.5
2
2.5
3
3.5

0
2
4
6
8
10
12
14

4	
KB
 

16
	K
B

64
	K
B

25
6	
KB

1	
M
B 

4	
M
B

16
	M

B
64
	M

B

4	
KB
 

16
	K
B

64
	K
B

25
6	
KB

1	
M
B 

4	
M
B

16
	M

B
64
	M

B

KNC	co-processor	 		 Haswell	CPU

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s	
pe
r	
se
co
nd
)

Hash	table	size

Scalar	
(branching)

Scalar	
(branchless)

Vector	
(horizontal)

Vector	
(vertical	2/2)

Vector	
(vertical	1/2)

Figure 5.7: Throughput of hash table probing on KNC and Haswell using cuckoo hashing
(shared, 32-bit key input → 32-bit payload output)



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 141

0
1
2
3
4
5

LP DH CH LP DH CH LP DH CH

L1	cache L2	cache RAM

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s

pe
r	s
ec
on
d)

Scalar Vector

Figure 5.8: Throughput of building and probing hash tables on KNC using linear probing
(LP), double hashing (DP), and cuckoo hashing (CH) (1:1 build–probe, private, 32-bit keys
and 32-bit payloads both inputs)

In Figure 5.8, we iteratively build and probe private tables on the KNC co-processor.

We vary the size of the hash table based on multiple levels of the memory hierarchy. The

actual hash table size is 4 KB in L1, 64 KB in L2, and 1 MB out of the cache. The load

factor for the hash table is set to 50%. The build to probe ratio is 1:1 and 100% of the

input keys have matching keys in the hash table. Both the building and the probing inputs

are comprised of 32-bit keys and 32-bit payloads. The output has the matching keys and

the two payloads per tuple. In this experiment, throughput is defined as (|R|+ |S|)/t (t is

the time), including both the probing and the building side in the equation. The speedup

we found is 2.6–4X when the hash table is L1-resident, 2.4–2.7X when the table is in the

L2, and 1.2–1.4X when the table is larger than the cache.

In Figure 5.9, we repeat the experiment of Figure 5.8 by varying the number of key

repeats with the same output size. All tables are L1-resident and the build to probe ratio

0
1
2
3
4
5
6
7

LP DH CH LP DH LP DH LP DH

no	key	repeats	allowed						 				 			 	
(100%	of	keys	match)

1.25	key	repeats						 	
(80%	match)

2.5	key	repeats			 			 			
(40%	match)

5	key	repeats					 				
(20%	match)

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s

pe
r	s
ec
on
d)

Scalar Vector

Figure 5.9: Throughput of building and probing on KNC using linear probing (LP), double
hashing (DH), and cuckoo hashing (CH) (1:10 build–probe, L1-resident, private, 32-bit keys
and 32-bit payloads both inputs)



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 142

is changed to 1:10. The other settings are the same as in Figure 5.8. When no keys are

repeated, the speedup is 6.6–7.7X and is higher than the speedup in Figure 5.8, since we

build 10 times less tuples than we probe and building is generally more expensive than

probing. For building alone we measured a vectorization speedup of 2.5–2.7X. If the keys

are repeated 5 times, the speedup is 4.1X for DH and 2.7X for LP. Generally, we show that

double hashing is more resilient to repeating keys than linear probing.

Notably, the throughput of hash table probing is significantly higher for no repeats

compared to 1.25 key repeats for linear probing and double hashing. The reason is that

when no repeats are allowed, we optimize the hash table to expect up to a single match per

probing key. As a result, we search fewer buckets on average. Note that cuckoo hashing

does not support repeating keys without another level of indirection.

5.8.3 Bloom Filters

In Figure 5.10, we measure the throughput of Bloom filter probing in both the KNC co-

processor and the Haswell CPU. The input comprises of 32-bit keys and 32-bit payloads. The

selectivity is set to 5%, we use k = 5 hash functions, and the Bloom filter uses approximately

10 bits per inserted tuple. The vectorization speedup we measured is 3.6–7.8X on KNC and

1.3–3.1X on Haswell and is maximized when the Bloom filter is cache-resident. In this

experiment the Bloom filter has 2n bits. Otherwise, we need additional instructions to

compute the hash functions, widening the performance gap. For instance, without the 2n

assumption, the vectorization speedup for L1-resident Bloom filters exceeds 10X on KNC.

0
0.5
1
1.5
2
2.5
3

0
2
4
6
8
10
12

4	
KB

16
	K
B

64
	K
B

25
6	
KB

1	
M
B

4	
M
B

16
	M

B

64
	M

B

4	
KB

16
	K
B

64
	K
B

25
6	
KB

1	
M
B

4	
M
B

16
	M

B

64
	M

B

KNC	co-processor Haswell	CPU

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s	
pe
r	
se
co
nd
)

Bloom	filter	 size

Scalar

Vector

Figure 5.10: Throughput of Bloom filter probing on KNC (5 hash functions, 10 Bloom filter
bits / tuple, 5% selectivity, 32-bit key and 32-bit payload)



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 143

5.8.4 Partitioning

In Figure 5.11, we show radix and hash histogram generation on the KNC co-processor. On

the Haswell CPU, the memory load bandwidth is saturated (see Section 3.4). On KNC,

scalar code is dominated by the partition function. By replicating each count W times to

avoid scatter conflicts, we get a 2.55X speedup over scalar radix. Performance degrades

when we exceed the L1, but we can increase the fanout P by compressing the replicated

histogram to 8-bit counts to reduce its footprint. We can also update the histogram us-

ing conflict serialization without replicating the histogram, but this approach is slower,

especially if P ≤ W. If P is large, both count replication and conflict serialization are slow.

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s

pe
r	s
ec
on
d)

Fanout	(log	number	of	partitions)

Vector	 hash/radix	
(replicate	 &	compress)
Vector	 hash/radix	
(replicate)
Vector	 hash/radix	
(serialize	conflicts)
Scalar	radix

Scalar	hash

Figure 5.11: Throughput of radix and hash histogram generation on KNC (32-bit keys)

In Figure 5.12, we show the throughput of computing the range partitioning function.

Vertical vectorization of binary search achieves a speedup of 7–15X on KNC and 2.4–2.8X on

Haswell. The range index (see Section 3.2.5.2) is consistently faster than vertical vectoriza-

tion on Haswell. On KNC, they are comparable for larger fanout and vertical vectorization

17

17x17 17x17x17

9

9x9
9x9x9

9x9x9x9

0
1
2
3
4
5
6

0
4
8
12
16
20
24

8 32 12
8

51
2

20
48

81
92 8 32 12
8

51
2

20
48

81
92

KNC	co-processor	 Haswell	CPU

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s	
pe
r	
se
co
nd
)

Fanout	(number	 of	partitions)

Scalar	
(branching)

Scalar	
(branchless)

Vector	 				 	
(binary	search)

Vector	 				 			
(tree	index)

Figure 5.12: Throughput of range partitioning function on KNC and Haswell (32-bit keys)



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 144

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13

Th
ro
ug
hp
ut

(in
	b
illi
on
	t
up
le
s

pe
r	s
ec
on
d)

Fanout	(log	number	of	partitions)

Vector	hash/radix	
(replicate	 &	compress)
Vector	hash/radix	
(replicate)
Vector	hash/radix	
(serialize	conflicts)
Scalar	radix

Scalar	hash

Figure 5.13: Throughput of data shuffling for radix partitioning on KNC (private, out-of-
cache, 32-bit key and 32-bit payload)

if faster for lower fanout. The range index interleaves many scalar and SIMD instructions.

On the massively superscalar Haswell cores, the scalar instructions are overlapped. On the

the non-superscalar KNC cores, simple scalar instructions can saturate the pipeline.

In Figure 5.13, we measure the throughput of data shuffling on KNC, using inputs larger

than the cache. On Haswell, data shuffling cannot be fully vectorized without scatters.

Nevertheless, partitioning saturates the memory copy bandwidth even for large fanout (see

Section 3.4). On KNC, between the unbuffered versions, the vectorized version achieves up

to 1.95X speedup. Between the scalar versions, the buffered version achieves up to 1.8X

speedup. Between the buffered versions, the vectorized version achieves up to 2.85X speedup

and utilizes up to 60% of the memory bandwidth. The optimal fanout that maximizes

throughput × bits, is 5–8 radix bits per pass. Unstable hash partitioning which avoids

conflict serialization, can be up to 17% faster than stable radix partitioning.

5.8.5 Sorting and Hash Joins

In this part of the experiments, we evaluate sorting and hash joins in three part. First, we

measure the performance on KNC and highlight the impact of vectorization on different

algorithmic designs for database operations. Second, we compare against four high-end

mainstream CPUs with similar aggregate performance bandwidth, in order to highlight the

impact of vectorization on power efficiency. Third, we study the impact on performance for

a generic vectorized implementation of sorting and hash joins, aiming to support multiple

columns with multiple data types of different sizes.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 145

0
0.5
1

1.5
2

2.5

100 200 400 800 100 200 400 800

32-bit	key 32-bit	key	&	32-bit	payload

Ti
m
e	
(in
	s
ec
on
ds
)

Tuples	(in	 millions)

Scalar
Vector

Figure 5.14: Performance of sorting (LSB radixsort) on KNC

5.8.5.1 Vectorization Speedup and Algorithmic Designs

In Figure 5.14, we show the performance of LSB radixsort on KNC. The vectorization

speedup is 2.2X over state-of-the-art scalar code. In Figure 5.15, we evaluate the three

hash join variants (see Section 5.7) on KNC. The “no-partition” and the “min-partition”

variants get small 1.05X and 1.25X speedups, while the fully partitioned versions gets a

3.3X speedup and becomes the fastest that is 2.25X faster than all other methods. The

performance gap does not justify hardware-oblivious hash joins on KNC [Jha et al., 2015].

Moreover, hash join is faster than sort-merge join [Balkesen et al., 2013a; Kim et al., 2009],

since we sort 4 · 108 in 0.6 seconds and join 2× 2 · 108 tuples in 0.54 seconds.

In Figure 5.16, we show the thread scalability of LSB radixsort and partitioned hash

join on KNC. The speedup is almost linear to the number of threads, even when we exceed

the number of cores by using 2-way and 4-way SMT. On KNC, using 4-way SMT is essential

to hide the 4-cycle vector instruction latencies. On mainstream CPUs, LSB radixsort gains

only marginal speedup from 2-way SMT.

0

0.5

1

1.5

2

Scalar Vector Scalar Vector Scalar Vector

Ti
m
e	
(in
	s
ec
on
ds
)

No	partition	 		 				 			 				 				 				Min	partition Max	partition

Build	 &	Probe
Probe
Build
Partition

Figure 5.15: Hash join performance on KNC (2 ·108 ./ 2 ·108 32-bit key and 32-bit payload)



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 146

0.5

5

50

500

1 3 7 15 30 61 12
2

24
4 1 3 7 15 30 61 12
2

24
4

Radixsort Hash	Join

Ti
m
e	
(in
	s
ec
on
ds
)	

[lo
gs
ca
le
]

Threads

Scalar Vector

Figure 5.16: scalability of LSB radixsort and partitioned hash join on KNC (4 · 108 and
2 · 108 ./ 2 · 108 32-bit key and 32-bit payload, log/log scale)

5.8.5.2 Aggregate Performance and Power Efficiency

In Figure 5.17, we compare the KNC co-processor with four Sandy Bridge CPUs to get

comparable performance, using LSB radixsort and partitioning hash join. Partitioning

passes on the Sandy Bridge CPUs are memory bound, thus do not benefit further from

vectorization. Both algorithms on the Sandy Bridge CPUs are NUMA aware and transfer

the data at most once across NUMA regions (see Section 3.3. Radixsort and hash join are

both ≈ 14% slower on the Phi compared to the 4 SB CPUs. If we assume the operating

power of both platforms to be equally proportional to TDP, both radixsort and hash join

are ≈ 1.5X more power efficient on the Phi. We also include results after equalizing the

two platforms. We set the frequency of the SB CPUs to 1.2 GHz and halve the bandwidth

of the Phi to 40 GB/s for copying, which is done by adjusting the code to access twice as

0

0.2

0.4

0.6

0.8

1

Sort Join Sort Join Sort Join Sort JoinTi
m
e	
(in
	s
ec
on
ds
)

Build	 &	Probe	(join)

Partition	 (join)

NUMA	Split

Shuffling	(sort)

Histogram	(sort)

32 S.B.	cores
@	1.200	GHz
(38	GB/s)

61 P54C	cores
@	1.238	GHz
(80	GB/s)

61 P54C	cores
@	1.238	GHz
(40	GB/s)

32 S.B.	cores
@	2.201 GHz
(38	GB/s)

Figure 5.17: LSB radixsort and partitioned hash join on 1 61-core KNC co-processor (Intel
Xeon Phi 7120P) vs. 4 8-core Sandy Bridge CPUs (Intel Xeon E5 4620) (sort 4 · 108 tuples,
join 2 · 108 ./ 2 · 108 tuples, 32-bit key and 32-bit payload)



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 147

0

0.5

1

Ti
m
e

(in
	s
ec
on
ds
)

Payload	columns

Figure 5.18: Radixsort with varying payloads on KNC (2 · 108 tuples, 32-bit key)

many bytes as are processed. Phi is then 7% faster for radixsort and 8% slower for hash

join. Again, we show that hash joins are faster than sort-merge joins, since we join 2×2 ·108

tuples faster than sorting 4 · 108 tuples alone, also materializing the join output.

5.8.5.3 Materialization of Multiple Columns and Data Types

Vector code cannot handle multiple types as easily as scalar code. So far we used 32-

bit columns, which suffices for sorting orders and join indexes of 32-bit keys. Figure 5.18

measures radixsort with 32-bit keys by varying the number and width of payload columns.

Per pass, we generate the histogram once and shuffle one column at a time. Shuffling 8-bit

or 16-bit columns costs as much as 32-bit columns since we are compute-bound. Also, Xeon

Phi upcasts 8-bit and 16-bit operations to 32-bit vector lanes. This approach scales well

with wider columns, as we sort 8-byte tuples in 0.36 seconds and 36-byte tuples in 1 second.

0

0.2

0.4

4:1 3:1 2:1 1:1 1:2 1:3 1:4

Ti
m
e

(in
	s
ec
on
ds
)

Number	of	64-bit	 payload	columns	 (R:S)

Figure 5.19: Hash join with varying payloads on KNC (107 ./ 108 tuples, 32-bit keys)

Figure 5.19 shows partitioned hash join with 32-bit keys and multiple 64-bit payload

columns. Out of the cache, we shuffle one column at a time as in Figure 5.18. In the cache,

we store rids in hash tables and then dereference the columns. To materialize the payloads,

we can partition on the order of the smaller input, and then re-partition to the order of

the larger input. This approach is an alternative to radix-decluster [Manegold et al., 2004].

Nevertheless, evaluating the fastest materialization strategy is out of the scope of this work.



CHAPTER 5. ADVANCED SIMD VECTORIZATION TECHNIQUES 148

5.9 SIMD CPUs and SIMT GPUs

The SIMT model in GPUs exhibits some similarity to SIMD in CPUs. SIMT GPUs run

scalar code, but “tie” all threads in a warp to execute the same instruction per cycle.

For instance, gathers and scatters are written as scalar loads and stores to non-contiguous

locations. Horizontal SIMD instructions can be supported via special shuffle instructions

that operate across the warp. Thus, CPU threads are analogous to GPU warps and GPU

threads are analogous to SIMD lanes. However, while conditional control flow is eliminated

in SIMD code “manually”, SIMT transforms control flow to data flow automatically, by

executing all paths and nullifying instructions from paths that are not taken per thread.

One-to-one conversion from SIMD to SIMT code is of limited use for in-memory database

operators, due to the vastly different memory hierarchy dynamics. The speedup from SIMD

vectorization is maximized for cache-conscious processing, which is achieved by partitioning.

On the other hand, GPUs are fast even without partitioning [Kim et al., 2012; Pirk et al.,

2011], due to good memory latency hiding. Sequential operators, such as selection scans,

have already been studied in detail [Sitaridi and Ross, 2013].

We view KNC and other Xeon Phi platforms as CPU designs. We study the impact of

vectorization on making it more suitable for analytical databases. Thus, we do not compare

against GPUs and we do not transfer data through the PCI-e bus of KNC in our evaluation.

5.10 Conclusion

We introduced advanced SIMD vectorization techniques for in-memory analytical query

execution. We defined fundamental vector operations and presented the fundamental vec-

torization principles. We implemented selection scans, hash tables, and partitioning using

entirely vector code, and built sorting and hash join operators. Our implementations were

evaluated against scalar and state-of-the-art vector code on mainstream CPUs, as well as

the Intel Xeon Phi “Knights Corner” co-processor. In the context of in-memory database

operators, we highlighted the impact of vectorization on algorithmic designs, as well as

architectural designs and power efficiency, by making simple cores comparable to complex

cores. Our work is applicable to all SIMD processors, using either simple or complex cores.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 149

Chapter 6

Query Execution Engines for the

Many-Core Era

6.1 Introduction

Hardware-conscious database design and implementation is a topic of continuous research

due to the profound impact of modern hardware advances on query execution. Large mem-

ory capacity and multi-core CPUs raised the bar for efficient in-memory execution. Database

systems diverged from the one-size-fits-all paradigm to focus on transactional, analytical,

scientific, or other workloads. Storage and execution, narrowed down to specific workloads,

were redesigned by adapting to the new hardware dynamics.

In analytical databases, column-oriented storage is now a standard design choice, since

most queries access a small number of columns from a large number of tuples, in contrast

to transactional databases where each transaction update a small number of tuples. How-

ever, analytical query execution engines are based on multiple distinctive designs, includ-

ing column-oriented and row-oriented execution, interpretation and runtime compilation,

cache-conscious execution and operator pipelining.

Efficient in-memory execution requires low interpretation cost, optimized memory ac-

cess, and high CPU efficiency. Low interpretation cost is coupled with high instruction-level

parallelism and is achieved by processing entire columns [Manegold et al., 2000a], batches

of tuples per iterator call [Boncz et al., 2005], or by generating and compiling query-specific



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 150

code [Kim et al., 2010; Neumann, 2011; Gupta et al., 2015]. Memory access can be opti-

mized by pipelining operators to avoid materializing the pipelined stream [Graefe, 1994],

or by using partitioning to avoid cache and TLB misses [Manegold et al., 2000b]. Data

parallelism is achieved via SIMD vectorization. Linear-access operators such as scans and

compression [Zhou and Ross, 2002; Willhalm et al., 2009; Lang et al., 2016], are natu-

rally data-parallel and easy to vectorize. For some operators such as sorting, the common

approach is to use ad-hoc SIMD optimizations [Inoue et al., 2007; Chhugani et al., 2008;

Inoue and Taura, 2015]. In Chapter 5, we introduced advanced SIMD vectorization that

cover non-linear-access operators, such as hash tables and partitioning.

Since the advent of many-core platforms known as Intel Xeon Phi, the design trade-

off between many simple cores and fewer complex cores is being revisited. Fewer complex

cores are the basis of mainstream CPUs, whereas many-core platforms are optimized for

high FLOPS and marketed for HPC. In Chapter 5, we showed that data parallelism via

advanced SIMD vectorization in software, can make up for the lack of instruction-level

parallelism provided by super-scalar out-of-order cores in hardware. However, we focused

on vectorizing core algorithms, such as hash tables, and basic database operators using

key–rid pairs. Going from operators over key–rid pairs to a more realistic setting, where

selection scans, hash joins, and group-by aggregation operators support multiple columns,

data types, compression, as well as complex predicates and expressions, requires us to

redesign the operators and the query engine as a whole.

The latest Intel Xeon Phi CPUs codenamed MIC Knights Landing are more interesting

than the first generation of many-core co-processors that we used in Chapter 5, since they

(i) are not co-processors connected via PCI-e but stand-alone CPUs that access DRAM

directly, (ii) provide a multi-channel DRAM (MCDRAM) memory on-chip component that

has higher bandwidth than regular DRAM and larger capacity than the caches, and (iii)

are more similar to the upcoming mainstream CPUs compared to the first generation of

many-core co-processors since they have super-scalar out-of-order cores and support the

same 512-bit SIMD instruction set (AVX-512).

In this chapter, we explore analytical query engine designs using the latest many-core

CPUs. Initially, we show that code generation and operator pipelining, despite being suc-



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 151

cessful on mainstream CPUs, diminish the benefit of SIMD vectorization due to being

memory-bound. Also, random memory accesses that are inherent in operator pipelining

underutilize the on-chip MCDRAM, since MCDRAM has higher bandwidth than regu-

lar DRAM but similar latency. To better utilize the hardware features of the many-

core platform, we introduce VIP1, an analytical query execution engine built bottom-up

from pre-compiled data-parallel sub-operators, implemented entirely in SIMD, and utiliz-

ing the high-bandwidth memory to facilitate cache-conscious execution. We discuss selec-

tion scans with compression, hash joins, and group-by aggregation operators. In order to

support multiple columns, data types, and complex predicates efficiently, without gener-

ating query-specific code at runtime, operators invoke pre-compiled sub-operators. Each

sub-operator is designed and implemented using advanced SIMD vectorization techniques,

and processes one column at a time [Manegold et al., 2000a] from one block of tuples at

a time [Boncz et al., 2005], in order to amortize the interpretation cost and remain cache-

resident. In our experimental evaluation using synthetic and TPC-H queries, we outper-

form hand-written query-specific code based on state-of-the-art designs [Kim et al., 2010;

Neumann, 2011], without including the runtime compilation overhead of code generating

engines that is non-existent in the VIP design.

The rest of the chapter is organized as follows. In Section 6.2, we summarize the

necessary background on many-core CPUs and analytical query engines. In Section 6.3 we

discuss vectorized code generation. In Section 6.4, we describe VIP, our proposed query

engine design. In Section 6.5, we present our evaluation and conclude in Section 6.6.

6.2 Background

6.2.1 Mainstream & Many-Core Processors

We now briefly summarize mainstream and many-core CPUs. Intel Xeon Phi CPUs, the

latest generation of many-core (MIC) CPUs codenamed Knights Landing (KNL) offer 64–72

cores and use 215–260 Watts TDP. The latest mainstream CPUs offer up to 22 cores per

socket and use 145 Watts TDP. Mainstream CPUs evolved from single-core CPUs (Pentium

1Based on Vectorization, Interpretation, and Partitioning.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 152

4) focused on instruction-level parallelism. MIC cores initially focused on data parallelism

with wider SIMD registers and an advanced SIMD ISA, but were not super-scalar and

had no out-of-order execution. Both KNL CPUs and the upcoming mainstream CPUs

support the same SIMD ISA (AVX-512). Also, KNL cores are super-scalar with out-of-

order execution, even if not as aggressively as mainstream cores, e.g. a KNL core has 72

reorder-buffer entries, while a Skylake core has 224. Mainstream CPUs still have fewer and

faster cores than many-core CPUs, but the two designs are more similar today compared

to the first generation of MIC platforms.

The memory hierarchy of the two platforms differs considerably. Mainstream CPUs use

private L1 and L2 caches, and up to 128 MB of L3 shared across all the cores per socket.

Many-core CPUs use a private L1, an L2 that is shared across 2 cores, and 16 GB of multi-

channel DRAM (MCDRAM) on-chip. MCDRAM has ∼4X higher bandwidth than regular

DRAM. On a Intel Xeon Phi 7210 (KNL) CPU, we measured the bandwidth of DDR4

DRAM at ∼70 GB/s and the bandwidth of the on-chip MCDRAM at ∼295 GB/s. Note

that the cores of a single many-core CPU do not access all regions of memory at the same

speed, similarly to multiple mainstream CPUs with multiple NUMA regions.

Measuring the memory bandwidth using contiguous loads and stores is easy. Measuring

random accesses both in and out of the cache, however, is trickier when we also need to

account for the effect of SIMD non-contiguous loads (gathers) and stores (scatters). The

micro-benchmark we use to measure random accesses is shown below. It computes the xor

of an array with 2k elements, traversed via an odd stride. We vectorize the same loop by

accessing W elements at a time using SIMD gathers.

int32_t random_traversal(const int32_t* a, size_t n) {
const size_t m = n - 1; // mask to fix array bounds overflows

const size_t o = rand() * 2 + 1; // random odd stride

size_t i = 0; // initial (and final) index

int32_t x = 0; // xor value of array elements

do { // access one array element at a time

x ^= a[i]; // load and xor the current array element

i += o; // add odd stride to index

i &= m; // fix array bounds overflow

} while (i); // until we traverse all 2^k array elements

return x;

}



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 153

0
1
2
3
4
5

0
30
60
90

120
150

HB
W

LB
W

HB
W

LB
W

HB
W

LB
W

HB
W

LB
W

HB
W

LB
W

HB
W

LB
W

8KB 64KB 512KB 4MB 32MB 8GB	
(shared)

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
	

ac
ce
ss
es
	p
er
	se
co
nd

)

Size	of	(private)	array	per	thread

Scalar Vector

Figure 6.1: Throughput of non-sequential accesses

Figure 6.1 shows the throughput of non-sequential memory accesses using the described

micro-benchmark on a Xeon Phi 7210 CPU. We use all 256 hardware threads (see Section

6.5 for platform details). Each thread traverses a private array to minimize the memory

latency, except for the last two columns where the arrays are shared across all threads. The

arrays are either on DRAM (LBW) or on MCDRAM (HBW). If the arrays fit in the L1 cache,

SIMD gathers are ∼3X faster than scalar loads. If the arrays are in the L2 cache, there is

virtually no speedup from SIMD gathers compared to scalar loads.

If the arrays exceed the cache capacity, the throughput drops by an order of magnitude

(using right y axis in Figure 6.1). The high-bandwidth on-chip MCDRAM is at least 3X

faster than off-chip regular DRAM. However, scalar loads are now up to 40% faster than

SIMD gathers because out-of-order execution overlaps instructions with scalar loads. On

the other hand, SIMD gathers issue 16 loads per thread, immediately saturating the load

buffers of the core. The out-of-order execution window is too small to overlap with the

hundreds of cycles to fetch all W cache lines from memory and the pipeline stalls.

When the arrays reside on MCDRAM, traversing a shared 8GB array reduces the ran-

dom access throughput by half compared to traversing 256 thread-private 32MB arrays,

highlighting the NUMA effect between cores of the same many-core CPU.

The results of this benchmark alongside with the results of Section 6.3 will explain why

cache-conscious query execution is favored by many-core platforms and why it can utilize

the high-bandwidth on-chip MCDRAM memory more effectively than engine designs based

on non-partitioned operators bound by random memory accesses out of the cache.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 154

6.2.2 Analytical Query Execution Engines

Transactional databases prefer row-oriented storage and execution, since each transaction

updates a small number of tuples. Analytical databases have largely standardized the

column-oriented storage since analytical queries access a small number of columns from a

large number of tuples. However, state-of-the-art analytical query engines can use either

column-oriented or row-oriented execution.

Disk-based DBMSs typically use the row-oriented Volcano model [Graefe, 1994] where

each operator is implemented as an iterator. Each call to the iterator of the operator yields

one output tuple, in turn calling iterators of the lower operators to fetch input tuples.

This pull-based design avoids materialization by pipelining operators, but suffers from high

interpretation overhead due to relying on virtual function calls that perform poorly on

modern CPUs [Neumann, 2011], as well as shared hash tables that typically exceed the

cache size and thus incur excessive cache and TLB misses.

In MonetDB [Manegold et al., 2000a], queries are split into operators that process entire

columns and materialize intermediate results in RAM. Column-at-a-time execution strictly

applied on every micro-operation can incur prohibitive materialization costs, e.g., select

sum(l_extendedprice * (1 + l_tax) * (1 - l_discount)) from lineitem. Cache and TLB

misses can be eliminated via cache-conscious execution [Manegold et al., 2000b], although

the materialization cost is increased due to additional partitioning passes.

MonetDB/X100 [Boncz et al., 2005] extends the Volcano iterators to process batches

of tuples (termed vectors), amortizing the interpretation cost. The design can be either

column-oriented or row-oriented, depending on the processing order of tuples and columns

within each batch. The batches passed between iterators can remain cache-resident. How-

ever, cache and TLB misses due to using large hash tables are still present.

HyPer [Neumann, 2011] and Redshift [Gupta et al., 2015] pipeline operators and convert

them into push-based nested loops by generating query-specific code. The pipelined stream

is not materialized and there is no interpretation cost. Then, random memory accesses

become the dominant performance factor. Compilation time is mitigated in Hyper by

generating LLVM code. This design generates row-oriented code, but can use column-

oriented pre-compiled code for indexes and table scans [Lang et al., 2016].



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 155

6.3 Vectorized Code Generation

We now evaluate whether SIMD vectorization works well alongside code generation and

operator pipelining by using an example query. Note that most queries cannot be fully

vectorized and SIMD code generation cannot support the same properties as scalar code,

such as register resident execution [Neumann, 2011], while maintaining data parallelism.

The example query template, shown below, performs a range selection on each table

using constants and joins a fact table F with multiple dimension tables based on a different

attribute of the fact table. The output is a single aggregate using columns from every table.

The fact table is larger than the dimension tables and the query plan pipelines the joins.

select sum(f.val * a.val * b.val * [...]) -- single group

from F f, A a, B b, [...] -- any number of dimension tables

where f.key_A = a.key and f.key_B = b.key and [...] -- joins

and f.val between x0 and y0 -- selection on fact table

and a.val between x1 and y1 -- selection on dimension table

and b.val between x2 and y2 and [...];

We generate k + 1 loops to execute the left-deep plan of the example query assuming

k dimension tables. The first k loops evaluate the selection on each dimension table and

materialize the projection 〈key, val〉 in a hash table. The last loop evaluates the selection on

the fact table, joins every dimension using k nested loops, and computes the sum aggregate

on an arithmetic expression that combines attributes from all tables.

6.3.1 Scalar Code Generation

The generated code for the above query assuming two dimension tables is shown below. We

use linear probing to handle hash table collisions. The data structure of the hash buckets

is also part of code generation. The new data type per operator holds the attributes of the

output projection for that operator, as dictated by the query plan. During compilation, the

assembly that is generated, is specialized to the data type, similarly to C++ templates.

typedef struct {
int set:1; // indicates if the bucket is set (empty otherwise)

A_key_t A_key; // type & value of A.key column

A_val_t A_val; // type & value of A.val column

} hash_join_bucket_A; // bucket of hash join table (HJT_a)



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 156

size_t i = 0; // index to F base columns

do { // linear scan over F

F_val_t f_val = F_val[i]; // load f.val

if (f_val >= x0 && f_val <= y0) { // selection predicate

A_key_t f_key_A = F_key_A[i]; // load f.key_A

size_t h1 = hash(f_key_A, buckets_HJT_a);

while (HTJ_a[h1].set) { // hash join f with a

if (HTJ_a[h1].key == f_key_A) { // join predicate of F and A

B_key_t f_key_B = F_key[i]; // load f.key_B

size_t h2 = hash(f_key_B, buckets_HJT_b);

while (HJT_b[h2].set) { // hash join f with b

if (HJT_b[h2].key == f_key_B) { // join predicate of F and B

sum += f_val * HJT_a[h1].val * HJT_b[h2].val; // update sum(f.val * a.val * b.val)

}
if (++h2 == buckets_HJT_b) h2 = 0; // go to next hash bucket for B

} }
if (++h1 == buckets_HJT_a) h1 = 0; // go to next hash bucket for A

} }
} while (++i != tuples);

The hash buckets contain the key and the val attribute of each dimension table. Besides

the projected columns, we can have additional fields, such as null bits or next pointers if

we use hash chaining instead of linear probing. The set field is used to atomically fill the

bucket via atomic compare-and-swap during the hash table building phase, since the hash

table is shared across all threads.

To utilize thread parallelism, we divide the input equally among threads. Dynamic

sharing achieves better parallelism on mainstream CPUs [Leis et al., 2014], but on a many-

core CPU, there is no uniform memory access latency and we do not control the placement.

To maximize the memory throughput, we also split the shared hash table among threads.

During probing, we determine which part of the hash table to probe by accessing the L1,

having marginal effect on the total latency.

6.3.2 SIMD Code Generation

Data-parallel instructions execute the same operation for W tuples, assuming we fit W

values per SIMD register. While selection scans are inherently data parallel, hash joins

probe one tuple at a time from hash tables and pipeline multiple operators in nested loops.

This tight integration of nested loops allows the outer stream of tuples to remain register

resident [Neumann, 2011], i.e., the column values are kept in CPU registers.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 157

Register-resident execution is impractical in SIMD. In this example, 0 <W ′ ≤ W tuples

satisfy the selective predicate, then 0 < W ′′ ≤ W ′ find a match in the first probed bucket,

and so on. Assuming the last W tuples loaded from F are pushed through all pipelined

operators, if the selectivity of any operator is low, or we do not have nearly perfect hashing

for joins, most SIMD lanes will be processing invalid tuples.

To ensure we retain data parallelism throughout query execution, each operator stores

intermediate results in cache-resident buffers. Each operator loads data from the buffer of

the previous step. The buffers are smaller than block-at-a-time execution [Boncz et al.,

2005] to remain in the L1 cache, but larger than W to guarantee data parallelism. The

operators are nested similarly to scalar code without any function calls, albeit the next

(inner) operator is executed once the output buffer of the previous (outer) operator is full.

The code for the F selection is shown below using AVX-512 SIMD intrinsics. We scan

F.val, evaluate the predicates and store the rids of qualifying tuples in a cache-resident

buffer. Here, we set the key columns to be 64-bit integers and the val columns to be 64-bit

floating point numbers to simplify the computation of the aggregate expression.

const __m512d m_x0 = _mm512_set1_pd(x0); // vector masks

[...] __m512i f_rid_0 = _mm512_set_epi64(7,6,5,4,3,2,1,0);

size_t i = 0, o1 = 0, o2 = 0, o3 = 0; // number of tuples held in each buffer

do { // scan over F

__m512i f_val_0 = _mm512_load_pd(&F_val[i]); // load F.val column

__mmask8 k0 = _mm512_cmp_pd_mask(f_val_0, mask_x0, _CMP_GE_OQ); // evaluate x0 <= F.val <= y0

k0 = _mm512_mask_cmp_pd_mask(k0, f_val_0, mask_y0, _CMP_LE_OQ);

_mm512_mask_compressstoreu_epi64(&L1_f_rid[o1], k0, f_rid_0);

o1 += _mm_popcnt_u64(k0); // store rids of qualifying tuples

if (o1 > buffer_size - 8) { [...] } // go to next operator if the buffer is full

f_rid_0 = _mm512_add_epi64(f_rid_0, mask_8); // update input rids

} while ((i = i + 8) != F_tuples);

Hash probing in SIMD uses vertical vectorization; we process a different input item

and gather a different hash bucket per SIMD lane (see Section 5.4). To avoid SIMD lane

underutilization, we replace the finished items with new input items on each iteration. To

avoid accessing the keys and computing the hash function on multiple iterations, we load

the rids from the buffer, gathers the keys, compute the hashes, and store the hash table

locations and the keys in the buffer. The SIMD code that probes the A hash table buckets

is shown below. For simplicity, we assume that negative keys denote empty buckets. We

store both rids to F and pointers to the hash table of A to the output buffer in order to



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 158

materialize the val columns. The following join with dimension B is almost identical, with

the addition of pointers to the A hash table as an extra payload, alongside F rids.

__m512i f_rid, f_key_A, a_ptr; // operator state

size_t i1 = 0, j1 = 8; __mmask8 k1 = 255; // set mask

do { // while all SIMD lanes are used

a_ptr = _mm512_mask_expandloadu_epi64(a_ptr, k1, &L1_a_ptr[i1]); // load pointer to A hash table

f_rid = _mm512_mask_expandloadu_epi64(f_rid, k1, &L1_f_rid[i1]); // load rids to F

f_key_A = _mm512_mask_expandloadu_epi64(f_key_A, k1, &L1_A_key[i1]); // load f.key_A values

i1 += j1; // update input buffer (level 1 buffer) index

__m512i a_key = _mm512_i64gather_epi64(a_ptr, 0, 8); // gather a.key from hash table of A

k1 = _mm512_cmpeq_epi64_mask(a_key, f_key_A); // evaluate f.key_A = a.key

_mm512_mask_compressstoreu_epi64(&L2_f_rid[o2], k1, f_rid); // store F rids for qualifiers

_mm512_mask_compressstoreu_epi64(&L2_a_ptr[o2], k1, a_ptr); // store A pointers for qualifiers

o2 += _mm_popcnt_u64(k1); // update output buffer (level 2 buffer) index

if (o2 > buffer_size - 8) { [...] } // go to next operator (level 2) if the buffer is full

a_ptr = _mm512_add_epi64(a_ptr, mask_16); // point to next hash table bucket (linear probing)

k1 = _mm512_kor(k1, _mm512_cmplt_epi64_mask(a_key, mask_0)); // find finished lanes

j1 = _mm_popcnt_u64(k1); // count finished lanes to reuse

} while (i1 + j1 <= o1); // move remaining items to front of the buffer after the loop

In the last and inner-most loop, we load the rids to F and the pointers to the hash tables

of A and B from the buffers, access the colmn values, compute the arithmetic expression,

and update the single sum aggregate in SIMD registers.

size_t i3 = 0;

do {
__m512i f_rid = _mm512_load_epi64(&L3_f_rid[i3]); // load rids to F

__m512i f_val = _mm512_i64gather_epi64(f_rid_3, F_val, 8); // gather F.val column

__m512i a_ptr = _mm512_load_epi64(&L3_a_ptr[i3]); // load hash table pointers to A

__m512i a_val = _mm512_i64gather_pd(a_ptr, 8, 8); // gather A.val column

__m512i b_ptr = _mm512_load_epi64(&L3_b_ptr[i3]); // load hash table pointers to B

__m512i b_val = _mm512_i64gather_pd(b_ptr, 8, 8); // gather B.val column

sum = _mm512_fmadd_pd(_mm512_fmadd_pd(f_val, a_val), b_val, sum); // update the sum aggregate

} while ((i3 = i3 + 8) != buffer_size - 8);

We now run the example query by varying the number of dimension tables to highlight

operator pipelining. For 1 join, F has 229 tuples and A has 227 tuples. For multiple joins,

each dimension has half the tuples from the previous dimension. The smallest dimension is

joined first. We place the whole dataset either on DRAM (LBW) or on the on-chip MCDRAM

(HBW) and compare. The table sizes were chosen so that the working set fits in the 16GB

on-chip MCDRAM. The column values are uniform random with no correlation between the

attributes. The hash function we use is fully vectorized. We measure the last loop that scans

F, joins with 1–4 dimension tables in 1–4 inner loops, and computes the sum aggregate. The



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 159

0

0.05

0.1

0.15

HBW LBW HBW LBW HBW LBW HBW LBW

1	join 2	joins 3	joins 4	joins

Ex
ec
ut
io
n	
tim

e
(in

	se
co
nd

s)

Scalar Vector

Figure 6.2: Running time of example query using code generation (10% selectivity)

loops that build the hash tables are not included in the comparison, since atomics are not

supported in SIMD. Another notable operation that cannot be fully vectorized is group-by

aggregation using a shared hash table to update the partial aggregates. In general, not all

database operators are data-parallel and thus cannot be fully vectorized.

In Figure 6.2, we set the selectivity for all selections to 10%. The selection scan now

dominates the execution time. When the dataset resides on the on-chip MCDRAM, SIMD

code is 2.5X faster than scalar code. However, when the dataset resides on regular DRAM,

execution becomes memory bound and the SIMD speedup is less than 10%. For scalar code,

the speedup due to using MCDRAM compared to regular DRAM is up to 1.75X. For SIMD

code, the speedup due to using MCDRAM is 3.93X.

In Figure 6.3, we repeat the experiment with 90% selectivity. Execution times are

now an order of magnitude higher. Since the hash tables are larger than the cache, we

suffer almost as many cache misses as the tuples in F times the number of joins. SIMD

code is up to 20% better than scalar code. The SIMD speedup is marginal here because

random memory accesses dominate the execution time. Storing the dataset on the on-chip

MCDRAM instead of DRAM, improves performance by up to 60%. The speedup matches

the result in Figure 6.1 for random accesses on shared arrays.

0

0.5

1

1.5

HBW LBW HBW LBW HBW LBW HBW LBW

1	join 2	joins 3	joins 4	joins

Ex
ec
ut
io
n	
tim

e	
(in

	se
co
nd

s)

Scalar Vector

Figure 6.3: Running time of example query using code generation (90% selectivity)



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 160

Query engines based on code generation coupled with operator pipelining have been

used extensively, even if the design has been shown to exhibit very low IPC on mainstream

CPUs [Sirin et al., 2016]. Nevertheless, since query execution in the design is predominately

memory bound, the potential speedup due to SIMD vectorization is diminished. On many-

core CPUs, the on-chip MCDRAM memory is also underutilized since the 1.6X speedup we

can achieve for executing random accesses to shared memory is much lower than the 4.3X

difference in bandwidth that is achievable for sequential accesses.

6.4 Proposed Query Engine Design

In this section, we present the design of VIP, our proposed analytical query execution engine,

alongside core implementation details. In VIP, we use column-oriented execution [Manegold

et al., 2000a; Stonebraker et al., 2005], but never process an entire column at once. Instead,

we process one column for the next block of tuples, retaining intermediate results in the

cache [Boncz et al., 2005]. Therefore, we amortize the interpretation cost, since we use

pre-compiled manually optimized SIMD code instead of per-query code generation [Gupta

et al., 2015; Kim et al., 2010; Neumann, 2011]. In contrast to the original block-at-a-time

design [Boncz et al., 2005], which is based on Volcano iterators [Graefe, 1994], we extend

the column-at-a-time model that separates operators [Manegold et al., 2000a]. Allocation

of work units between threads is static due to the NUMA effect. Finally, we use cache-

conscious hash joins and aggregations to avoid random memory accesses, using the on-chip

MCDRAM to accelerate the partitioning passes.

In the VIP design, each operator is built bottom-up from column-oriented data-parallel

sub-operators that are implemented entirely in SIMD. During query execution, each query

operator invokes pre-compiled sub-operators to processes one column at a time for one

block of tuples at a time. The block size is chosen to amortize the cost of interpretation

and retain the working set in the fast private cache of the CPU core. Sub-operators are

not just implemented in SIMD but are designed based on advanced vectorization principles,

and execute a simple operation on one payload column of a specific type. This allows for

extreme manual optimization per sub-operator without affecting the rest of the engine.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 161

To explain how sub-operators work across columns, consider a hash join on a composite

key from multiple columns. To hash the key columns, we invoke the hash sub-operator for

the 1st column based on its data type and store the hash values in the cache. Then, we call

the hash sub-operator for the 2nd column and update the hash values for the same block of

tuples. If the block size is small enough, the hashes remain in the cache. The sub-operator

to compute the FNV hash [Fowler et al., 2017] of a 32-bit column is shown below.

void hash_int32(int32_t* data, uint32_t* hash, size_t tuples) {
size_t i = 0;

if (tuples >= 16) {
const __m512i mask_255 = _mm512_set1_epi32(255); // constant mask to isolate mask byte

const __m512i mask_fnv = _mm512_set1_epi32(16777619); // constant mask with FNV prime

size_t tuples_16 = tuples & -16;

do { // process 16 column values at a time in SIMD code

__m512i h = _mm512_load_epi32(&hash[i]); // load 32-bit hashes (from the cache)

__m512i d = _mm512_load_epi32(&data[i]); // load data column (32-bit integer here)

size_t j = 4; // FNV hashing hashes 1 byte at a time

do { // process 1 byte at a time (unrolled)

h = _mm512_ternarylogic_epi32(h, d, mask_255, 120); // isolate lower byte and xor with hash

h = _mm512_mullo_epi32(h, mask_fnv); // multiply with FNV prime

d = _mm512_srli_epi32(d, 8); // shift next byte of key

} while (--j);

_mm512_store_epi32(&hash[i], h); // store back 32-bit hashes (to the cache)

} while ((i = i + 16) != tuples_16);

}
[...] // process remaining 15 or less values in scalar code

}

The hash sub-operator must be implemented for every supported data type. The sub-

operators that execute the same operation across data types have similar prototypes: void

hash_T(T* data, uint32_t* hash, size_t tuples).

6.4.1 Selection Scans

In modern analytical databases, linear scans are preferred them over indexes for selections

[Raman et al., 2013]. Branch mispredictions have been at the core of selection scan per-

formance [Ross, 2004]. Selection scans are by definition data-parallel and thus easy to

vectorize. Code generating engines also prefer pre-compiled SIMD code for scans and de-

compression [Lang et al., 2016]. In column-at-a-time execution [Manegold et al., 2000a],

each predicate produces an rid list (i.e., array) for qualifying tuples. Conjunctions and

disjunctions are computed via the union or intersection of rid lists.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 162

In our design, we use bitmaps to represent intermediate results for combinations of pred-

icates. In contrast to unions and intersections, bitwise operations are fast and maximally

data-parallel. To maximize the memory bandwidth given the NUMA effect, we statically

partition among threads. The output tuples retain the same order as the input. Dynamic

work allocation via a shared counter is also possible.

For complex expressions of predicates, exhaustively evaluating every selective predicate

on every column and then merging the bitmaps is trivial. However, for some queries, always

evaluating every column that appears on the selective predicate can be orders of magnitude

slower. Instead, we want to use the output of earlier predicates to skip evaluating later

predicates and skip loading columns for subsets of the input. In conjunctions, we can skip

the tuples for which an earlier predicate was evaluated as false. In disjunctions, we can skip

tuples for which an earlier predicate was evaluated as true.

On linear scans, performance is dictated by the number of accessed cache lines. SIMD

naturally handles predicates on W contiguous values very efficiently, thus, we evaluate or

skip in units of W tuples. The sub-operator to evaluate comparison predicates on 32-bit

integer columns is shown below.

void select_int32(const uint16_t* bitmap_in, // bitmap of undetermined tuples

uint16_t* bitmap_out, // bitmap of qualifiers (not strict subset of input bitmap)

const int32_t* data, size_t tuples, int32_t constant, int op) {
const __m512i mask_constant = _mm512_set1_epi32(constant); // mask of query constant

size_t i = 0;

switch (op) { // separate code per comparison operator

case ’>’: // code for ">" operator

do { // scan over block

__m256i bit = _mm256_load_si256(bitmap_in); // check 256 bits of input bitmap

if (!_mm256_testz_si256(b, b)) { // skip 256 tuples if all 256 bits are 0

__m512i bit_E = _mm512_cvtepu16_epi32(bit);

uint64_t m = _mm512_test_epi32_mask(bit_E, bit_E); // find groups of 16 tuples not all 0

do { // evaluate 16 tuples at a time that are not all 0

size_t j = _tzcnt_u64(m); // locate the 16 next tuples within 256 tuples

__m512i key = _mm512_load_epi32(&data[j << 4])); // load column values

bitmap_out[j] = _mm512_cmpgt_epi32_mask(key, mask_constant); // evaluate the predicate

} while (m = _blsr_u64(m)); // go to next 16 tuples not all 0

}
bitmap_in += 16, bitmap_out += 16, data += 256; // progress pointers

} while ((i = i + 256) != tuples);

break;

case ’=’: [...] // code for "=", "<", "<>", ">=", and "<="

} }



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 163

The input bitmap denotes which tuples can be skipped and which tuples we still need

to evaluate. The output bitmap is the evaluation result. Note that the output bitmaps do

not have to be strict subsets of the input bitmaps. We express complex predicates as a tree

and process one predicate at a time for the same block of tuples while traversing the tree.

Rid lists are better than bitmaps for evaluating very few tuples. However, we can

also skip 256 or 512 consecutive tuples by checking the bitmap in SIMD. We merge the

bitmaps using only and, or, and and not instructions, which come for free if the bitmaps

are cache-resident. Thus, we avoid unions and intersections of rid lists. Notably, state-

of-the-art sorted set intersection [Inoue et al., 2014] reduces branch mispredictions from

O(n) to O( n
W ) but requires O(n) SIMD instructions to execute, same as the of O(n) scalar

instructions of the standard scalar implementation.

In conjunction nodes, the input bitmap represents the tuples that satisfy all previous

predicates (siblings of the current node); the remaining tuples can be skipped. In disjunction

nodes, the input bitmap represents the tuples that failed all previous predicates. In the

example of Figure 6.4, we show the input bitmap denoting the tuples we need to evaluate

per predicate where we do not skip any tuples. The expression tree does not have to be in

CNF or DNF. We can support arbitrary levels of alternating conjunctions and disjunctions

with either as root, which is not that uncommon. For example, TPC-H Q19 has a 3-

level expression and converting into either CNF or DNF would increase the number of leaf

predicates. Generating the best tree is part of query optimization.

and

or

x	=	5 and

z	<>	1

and
or

x	=	5 1000

1111

1111 and
or

1000

0111

1111 and
or
and

0111

1111

y	>	3 y	<	7

y	>	3

0111

1100

and
or
and

0111

1111

0100

1100

and
or
and

0111

1111

y	<	7

0100

0111

and
or
and

0111

1111

0100

0111

and
or

0100

0011

1111and
or

0010

1100and

z	<>	1
0110

1100and

0110

0100

y	>	3 y	<	7

z	<>	1

5 2x

4 0y

z 1 3 7

and

1

69

2

set and	not

predicate
tree

data	columns
bitmap
operators

8

Figure 6.4: Example of selection scan (already determined tuples are not skipped)



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 164

The output of the selection scan is a sorted list of rids used to access column values

from the selected table. In case of late materialization, we can simply append the rids

to output without gathering any columns. Materialization strategies are part of query

optimization and depend on many factors, such as selectivity, cardinality, columns, and

data types [Abadi et al., 2007] as well as hardware factors such as memory bandwidth.

Our design supports both early and late materialization or a combination of both. The

sub-operator to materialize a 32-bit column by dereferencing a list of rids is shown below.

void materialize_int32(const int32_t* rids, size_t tuples,

const int32_t* data_in, int32_t* data_out) {
size_t i = 0; // store 1 tuple at a time until output is aligned

while ((63 & (size_t) &out[i]) && i != tuples) { [...] }
if (tuples - i >= 16) {

size_t tuples_16 = ((tuples - i) & -16) + i;

do { // process 16 column values at a time

__m512i rid = _mm512_loadu_si512(&rids[i]); // load rids

__m512i val = _mm512_i32gather_epi32(rid, data_in, 4); // gather column values

_mm512_stream_si512(&data_out[i], val); // store to memory (non-temporal)

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { [...] } // store 1 tuple at a time to output

}

6.4.2 Compression

Some analytical databases prefer linear scans over secondary indexes due to compression

[Raman et al., 2013]. Our goal is to evaluate selection scans directly on compressed columns

without decompressing. For complex predicate expressions, we still want to skip tuples that

are determined by earlier predicates.

Dictionary encoding uses a sorted dictionary of distinct values per column and substi-

tutes the column values with dictionary indexes. We need dlog ne bits per index to repre-

sent n distinct values and predicates are evaluated using the indexes alone. As described

in Chapter 4, there are many ways to store the bits of the indexes. Here, we use horizontal

bit packing, also used in commercial databases [Willhalm et al., 2009]. In this scheme, we

can skip tuples, although skipping cache lines is not guaranteed due to misalignment.

The sub-operator that unpacks the bits of indexes and evaluates the predicate is shown

below. We need 5 SIMD instructions to unpack. The permutations, using masks m_per_1



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 165

and m_per_2, isolate the two 32-bit words that contain the packed bits. The lower word is

shifted right to align the bits, using mask m_srl, and the upper word is shifted left to make

space for the lower word, using m_sll. The words are merged and the high-order bits are

reset via a ternary bitwise instruction. The predicate is evaluated in registers.

const int32_t decode_permute_1_mask[31][16] = { [...] } // permutation masks for decoding (lower)

const int32_t decode_permute_2_mask[31][16] = { [...] } // permutation masks for decoding (upper)

const int32_t decode_shift_1_mask[31][16] = { [...] } // shift right masks for decoding

const int32_t decode_shift_2_mask[31][16] = { [...] } // shift left masks for decoding

void select_encoded(const uint16_t* bitmap_in, uint16_t* bitmap_out,

const void* data, size_t tuples, int32_t constant, int op, int bits) {
const __m512i mask_constant = _mm512_set1_epi32(constant); // mask of query constant

const __m512i mask_max_code = _mm512_set1_epi32((1 << bits) - 1); // to clear high order bits

const __m512i mask_permute_1 = _mm512_load_epi32(decode_permute_masks[bits]);

const __m512i mask_permute_2 = _mm512_load_epi32(decode_permute_masks[bits]);

const __m512i mask_shift_1 = _mm512_load_epi32(shift_1_masks[bits]);

const __m512i mask_shift_2 = _mm512_load_epi32(shift_2_masks[bits]);

size_t i = 0, bits_x2 = bits + bits;

switch (op) { // separate code per comparison operator

case ’>’: // code for ">" operator

do { // scan over block

__m256i bit = _mm256_load_si256(bitmap_in); // check 256 bits of input bitmap

if (!_mm256_testz_si256(b, b)) { // skip 256 tuples if all 256 bits are 0

__m512i bit_E = _mm512_cvtepu16_epi32(bit);

uint64_t m = _mm512_test_epi32_mask(bit_E, bit_E); // find groups of 16 tuples not all 0

do { // evaluate 16 tuples at a time that are not all 0

size_t j = _tzcnt_u64(m); // locate the 16 next tuples within 256 tuples

__m512i key = _mm512_load_epi32(data + j * bits_x2); // load 16 column values

// permute to a pair of 32-bit words containing the packed bits per lane

__m512i key_1 = _mm512_permutevar_epi32(mask_permute_1, key);

__m512i key_2 = _mm512_permutevar_epi32(mask_permute_2, key);

key_1 = _mm512_srlv_epi32(key_1, mask_shift_1); // shift right to clear low-order bits

key_2 = _mm512_sllv_epi32(key_2, mask_shift_2); // shift left to clear high-order bits

// merge (bitwise-or) the two words and clear (bitwise-and) the high-order bits

key = _mm512_ternarylogic_epi32(key_1, key_2, mask_max_code, 168);

bitmap_out[j] = _mm512_cmpgt_epi32_mask(key, mask_constant); // predicate result

} while (m = _blsr_u64(m)); // go to next 16 tuples that are not all 0

}
bitmap_in += 16, bitmap_out += 16, data += 256; // progress the input pointers

} while ((i = i + 256) != tuples);

break;

case ’=’: [...] // code for "=", "<", "<>", ">=", and "<="

}
}

Using horizontal bit packing not only allows us to skip parts of the input, but allows for

efficient access of dictionary codes using rids. We only need to perform a 64-bit gather to

load the bits of the index. The sub-operator that gathers the dictionary code of an encoded

column is shown below.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 166

void materialize_encoded(const int32_t* rids, size_t tuples,

const void* data_in, int32_t* data_out, int bits) {
const int64_t max_code = (1 << bits - 1); // used to mask the high-order bits

size_t i = 0; // store 1 tuple at a time until output is aligned

while ((63 & (size_t) &out[i]) && i != tuples) {
size_t bit = rids[i] * bits;

int64_t key = *(int64_t*) (data_in + (bit >> 3)); // load 64-bits containing the packed bits

key >>= bit & 7; // align to clear low-order bits

key &= max_code; // mask to clear high-order bits

_mm_stream_si32(&out[i++], (int32_t) key); // (non-temporal) store to output

}
if (tuples - i >= 16) {

const __m512i mask_max_code = _mm512_set1_epi32(max_code);

size_t tuples_16 = ((tuples - i) & -16) + i;

do { // process 16 column values at a time

__m512i rid = _mm512_loadu_si512(&rids[i]); // load rids

__m512i bit_1 = _mm512_mul_epi32(rid, m_bit); // compute bit offsets

__m512i bit_2 = _mm512_mul_epi32(_mm512_srli_epi64(rid, 32), m_bit);

// gather 64-bit words containing the packed bits per dictionary index

__m512i key_1 = _mm512_i64gather_epi64(_mm512_srli_epi64(bit_1, 5), data_in, 4);

__m512i key_2 = _mm512_i64gather_epi64(_mm512_srli_epi64(bit_2, 5), data_in, 4);

// align 64-bit words by shift with bit offset modulo 32

key_1 = _mm512_srlv_epi64(key_1, _mm512_and_si512(bit_1, mask_31));

key_2 = _mm512_srlv_epi64(key_2, _mm512_and_si512(bit_2, mask_31));

__m512i key = _mm512_permutex2var_epi32(key_lo, m_mix, key_hi); // mix two halves

key = _mm512_and_si512(key, mask_max_code); // clear high-order bits

_mm512_stream_si512(&out[i], key); // (non-temporal) store decoded codes

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { [...] } // process 15 or less remaining tuples (same as scalar loop above)

}

Depending on the number of bits, we can unpack to the nearest CPU word size to avoid

bit packing overheads. For example, 7-bit indexes can be materialized as 8-bit integers in

memory. Saving bit space speeds up selection scans by saving bandwidth, but the overhead

of packing and unpacking before and after every operator is expected to be higher.

The speed of decompression depends on the size of the dictionary. For columns with

many distinct values, dereferencing large dictionaries incurs cache misses for every value

and is in theory as expensive as a hash join. Thus, compression should be used when

slow decompression is not required. For instance, attributes that are compressed with the

same dictionary can be joined without any decompression. On the other hand, compressing

numeric columns used in aggregate functions only adds decompression overhead.

Vertical bit packing, discussed in Chapter 4, can also be implemented, although the

uncompressed should be kept as well to avoid expensive materialization via rids.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 167

6.4.3 Hash Joins

Hash joins dominate the execution time of queries in data warehouses. As mentioned

in Section 6.2.2, Volcano-based designs pipeline joins to avoid materializing intermediate

results. The exception is column-at-a-time execution that executes each join separately. We

showed that non-partitioned joins [Blanas et al., 2011] perform poorly on many-core CPUs

due to being memory latency bound. On the other hand, cache-conscious joins [Manegold et

al., 2002] eliminate random accesses out of the cache. If the workload is cache resident and

we are compute-bound rather than memory-bound, SIMD code provides better speedups.

Moreover, we can take advantage of the high-bandwidth on-chip MCDRAM that favors

sequential accesses over random accesses.

The hash join operator is frequently optimized as a stand-alone operator that involves

a key–rid pair [Balkesen et al., 2013a; Blanas et al., 2011]. While we can achieve very good

performance in such a setting, the results are misleading, primarily because they ignore the

cost of materialization of payload columns [Schuh et al., 2016]. Furthermore, in situations

where the join involves composite keys or the join key is not necessarily a 32-bit integer,

many optimizations are either not applicable or are not nearly as efficient. In practice,

we have to support not only multiple data types and composite keys, but also additional

predicates. For example, the query select * from R, S where R.x = S.x and R.y > S.y

should evaluate both predicates during the join. We do not discuss disjunctions in join

predicates here since they are less common.

We outline how hash join operators work in our design. First, we hash the columns

that appear in equality predicates. We execute the hash join using the hash values instead

of the actual key columns. This allows us to map any data type into an integer including

composite keys and optimize for the integer join. After we perform the hash join using the

hash values, we generate rid lists for joined tuples pointing to the two inputs. We use the

rids to evaluate the join predicates by accessing the actual columns, including non-equality

predicates, and store back the rids of qualifiers. In the end, we can store the qualifying

rids as the output of the join, or use them to materialize payload columns during the join,

similarly to selection scans. The sub-operator for building a hash table using the hash

values of the join key columns is shown below.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 168

typedef struct {
uint32_t hash; // the 32-bit hash of the join key columns in the tuple

int32_t rid; // the location of the tuple (in the partitioned input)

} join_bucket_t;

The hash buckets are located by masking the hash values directly, we do not rehash.

Note that since we map all key columns into integers by hashing, this sub-operator does

not have to support multiple types.

void build_hashes(const uint32_t* hashes, size_t tuples,

join_bucket_t* table, size_t buckets) {
const __m512i mask_lanes = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);

__m512i key, rid, loc; // keys, rids, and hash bucket locations (state)

__mmask16 k; k = _mm512_kxnor(k, k); // set mask to use all lanes initially

size_t i = 0, j = 16;

while (i + j <= tuples) { // process 16 hashes at a time

key = _mm512_mask_expandloadu_epi32(key, k, &hashes[i]); // load new hashes from input

__m512i rid_B = _mm512_broadcast_epi32(_mm_cvtsi64_si128(i)); // generate rids

rid = _mm512_mask_expand_epi32(rid, k, _mm512_add_epi32(rid_B, mask_lanes));

i += j; // advance input pointer by number of reused lanes

loc = [...]; // extract hash bucket locations from hash value without rehashing

__m512i rid_T = _mm512_i32gather_epi32(off, &hash_table[0].rid, 8); // gather rids

k = _mm512_cmplt_epi32_mask(rid_T, m_0); // find empty buckets

__m512i con = _mm512_conflict_epi32(off); // compare all lanes to detect conflicts

k = _mm512_mask_testn_epi32_mask(k, con, con); // find non-conflicting lanes

j = _mm_popcnt_u64(k); // count number of reused lanes

__m512i key_lo = _mm512_permutex2var_epi32(key, m_pak_1, rid); // pack keys and rids

__m512i key_hi = _mm512_permutex2var_epi32(key, m_pak_2, rid);

_mm512_mask_i32loscatter_epi64(table, k, off, key_lo, 8); // scatter 64-bit pairs

_mm512_mask_i32loscatter_epi64(table, k >> 8, _mm512_alignr_epi32(off, off, 8), hi, 8);

}
[...] // process last 15 or less hashes in scalar code

}

As discussed in Chapter 5, when two SIMD lanes from the same scatter instruction

write to the same memory location, conflicts occur. To avoid this hazard, we use special

SIMD instructions that detect conflicts by performing all-to-all comparisons within the

SIMD register, otherwise requiring O(W 2) scalar or O(W ) regular SIMD instructions. In

Section 5.4, we described two approaches, one for KNC co-processors using an additional

round of gathers and scatters, and one for AVX-512 using specialized instructions. To

reduce the cache accesses, we even pack hashes and rids into pairs and use 64-bit scatters.

These ad-hoc optimizations are possible because we reduce the join key columns to hash

values and execute the join using simple data types.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 169

The sub-operator for probing the hash table of hash values is shown below. We cannot

use unique-key hash table algorithms such as cuckoo hashing [Pagh and Rodler, 2004], even

for foreign-key joins where unique inner keys are guaranteed, because distinct inner keys

may still be mapped to the same hash value.

size_t probe_hashes(const uint32_t* hashes, size_t tuples,

const join_bucket_t* hash_table, size_t buckets, // hash table

int32_t* inner_rids, int32_t* outer_rids) { // outputs

const __m512i mask_lanes = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);

__mmask16 k; k = _mm512_kxnor(k, k); // set mask to use all lanes initially

size_t i = 0, j = 16, o = 0;

while (i + j <= tuples) { // 16 tuples at a time

key = _mm512_mask_expandloadu_epi32(key, k, &hashes[i]); // load new keys from input

__m512i rid_B = _mm512_broadcast_epi32(_mm_cvtsi64_si128(i)); // generate rids

rid = _mm512_mask_expand_epi32(rid, k, _mm512_add_epi32(rids_B, mask_lanes));

i += j; // advance input pointer by number of reused lanes

loc = [...]; // extract hash bucket locations from hashes

__m512i buc_1 = _mm512_i32logather_epi64(loc, hash_table, 8); // gather buckets

__m512i buc_2 = _mm512_i32logather_epi64(_mm512_alignr_epi32(loc, loc, 8), hash_table, 8);

__m512i key_H = _mm512_permutex2var_epi32(buc_1, m_pak_1, buc_2); // unpack to hashes and gids

__m512i rid_H = _mm512_permutex2var_epi32(buc_1, m_pak_2, buc_2);

k = _mm512_cmpeq_epi32_mask(key, key_H); // find matching hashes

_mm512_mask_compressstoreu_epi32(&outer_rids[o], k, rid); // (selective) store outer rids

_mm512_mask_compressstoreu_epi32(&inner_rids[o], k, rid_H); // (selective) store inner rids

o += _mm_popcnt_u64(k);

k = _mm512_cmplt_epi32_mask(rid_T, m_0); // reuse lanes pointing to empty buckets

j = _mm_popcnt_u64(k); // count reused lanes

}
[...] // process last 15 or less tuples using scalar code

return o; // joining tuples based (whose hashes of join keys match)

}

To make the final join operation cache-resident, we partition the inputs. Partitioning

is discussed in Section 6.4.4. Each partition is processed by a different thread. Thus, the

hash tables are private and no atomics are needed. If the inner relation is very small, we

can use a shared hash table built with atomics in scalar code, but the cost of building is

nevertheless irrelevant since the inner relation is small.

After the hash probing, we evaluate the predicates using rid lists. Hash collisions are

rare because the hash join uses partitioning until the inner table fits in the cache. Also,

the hash function we use during partitioning is different from the one used during the hash

join. In a conjunction of join predicates, a sub-operator evaluates each predicate and filters

the rid lists. The hash collisions are resolved by evaluating the equality predicates. The

sub-operator to evaluate equality join predicates on 32-bit integer columns is shown below.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 170

size_t join_filer_int32(int32_t* rids_1, int32_t* rids_2, size_t tuples,

const int32_t* data_1, const int32_t* data_2, int op) {
size_t i = 0;

switch (op) { // seperate code for each operator

case ’=’: // code for equality join predicate (R.x = S.y)

if (tuples >= 16) {
size_t tuples_16 = tuples & -16;

do { // process 16 tuples at a time

__m512i ptr_1 = _mm512_load_epi32(&rids_1[i]); // load inner rids

__m512i ptr_2 = _mm512_load_epi32(&rids_2[i]); // load outer rids

__m512i val_1 = _mm512_i32gather_epi32(ptr_1, data_1, 4);

__m512i val_2 = _mm512_i32gather_epi32(ptr_2, data_2, 4);

__mmask16 k = _mm512_cmpeq_epi32_mask(val_1, val_2);

_mm512_mask_compressstoreu_epi32(&rids_1[o], k, ptr_1);

_mm512_mask_compressstoreu_epi32(&rids_2[o], k, ptr_2);

o += _mm_popcnt_u64(k); } // append inner & outer rids

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { [...] } // process last tuples

break;

case ’>’: [...] // code for other operators

}
return o; // number of tuples that satisfy the predicate

}

The inner keys are hashed and built into a hash table one block of tuples a time. The

outer keys are also hashed, probed through the hash table, and the join predicates evaluated

via rids one block of tuples at a time. Thus, we minimize the cache misses when evaluating

the join predicates. Notably, neither the inner rids nor the outer rids are strictly sorted. The

inner rids point to a cache-resident subset of the inner table. The outer rids are generated

from vectorized hash probing out of order but are nevertheless clustered.

The hash function is chosen at runtime based on the key columns. If the join is on a

single 32-bit key, we use an 1-to-1 32-bit hash function to avoid collisions. If the total width

of multiple key columns is less than 4 bytes we avoid collisions by using FNV hashing [Fowler

et al., 2017]. If hash collisions cannot occur, we skip evaluating the equality predicates using

the rids. For foreign key joins without hash collisions, we reuse the SIMD lanes when a

match is found during hash probing.

After we evaluate the join predicates, we can materialize the rids directly or materialize

a set of payload columns accessed via the rids. For instance, if the payload columns are

used in the subsequent operator in the query plan, we can avoid storing and reloading the

rids to access the payloads.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 171

6.4.4 Partitioning

Partitioning is used in hash join and group-by aggregation to ensure cache-conscious execu-

tion. Many-core CPUs are favorable to cache-conscious execution, since the high-bandwidth

on-chip MCDRAM can be used to accelerate partitioning. In our design, we store the par-

titioned output contiguously so we first compute a histogram. To compute the histogram,

we load and hash the next block of tuples from the key columns, convert the hashes to

partition ids based on the number of partitions, and increment the histogram counters. To

avoid SIMD scatter conflicts, we replicate the histogram W times for W SIMD lanes (see

Section 5.6.1). The sub-operator to update the histograms is shown below.

void histogram(const uint32_t* hashes, int32_t* histogram_x16,

int bit_lo, int bit_hi, const uint8_t* pids) { // bit range

size_t i = 0;

if (tuples >= 16) {
const __m512i mask_1 = _mm512_set1_epi32(1); [...] // set constant masks

size_t tuples_16 = tuples & -16;

do { // process 16 tuples at a time in SIMD code

__m512i pid = _mm512_load_epi32(&hashes[i]); // load hashes

pid = _mm512_srl_epi32(pid, mask_srl); // isolate partition ids

pid = _mm512_sll_epi32(pid, mask_sll);

_mm_stream_si128(&pids[i], _mm512_cvtepi32_epi8(pid)); // store partition ids

__m512i off = _mm512_add_epi32(pid, mask_rep); // replicated histogram access

__m512i cnt = _mm512_i32gather_epi32(off, histogram_x16, 4);

cnt = _mm512_add_epi32(cnt, mask_1); // increment histogram counts

_mm512_i32scatter_epi32(histogram_x16, off, cnt, 4); // scatter histogram counts

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { // process last tuples in scalar code

uint32_t h = hashes[i];

size_t p = [...]; // extract partition id from hash

histogram_x16[p << 4] += 1; // increment histogram

pids[i++] = (uint8_t) p;

}
}

To find the partition boundaries, we compute the prefix sum of the histograms. Then,

we invoke the sub-operator shown below to compute the output offset of each tuple and

store it in the cache. The output offsets will be reused by the sub-operators that shuffle

each payload column and avoid computing the output offsets multiple times. Alongside the

output offset, we store an offset that serializes scatter conflicts. Conflict serialization was

discussed in Section 5.6.3 alongside an implementation for serializing conflicts in AVX-512.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 172

void shuffle_core(const uint8_t* pids, size_t tuples,

int32_t* partition_offset, // output offset per partition (prefix sum of histograms)

int8_t* conflict_offset, // conflict serialization offset per tuple

int32_t* output_offset) { // output offset per tuple

size_t i = 0;

if (tuples >= 16) {
const __m512i mask_1 = _mm512_set1_epi32(1); [...] // set constant masks

size_t tuples_16 = tuples & -16;

do {
__m512i pid = _mm512_cvtepu8_epi32(_mm_load_si128(&pids[i])); // load partition ids

__m512i off = _mm512_i32gather_epi32(pid, partition_offset, 4); // gather partition offsets

__m512i ser_1 = _mm512_conflict_epi32(pid); // create bitmasks of conflicts per 32-bit lane

__m512i ser_2 = _mm512_srli_epi32(x, 5); // shift bits 6 to 10 to the low-order bits

__m512i ser_3 = _mm512_srli_epi32(x, 10); // shift bits 11 to 15 to the low-order bits

// count set bits in ranges using 32-way permutation using 5 low-order bits of index register

ser_1 = _mm512_permutex2var_epi32(mask_bitcount_L, ser_1, mask_bitcount_H); // bits [1,5]

ser_2 = _mm512_permutex2var_epi32(mask_bitcount_L, ser_2, mask_bitcount_H); // bits [6,10]

ser_3 = _mm512_permutex2var_epi32(mask_bitcount_L, ser_3, mask_bitcount_H); // bits [11,15]

__m512i ser = _mm512_add_epi32(_mm512_add_epi32(ser_1, ser_2), ser_3);

_mm_store_si128(&conflict_offset[i], _mm512_cvtepi32_epi8(ser));

off = _mm512_add_epi32(off, ser); // update output offset per tuple

_mm512_store_epi32(&output_offset[i], off); // store output offset per tuple for next block

off = _mm512_add_epi32(off, mask_1); // increment partition offsets

_mm512_i32scatter_epi32(partition_offset, pid, off, 4); // scatter offsets

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { // process last tuples in scalar code

size_t p = pids[i]; // load partition id

size_t o = partition_offset[p]++; // update output offset of partition

output_offset[i++] = o; // store output offset of tuple

}
}

After computing the offsets, we invoke sub-operators to shuffle one column at a time for

the next block of tuples. To avoid re-accessing the array of offsets per partition for each

column we shuffle, we store the output offset per tuple of the next block in the cache and

reload it for each column that we shuffle. To mitigate the cost of cache and TLB misses, we

store the data in a cache-resident buffer and flush to output in batches using non-temporal

stores [Satish et al., 2010; Wassenberg and Sanders, 2011].

In our implementation, the size of the buffer for each partition is equal to the size of

two cache lines. Once the lower half of the buffer is full, we flush the cache line to output

using a non-temporal SIMD store and shift the data from the upper half. Thus, we avoid

buffer overflows and can also process 8-bit or 16-bit columns using 32-bit SIMD scatters,

since 8-bit or 16-bit scatters are not supported in AVX-512. This process is shown below.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 173

void shuffle_int32(const uint8_t* pids, size_t tuples,

const int8_t* conflict_offsets, const int32_t* output_offsets,

const int32_t* data_in, int32_t* data_buf, int32_t* data_out) {
size_t i = 0;

if (tuples >= 16) {
const __m512i mask_15 = _mm512_set1_epi32(15); [...] // set constant masks

size_t tuples_16 = tuples & -16;

do {
__m512i off = _mm512_load_epi32(&output_offsets[i]);

__m512i ser = _mm512_cvtepu8_epi32(_mm_load_si128(&conflict_offsets[i]));

off = _mm512_sub_epi32(off, ser); // remove serialization offset

off = _mm512_and_epi32(off, mask_15); // find location in buffer

off = _mm512_add_epi32(off, ser); // add serialization offset

__mmask16 k = _mm512_cmpeq_epi32_mask(off, mask_15); // find flushing partitions

__m512i pid = _mm512_cvtepu8_epi32(_mm_load_si128(&pids[i])); // load partition ids

off = _mm512_or_epi32(off, _mm512_slli_epi32(pid, 5)); // compute offset in buffers

__m512i val = _mm512_stream_load_si512(&data_in[i]); // load data

_mm512_i32scatter_epi32(data_buf, off, val, 4); // scatter to buffer

if (_mm512_kortestz(k, k)) continue; // skip if nothing to flush

uint64_t m = k; // bitmask of lanes pointing to full buffers

do { // flush one full buffer at a time to memory

size_t j = i + _tzcnt_u64(m); // location of tuple in input

size_t o = output_offsets[j]; // location of tuple in output

size_t p = pids[j]; // the partition we need to flush

int32_t* b = data_buf[p << 5]; // buffer of partition

// flush lower half to output and shift upper half of buffer

__m512i buf_1 = _mm512_load_si512(b); // load buffer

__m512i buf_2 = _mm512_load_si512(&b[16]);

// store lower half of buffer to output using non-temporal stores

_mm512_stream_si512(&data_out[o - 15], buf_1);

_mm512_store_si512(b, buf_2); // shift upper half in buffer

} while (m = _blsr_u64(m)); // get next set bit of bitmask

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { [...] } // process remaining tuples

}

Depending on the data type of the column we are shuffling, a different number of values

is needed to fill the cache-resident buffer of each partition. Since the sub-operators are

specialized per data-type, this logic is hardcoded using constants, for instance, how many

items we need before we flush a buffer, or the right memory offsets for the scatters. In

some cases, we optimize the sub-operator even within the same data type. For instance,

long strings are shuffled (e.g., char(100)) one tuple per iteration similar to scalar code

(horizontal vectorization of Section 5.4), but use contiguous SIMD loads and stores to move

64 bytes at a time. On the other hand, short strings are shuffled similar to integers by

processing W tuples per iteration (vertical vectorization of Section 5.4).



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 174

During a partitioned hash join, each thread partitions a portion of the input. If we

need to split into many partitions that exceed the fanout that guarantees cache-conscious

execution, we split into multiple passes like LSB radixsort [Satish et al., 2010]. Once we

have more partitions than threads, we shuffle the data across threads, similar to a NUMA

shuffling step [?]. Then, we can continue partitioning until the partitions of the inner table

fits in the cache. In the final phase, each thread executes the final hash join for its local

partitions. To find the boundaries of partition p out of 2k partitions, we do not store the

histograms explicitly. We perform a binary search over the join key columns and search for

the earliest occurrence of hash p and p+1, after masking with 2k − 1.

6.4.5 Materialization

Column-at-a-time execution introduced late materialization via rid dereferencing, but this

step can be more expensive than the actual hash join [Schuh et al., 2016]. In radix-decluster

[Manegold et al., 2004], we execute the join using keys and rids only, and then decluster the

inner payloads to the outer relation order using rids [Manegold et al., 2004].

Interestingly, code-generating operator-pipelining designs avoid rid dereferencing alto-

gether. When multiple hash joins are pipelined, the attributes of the inner tables are early

materialized in the hash table, while the attributes of the outer table are loaded on demand

during the linear scan. Assume the example code in Section 6.3.1 with two hash joins as

nested loops. We access f.key_A column only for F tuples that satisfy the selection. Then,

we access the f.key_B column only for F tuples that satisfy the outer join. The outer side

achieves late materialization without rid dereferencing.

We support both early and late materialization since different strategies are better per

case [Abadi et al., 2007]. Our goal is to always guarantee both data parallelism and thread

parallelism. To ensure thread parallelism, instead of using radix-decluster, we generate

intermediate rids and sort to reshuffle the inner payloads based on the order of the outer

table. In radix-decluster, we lose thread parallelism, as splitting each window (the cache

size) across all threads is impractical.

To decluster the payloads of the inner side, we avoid sorting the rids to the outer relation

directly, as we would then need to merge rid lists across multiple joins. Instead, the output



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 175

a
b
c
e
g
h

k
d
e
a
f
g

0
3
4
6

w
z
u
x

m
k

a
b
c
e
g
h

k
d
e
a
f
g

m
k

0
2
4
7
1
3

d
a
g
k
e
f

6
5

a
c
g
m
b
e

k
h

y
w
u
x
z
v

0
4
3
6

w
u
z
x

0
3
4
6

w
z
u
x

x
y
z
w
v
u

f.key_A
a.key a.val

x
y
z
w
v
u

a.valf-a

f.key_A
a.key a.val

f.key_A f-a
a.key a.val

f-a a.val f-a a.val

Figure 6.5: Hash join FonA from the example query with and without partitioning

of each hash join generates pointers to its inputs in range [0, n), where n is the number of

tuples in the outer relation. Then, we use dlog ne partitioning passes to decluster the inner

payloads back to the original order of the outer side. The outer payloads are gathered using

the generated pointers in [0, n) and no merging of rid lists is required.

We use the query of Section 6.3 as an example for late materialization. The join order

is (F on A) on B. Initially, we execute the selections on F and A. From the selection on F, we

materialize f.key_A and f, an rid list to F tuples that satisfy the predicates. We will use

f to materialize f.val. From the selection on A, we materialize 〈a.key, a.val〉 without

generating any rids. To join f with a, we determine the number of partitioning passes to

ensure cache-conscious execution. We partition 〈f.key_A〉 on the hash of 〈f.key_A〉 and

〈a.key, a.val〉 on the hash of 〈a.key〉. While partitioning 〈f.key_A〉, we generate f-a, an

array of pointers to the input (the outputs of the previous join). The f-a rids are pointers

to f that satisfy f.key_A = a.key. For multiple partitioning passes, we treat f-a as a

payload column. We join the two sides, materialize 〈f-a, a.val〉, and sort the output

on 〈f-a〉 using LSB radix-sort. Figure 6.5 shows the hash join between F and A with and

without partitioning. We have the rids of F tuples that satisfy the selective predicates in f,

and the pointers to f that satisfy the join predicate in f-a. To get the f rids that satisfy

both the selection on F and the join of F with A, we dereference f-a→f and replace f.

For the hash join on f.key_B = b.key, we invoke a selection scan on B and materialize

〈b.key, b.val〉. The f.key_B column is materialized via the updated f. We join the two

sides, with or without partitioning, and generate f-a-b, which points to tuples that qualify

from the previous join with A. We sort 〈b.val〉 on f-a-b to match the f order. For the

final aggregate, we materialize f.val using f and a.val using f-a-b, but first we update

f by dereferencing f-a-b → f. The b.val column is already in the right order.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 176

6.4.6 Group-by Aggregation

In our design, group-by aggregation is split in multiple steps, (i) compute the number of

groups, (ii) partition the input to ensure cache-conscious execution, (iii) determine the

group id (gid) per tuple, (iv) compute intermediate expressions, and (v) use the gids to

update the partial aggregates. In contrast to hash joins where we can use cardinality of

the smallest input to determine the number of partitions for cache-conscious execution, in

group-by aggregation with a group-by clause, we estimate the cardinality of the output.

To estimate the number of groups, we can use the PCSA algorithm [Flajolet and Martin,

1985], built from data-parallel sub-operators and written entirely in SIMD. We scan over the

group-by key attributes, compute a hash function for the next block of tuples, and update a

cache-resident array of bitmasks by or-ing the least significant set bit of the hash value. The

lowest set bit of the hash value is computed using x & -x. We keep an array of bitmasks

and pick which bitmask to update using the high-order bits of the hash value, similarly to

updating a histogram. To avoid SIMD scatter conflicts, we replicate the array of bitmasks.

At the end, we merge the bitmasks and combine the estimates across threads. This step

can be considered a separate operator, similar to partitioning and NUMA shuffling.

After estimating the number of groups, we determine the number of partitioning passes

to ensure cache-resident execution. If there are no partitions, each thread processes the

local portion of tuples and we merge the partial aggregates at the end. Otherwise, we

create more partitions than threads, shuffling the data across threads, and each thread

processes its local partitions in a shared-nothing fashion.

After partitioning, the first step of the main group-by aggregation operator is to map

of the hash values of the group-by keys to gids. We use a hash table to store pairs of hash

values and gids. Each group is currently identified by a unique hash value. We compute the

hash value of the group-by columns for each input tuple, search two possible hash buckets

b

y

m

hashes

gids

rids

x x y x y yz

0 0 1 0 1 12

0 2 5

y 1

x 0
z 2hashes gids

cuckoo
hashing
table

group-by	keys	1

group-by	keys	2

hash	values

a a b b a

x x y x yz

m m m n on

b

Figure 6.6: Example of mapping hashes to group-ids



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 177

in the cuckoo table for a hash value match. If no match is found, we create a new group,

assign the next gid, and store the rid of the tuple. Figure 6.6 shows an example.

typedef struct {
uint32_t hash; // hash value of group-by keys

int32_t gid; // implicitly generated group-id

} aggr_bucket_t;

In contrast to hash joins where cuckoo tables are not used due to hash collisions, cuckoo

tables are useful here since they store the mapped gids in the same order as the input

tuples, since other vectorized hashing schemes produce the output out-of-order. The SIMD

code here is complicated due to many edge cases. We present a brief outline here. On

each iteration, we load new hashes from the input and process them alongside old hash–gid

pairs in the SIMD registers that were displaced as part of cuckoo hashing insertion. The

displaced pairs probe the alternative hash bucket while the new hashes may probe both.

For unique hashes not found in the table, new gids are generated and their rids are stored.

size_t hashes_to_gids(const uint32_t* hashes, int32_t* gids, size_t tuples,

size_t groups, int32_t* rids, aggr_bucket_t* hash_table, [...]) {
size_t i = 0, j = 16, g = 0, l = [...]; // upper bound in iterations

__m512i key, gid, loc; // state (keys aka hash values, gids, and hash bucket locations)

__mmask16 k; k = _mm512_kxnor(k, k); // use all lanes initially

while ((i = i + j) <= tuples) { // process 16 tuples at a time

if (--l == 0) { [...] } // resize and rebuild cuckoo table

key = _mm512_mask_loadu_epi32(key, k, &hashes[i - 16]); // load new hashes in rightmost lanes

loc = _mm512_ternarylogic_epi32(loc, loc_1, loc_2, 150); // compute alternative hash

loc = _mm512_mask_mov_epi32(loc, k, loc_1); // use 1st hash for new tuples

__m512i con = _mm512_conflict_epi32(key); // find unique hashes via conflict detection

__mmask16 k1 = _mm512_testn_epi32_mask(con, con); // find (leftmost) unique hashes

__m512i loc_1 = [...]; // map hash value to 1st hash bucket without rehashing

// gather buckets from hash table for hashes that are unique

__m512i buc_1; buc_1 = _mm512_mask_i32gather_epi64(buc_1, k1, hash_table, loc, 8);

__m512i col = _mm512_alignr_epi32(loc, loc, 8);

__m512i buc_2; buc_2 = _mm512_mask_i32gather_epi64(buc_2, k1 >> 8, hash_table, col, 8);

__m512i key_H = _mm512_permutex2var_epi32(buc_1, mask_unpack_1, buc_2); // unpack hashes

__m512i gid_H = _mm512_permutex2var_epi32(buc_1, mask_unpack_2, buc_2); // unpack gids

// find for which lanes we need to gather the 2nd hash bucket

__mmask16 k2 = _mm512_mask_cmpge_epi32_mask(k1, gid_H, mask_0); // if 1st bucket is empty

k2 = _mm512_mask_cmpneq_epi32_mask(k2, key, key_H); // or if hash is found in 1st bucket

k2 = _mm512_kand(k2, k1); // exclude displaced tuples that gather once

__m512i loc_2 = [...]; // map hash value to 2nd hash bucket without rehashing

loc = _mm512_mask_mov_epi32(loc, k2, loc_2); // replace with 2nd hash bucket

buc_1 = _mm512_mask_i32gather_epi64(buc_1, k2, loc, hash_table, 8); // (re-)gather buckets

col = _mm512_alignr_epi32(loc, loc, 8);

buc_2 = _mm512_mask_i32gather_epi64(buc_2, k2 >> 8, col, hash_table, 8);



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 178

key_H = _mm512_permutex2var_epi32(buc_1, mask_unpack_1, buc_2); // (re-)unpack hashes

gid_H = _mm512_permutex2var_epi32(buc_1, mask_unpack_2, buc_2); // (re-)unpack gids

// lanes without unique hash values must copy gid from (leftmost) lanes with unique hashes

con = _mm512_and_epi32(con, _mm512_sub_epi32(mask_0, con)); // isolate leftmost conflict

// we implicitly implement a vectorized trailing zero count via leading zero count here

con = _mm512_sub_epi32(mask_31, _mm512_lzcnt_epi32(con)); // point to leftmost conflict

// hashes not unique in the SIMD register copy the gid of the leftmost lane

con = _mm512_mask_blend_epi32(k1, con, mask_lanes); // point to self if no conflict

// find which lanes must generate new groups altogether

__mmask16 k3 = _mm512_mask_cmpge_epi32_mask(k_U, gid_H, mask_0); // find non-empty buckets

k2 = _mm512_mask_cmpneq_epi32_mask(k3, key, key_H); // find non-matching hashes

k2 = _mm512_kor(k2, _mm512_kandn(k3, k1)); // bucket empty or different hash

if (!_mm512_kortestz(k2, k2)) { // all (unique) hashes were found in the hash table

// store gids from leftmost lane with same hash if not unique and store to output

_mm512_storeu_epi32(&gids[i - 16], _mm512_permutevar_epi32(con, gid_H));

j = 16, k = _mm512_kxnor(k, k); // reused all lanes in the next loop

} else {
k1 = _mm512_kand(k, k2); __m512i gid_O;

if (_mm512_kortestz(k1, k1)) { // no new group ids

gid_O = _mm512_mask_blend_epi32(k, gid, gid_T);

} else { // generate new group ids and store rids to output

__m512i gid_B = _mm512_broadcast_epi32(_mm_cvtsi64_si128(g)); // broadcast groups

__m512i rid_B = _mm512_broadcast_epi32(_mm_cvtsi64_si128(i)); // broadcast index

// generate new gids for unique hashes not found in the table and store to output

gid = _mm512_mask_expand_epi32(gid, k1, _mm512_add_epi32(gid_B, mask_lanes));

_mm512_mask_compressstoreu_epi32(&rids[g], k1, _mm512_add_epi32(rid_B, mask_lanes));

g += _mm_popcnt_u64(k1); // update number of groups (index to array of rids)

gid_O = _mm512_mask_blend_epi32(_mm512_kandn(k1, k), gid, gid_T);

}
// copy gid from leftmost lanes with same hash and store to output

_mm512_mask_storeu_epi32(&gids[i - 16], k, _mm512_permutevar_epi32(con, gid_O));

con = _mm512_conflict_epi32(_mm512_mask_blend_epi32(k_I, mask_minus_1, loc));

k1 = _mm512_mask_testn_epi32_mask(k2, con, con); // exclude scatter conflicts

buc_1 = _mm512_permutex2var_epi32(key, mask_pack_1, gid); // pack hashes and gids

buc_2 = _mm512_permutex2var_epi32(key, mask_pack_2, gid);

// scatter to hash table pairs of (unique) hashes and gids (new or displaced)

_mm512_mask_i32loscatter_epi64(hash_table, k1, loc, buc_1, 8);

_mm512_mask_i32loscatter_epi64(hash_table, k1 >> 8, col, buc_2, 8);

key = _mm512_mask_mov_epi32(key, k1, key_H); // retain conflicting hashes for next loop

gid = _mm512_mask_mov_epi32(gid, k1, gid_H); // retain conflicting gids for next loop

k = _mm512_mask_cmpge_epi32_mask(k1, gid, mask_0); // lanes with displaced pairs

k = _mm512_kor(k, _mm512_kandn(k1, k2)); // include conflicting lanes

key = _mm512_mask_compress_epi32(key, k, key); // pack hashes to the leftmost lanes

gid = _mm512_mask_compress_epi32(gid, k, gid); // pack (assigned) gids

loc = _mm512_mask_compress_epi32(loc, k, loc); // pack hash bucket locations

j = 16 - _mm_popcnt_u64(k); // count the (rightmost) lanes to be reused

k = 0xFFFF0000 >> (int8_t) j; // set a bitmask for the rightmost lanes to be reused

}
}
[...] // process last 15 or less tuples in scalar code (also avoiding infinite loops)

return g; // number of groups found based on unique hash values

}



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 179

We scatter both new and displaced pairs back to the cuckoo table, in turn displacing

new tuples in case of collision. The displaced hash–gid pairs are kept in the leftmost SIMD

lanes to detect matching hashes from new input tuples using the SIMD conflict detection

instructions. We show the sub-operator that maps hashes to gids below, skipping the part

where we insert new groups into the table.

Unlike hash joins where the number of inner tuples are known, here we do not know the

exact number of groups. Thus, the load factor may increase enough for the hash table to

fail during building. Also, cuckoo hashing may inherently fail due to hash function collisions

[Pagh and Rodler, 2004]. To cover both these cases, we bound the number of iterations. If

we reach the iteration threshold, we resize and rebuild the cuckoo table.

On average, we expect to have much fewer groups than tuples, so in most cases we will

have already inserted all the hash–gid pairs in the hash table and will simply probe the

hash table and store the matching gids sequentially in the output. Being able to map the

hashes to gids in-order is the main reason that we use cuckoo hashing here. On the other

hand, because inserting tuples in cuckoo hashing tables is not particularly simple, we need

excessively complicated code to cover cases where new groups are being inserted into the

table. New gids are generated as soon as the new hash values are encountered, even if we

cannot insert all the new pairs in the hash table during the current iteration.

Mapping unique hashes to gids does not guarantee correctness due to hash collisions. In

hash joins, we re-evaluate the predicates, including the equalities. Here, we use the rid of

the first tuple per group to dereference the group-by columns and verify that the group-by

columns of tuples in the same group indeed match. If not, we create new groups on the fly.

Figure 6.7 fixes the hash collisions using the same example as Figure 6.6.

To fix hash collisions, we scan each group-by column exactly once. We scan the column

sequentially and compare the latest column value with the column value of the first tuple

bkeys	1 a b a b

gids
0 0 1 3 1 12

0
2
5

3
0
0

0
2
5

0
0
0

rids next

3 0

0
2
5

3
4
0

3 0
6 0

0

mkeys	2 m m m o

gids
0 0 1 3 1 42

n

1

ma b

Figure 6.7: Example of resolving hash collisions



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 180

of the group. If the columns do not match, we traverse a list of gid–rid pairs belonging to

distinct groups with the same hash and compare against other column values dereferenced

via rid. If we find a match, we only update the gid of the latest tuple. Otherwise, we

generate a new gid–rid pair and add it in the list of groups with the same hash.

Since we process one column at a time, we can use type-specific sub-operators. The

sub-operator used to validate a 32-bit group-by column is shown below. We load the group-

by column and the gids sequentially. We gather the rids of the first tuple per group using

the gids, and then gather the earlier group-by column value of the first tuple per group.

Because hash collisions are rare, given that we partition the input to ensure cache-conscious

execution, we switch to scalar code to fix the collisions.

size_t group_by_fix_int32(const int32_t* data, int32_t* gids, size_t tuples,

int32_t* rids, int32_t* next, size_t groups) {
size_t i = 0;

if (tuples >= 16) {
size_t tuples_16 = tuples & -16;

do {
__m512i gid = _mm512_load_epi32(&gids[i]); // load gids

__m512i rid = _mm512_i32gather_epi32(gid, rids, 4); // gather rid of 1st tuple per group

__m512i key_1 = _mm512_i32gather_epi32(rid, data, 4); // gather column of 1st tuple per group

__m512i key_2 = _mm512_load_epi32(&data[i]); // load column from new tuples

uint64_t m = _mm512_cmpeq_epi32_mask(key_1, key_2); // compare column value

if (_mm512_kortestz(m, m)) continue; // no collisions to fix

do {
size_t j = i + (size_t) _tzcnt_u64(m); // input offset

size_t g = gids[j]; // load gid from input

int8_t k = keys[j]; // (re-)load key from input in scalar register

do { // iterate over list of groups with same hash of group-by keys

size_t ng = next[g];

if (ng == 0) { // if new group must be added

next[g] = groups; // connect old group with current (new) group

g = groups++; // get next gid by incrementing number of groups

next[g] = 0; // set current group as the end of list

rids[g] = (int32_t) j; // store rid of new group

break;

}
g = ng; // go to next gid in list

} while (k != keys[(size_t) rids[g]]); // or stop if group is found

gids[j] = g; // fix group id

} while (m = _blsr_u64(m)); // next tuple to fix

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { [...] } // process last tuples in scalar code

return groups; // return (updated) number of groups

}



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 181

As discussed in Section 6.4.3, if we rule out hash collisions based on the width of the

group-by attributes, this step is bypassed. If we start with one group for all tuples (all gids

are 0) and scan each column to fix collisions, we would compute the correct gids without

using hashes. However, we would need O(ng) time for n tuples and g groups, not O(n).

void update_min_float(const float* data, const int32_t* gids,

size_t tuples, float* min_aggr_x16, size_t groups) {
if (tuples >= 16) {

const __m512i mask_lanes = _mm512_set_epi32(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);

size_t tuples_16 = tuples & -16;

do { // process 16 tuples at a time

__m512 val = _mm512_load_ps(&data[i]); // load source data

__m512i gid = _mm512_loadu_si512(&gids[i]); // load gids

// compute offset of replicated partial aggregate from gids

gid = _mm512_or_epi32(_mm512_slli_epi32(gid, 4), m_inc);

// load the min and write back current value if smaller

__m512 min = _mm512_i32gather_ps(gid, min_aggr_x16, 4);

__mmask16 k = _mm512_cmp_ps_mask(val, min, _CMP_LT_OQ);

_mm512_mask_i32scatter_ps(min_aggr_x16, k, gid, val, 4);

} while ((i = i + 16) != tuples_16);

}
while (i != tuples) { [...] } // process last tuples in scalar code

}

We use the gids as direct mapping pointers to compute the aggregate functions. If we

need to compute functions across multiple columns, we compute them block at a time.

For example, to compute sum(x*y), we compute x*y for the next block of tuples, store

the intermediate result in the cache and then use it to update the partial sum aggregates.

To avoid conflicts, we replicate the array of sums, since the sum is commutative. Sum

aggregates are updated similar to histograms for partitioning. We show the sub-operator

that computes the min() aggregate for a float column above. If we have only one group,

we update the (replicated) partial aggregates directly in registers, as shown below.

void update_min_float_single(const float* data, [...]) {
if (tuples >= 16) {

__m512 min = _mm512_load_ps(min_aggr_x16); // load aggregate

size_t tuples_16 = tuples & -16;

do { // process 16 tuples at a time

min = _mm512_min_ps(min, _mm512_load_ps(&data[i]));

} while ((i = i + 16) != tuples_16);

_mm512_store_ps(min_aggr_x16, min); // store back aggregate

}
while (i != tuples) { [...] } // process last tuples in scalar code

}



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 182

Each thread processes a separate partition. The hash table of hashes to gids, the rids

per group and the partial aggregates remain in the cache until we process all the tuples of

the partition. Since we know the number of groups, we allocate output slots by atomically

incrementing a shared counter. If the input is not partitioned, each thread processes one

block at a time and all the partial aggregates are kept in the cache. We use a special-purpose

shared hash table to link the partial aggregates of the same group across all threads. Finally,

the threads distribute, merge, and store the partial aggregates.

Arithmetic expressions used in aggregate functions is done in cache-resident buffers.

Sub-operators process each arithmetic operation on two columns or using a constant. Deci-

mals are harder because we need ensure no precision is lost by detecting arithmetic overflows

and also ensure rounding is done on decimal digits. In the VIP engine, we optimize decimal

operations using both integer and floating point operators. For additions and subtractions,

we use integer operations and compute overflows using bitwise operations. The sub-operator

to add 64-bit decimals and check for overflows is shown below.

bool add_decimal(const int64_t* in_1, const int64_t* in_2, int64_t* out, size_t tuples) {
size_t i = 0;

bool overflow = false;

if (tuples > 7) {
const __m512i m_0 = _mm512_setzero_si512();

__mmask8 k = 255; // overflow mask

do { // process 8 tuples at a time (can be unrolled further)

__m512i x = _mm512_load_epi64(&in_1[i]); // load inputs

__m512i y = _mm512_load_epi64(&in_2[i]);

__m512i z = _mm512_add_epi64(x, y); // compute z = x + y

x = _mm512_ternarylogic_epi64(x, y, z, 66); // compute bitwise (x & z) ^ (y & z)

k = _mm512_mask_cmpge_epi64_mask(k, x, m_0); // detect overflow by checking sign bit

_mm512_store_epi64(&out[i], z); // store back result

} while ((i = i + 8) != tuples_8);

if (k != 255) overflow = true; // overflow was detected

}
while (i != tuples) { [...] }
return overflow;

}

We support integer, floating point, and numeric types. Numeric types are stored as

integers, e.g., numeric(12, 2) 0.05 is stored as 5, and we use 64-bit floating point SIMD

instructions for multiplications and divisions. To compute x * y, we convert from integer

to double, evaluate x * y * 0.01, check for overflow or precision loss, and round back to

integer. In case of overflow or potential precision loss, we branch to scalar code.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 183

6.5 Experimental Evaluation

We perform all experiments in an Intel Xeon Phi 7210 CPU, based on the latest generation

of many-core platforms codenamed Knights Landing. The CPU has 64 cores running at 1.3

GHz with 4-way simultaneous multi-threading (SMT) for a total of 256 hardware threads.

The CPU also includes 16 GB of high-bandwidth on-chip MCDRAM memory and has access

to 192 GB DDR4 DRAM at 2133 MHz. We measured the load bandwidth of MCDRAM

at ∼295 GB/s, the (non-temporal) store bandwidth ∼220 GB/s and the copy bandwidth

∼170 GB/s. For DRAM, the same are 70 GB/s, 41 GB/s and 34 GB/s respectively. We

compile using ICC 18 with -O3 optimization. The OS is Linux 3.10.

In all experiments, we compare operators based on our design against query-specific

scalar code. The baseline code is hand-written (see Section 6.3.1), and is equivalent to the

output of code-generating engines. Register-resident execution [Neumann, 2011] is achieved

via -O3 optimization after we eliminate all function calls and inline the hash functions.

Finally, we ignore the compilation times, favoring the baseline, since the VIP engine does

not compile new code per query at runtime.

In Figure 6.8, we show the selection scan throughput using synthetic uniform data.

We use 1–3 integer columns (32-bit) with one predicate per column. The selectivity per

predicate is
√
s for 2 columns and 3

√
s for 3 columns (s the overall selectivity). The query-

specific code (baseline) evaluates one tuple at a time using a x && y && z expression, thus

skipping columns when a predicate is false. In the VIP design, during selection scans,

0

5

10

15

20

0

20

40

60

80

0.
1

0.
2

0.
5 1 2 5 10 20 50 10
0

0.
1

0.
2

0.
5 1 2 5 10 20 50 10
0

HBW LBW

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Selectivity	(%)

1	column 2	c. 3	c. Baseline VIP

Figure 6.8: Selection scans on uncompressed data (1–3 32-bit key columns, 1 predicate per
key column, 1 32-bit payload column)



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 184

2

8

32

128

0.
1

0.
2

0.
5 1 2 5 10 20 50 10
0

0.
1

0.
2

0.
5 1 2 5 10 20 50 10
0

HBW LBW

Th
ro
ug
hp

ut
	(i
n	

bi
lli
on

s	o
f	t
up

le
s	p

er
	

se
co
nd

)	[
lo
gs
ca
le
]

Selectivity	(%)

1	column 2	c. 3	c. Baseline VIP

Figure 6.9: Selection scans on compressed data (1–3 32-bit key columns, 1 predicate per
key column, 1 32-bit payload column)

columns are evaluated separately and bitmaps are merged in the cache. When the dataset

is loaded from fast memory (HBW), VIP is 1.7–2.9X faster and saturates the bandwidth.

The per-tuple code is compute-bound, even though it evaluates fewer predicates in total.

When the dataset is loaded from slow memory (LBW), the throughput is reduced by 4X

and both the baseline and VIP saturate the memory bandwidth.

In Figure 6.9, we repeat the experiment on dictionary compressed data using 10, 15,

and 20 bits for the 3 columns. On fast memory, VIP is 12X faster than the baseline due

to fast decompression and uses ∼60% of the memory bandwidth. On slow memory, the

performance gap is reduced since we now saturate the 70 GB/s bandwidth. The baseline is

always compute-bound and performs the same in both cases.

To evaluate complex expressions, we pick the selection from TPC-H that combines the

most predicates, the selection on table part from Q19. The expression tree in optimal

evaluation order, based on selectivities, is shown in Figure 6.10 and is neither in CNF nor

in DNF. In Figure 6.11, we show the selection throughput using both uncompressed and

30%
2.5%

4%

20%
10%

100%

p_container
=	‘SM_BOX’

p_container
=	‘SM_PACK’

p_container
=	‘SM_CASE’

p_brand	=
‘Brand#12’

p_container
=	‘SM_PKG’

p_container
=‘MED_BAG’

p_brand	=
‘Brand#23’

p_container
=‘MED_BOX’

p_container
=‘MED_PKG’

p_brand	=
‘Brand#34’

p_container
=	‘LG_CASE’

p_container
=	‘LG_PKG’

p_container
=	‘LG_BOX’

p_container
=	‘LG_PACK’

p_size	>=	1

or

and

p_size	<=	10
p_size	<=	15 p_size	<=	5

p_container
=‘MED_PACK’

and

or

or

or

andand

Figure 6.10: Expression tree for selection on part table from TPC-H Q19 (0.24% selectivity)



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 185

0

5

10

15

20

HBW LBW HBW LBW HBW LBW HBW LBW LBW HBW LBW

Raw Co/ed Raw Co/ed Raw Co/ed

SF	=	100 SF	=	1000 SF	=	10000

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

) Baseline
VIP

Figure 6.11: Selection on part table from TPC-H Q19

compressed data. The p_brand and p_container columns are char(10) with 25 and 40

distinct values respectively. The p_size column is a 32-bit integer with 50 distinct values.

When compressed, we need 5, 6, and 5 bits respectively, reducing the footprint from 24

bytes to 2 bytes (16 bits) per tuple. The payload column is p_partkey, which is accessed

for the qualifying 0.24% of tuples. We vary the scale factor (SF) of the dataset. For SF =

10000, the uncompressed data exceed the size of MCDRAM (HBW).

Our approach is 2.1–4.5X faster than the baseline and the best speedup is observed for

scanning uncompressed data on MCDRAM. The large number of predicates highlights the

efficiency of our design in handling complex expressions by handling bitmaps in the cache

instead of compiling query-specific code. Since the selectivities are low, skipping predicates

is crucial to performance, on both uncompressed and compressed data.

Both hash join and group-by aggregation use partitioning to ensure cache-conscious

execution. In Figure 6.12, we show the partitioning throughput for multiple columns and

0

30

60

90

4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

byte short int long

Th
ro
ug
hp

ut
	(i
n	
GB

/s
)

Partitions	(log)

1	column 2	c. 3	c. HBW LBW

Figure 6.12: Partition of multiple columns and types



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 186

0

0.5

1

1.5

1	&	1 3	&	1 1	&	3 3	&	3 1	&	1 3	&	1 1	&	3 3	&	3

HBW LBW

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Inner	&	outer	payload	columns

Baseline Baseline	(FK) VIP VIP	(FK)

Figure 6.13: Hash join on synthetic data (1 key, 1–3 payloads, 128M on 32M tuples)

data types. The throughput improves with more payload columns, since we reuse the

same output offsets. On fast memory (HBW), partitioning is compute-bound. As a result,

payload columns with larger types use a higher portion of the bandwidth. Since random

access occur in the cache, partitioning is up to 4X faster on MCDRAM (HBW) compared

to DRAM (LBW), matching the 4X gap in bandwidth.

In Figure 6.13, we show the throughput of hash joins for 1 integer (32-bit) key column

and 1–3 integer payload columns for both input tables. The data are synthetically generated

to be uniform random. The join uses a foreign key so the inner keys are unique and the outer

keys always find a match. The throughput is measured by the cardinality of the outer table.

We use 128M tuples for the outer table and 32M tuples for the inner table. The output

includes all the payload columns. In the baseline method, the payload columns are built

in the hash table in a row-oriented layout to avoid additional cache misses when accessing

each payload column. The hash bucket layout is query-specific as shown in Section 6.3.1.

In the baseline method, executing a key–rid join and accessing the payloads via rid would

be wasteful. In general, materializing payloads via simple rid lookup can in some cases

be prohibitively expensive [Schuh et al., 2016]. On fast memory (HBW), VIP is 1.9–2.4X

faster, if we also utilize the fact that the inner keys are unique and terminate the hash probe

per tuple as soon as a match is found (denoted FK). Without assuming a foreign key join,

VIP is 2.1–2.8X faster. On fast memory, VIP is always compute-bound. On slow memory

(LBW), VIP is 61%, 84%, 13% and 38% faster although both methods are memory-bound.

On slow memory, we use fewer partitioning passes with larger fanout per pass.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 187

0

0.4

0.8

1.2

10 30 30 100 300 10 30 30 100 300

HBW LBW HBW LBW

Orders	&	Lineitem Partsupp	 &	Lineitem

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Scale	factor

Baseline
VIP

Figure 6.14: Hash joins using the core TPC-H tables

In Figure 6.14, we join the core tables of TPC-H. We join the tables lineitem with

orders and lineitem with partsupp. The payloads are the foreign keys used to join the

core tables with the next smaller dimension tables in the schema. These joins are part of

every query that navigates multiple tables.

select l_partkey, l_suppkey, o_custkey

from lineitem, orders

where l_orderkey = o_orderkey;

The baseline method materializes the payloads using a query-specific layout for the hash

table buckets and, since the inner keys are unique, we stop hash probing on the first match.

In our approach, we use partitioning until the inner table fits in the cache and execute the

hash join in blocks of tuples to remain cache-resident. On fast memory (HBW), VIP is

1.8–2X faster for the join of table lineitem with orders and 1.6–1.7X faster for the join

of lineitem with partsupp.

select l_orderkey, l_partkey, l_suppkey

from lineitem, partsupp

where l_partkey = ps_partkey and l_suppkey = ps_suppkey;

The speedup is smaller on the join with partsupp, because in our design we evaluate

each column of the composite key separately using rids after joining on the hash values. On

slow memory (LBW), the two methods are largely equivalent. VIP is memory-bound due to

the partitioning passes while the baseline is bound by random memory accesses. Notably,

the baseline is noticeably slower for SF = 100 because the hash table is slightly larger than

the L2 cache and causes excessive cache conflicts. By using a 4X larger hash table, we can

achieve the throughput that we show for SF = 300.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 188

0
0.5
1
1.5
2

0
2
4
6
8

1 2 3 1 2 3 1 2 3 1 2 3

HBW LBW HBW LBW

100	groups 1,000,000	 groups

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Payload	columns

Baseline
VIP

Figure 6.15: Group-by aggregation on synthetic data (1 32-bit group-by key, 1–3 32-bit
payloads, 1 sum aggregate per payload, count(*), 256M tuples)

In Figure 6.15, we show the throughput of group-by aggregation on synthetic data. All

columns are 32-bit integers, we have 1 group-by key column and 1–3 payload columns. We

show the query for the case of 3 payload columns below.

select count(*), sum(x), sum(y), sum(z)

from table group by x, y, z;

The baseline approach uses a query-specific hash table to store the group-by keys and

update the partial aggregates. After the main loop has terminated, we scan through the

hash table and finalize the aggregates. If the hash table is shared, the buckets are updated

by locking the bucket via atomic instructions and spin locks. To lock the bucket we use the

counter for the count(*) aggregate. The locking mechanism incorporates both shared and

exclusive locks to avoid locking buckets before a match is found during hash probing.

For 100 groups, each thread updates a private hash table of partial aggregates. In

VIP, group-by aggregation maps the group-by keys to group ids and then computes the

aggregates by processing a block of tuples at a time. For 1 column and 1 sum, VIP is 2.2X

faster. The speedup is reduced to 1.2X for 3 columns and 3 sums. The baseline performs

the same on both fast and slow memory. VIP is up to 30% faster on fast memory.

For 1 million groups, the baseline method uses shared hash tables, while VIP uses

partitioning to fit the partial aggregates in the cache. VIP is 3.9X faster for 1 payload

column and 1 sum aggregate and 2.1X faster for 3 payloads and 3 sums. While we do not

evaluate skew here, we can extend the operator to find frequent keys by sampling and then

perform an extra pass to filter and aggregate them separately.



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 189

0% 
25% 
50% 
75% 

100% 

HBW LBW HBW LBW HBW LBW HBW LBW

1+1	payloads 3+3	payloads 1	sum 3	sums

Hash	join Group-by	 aggregation

Ti
m
e	
pe
r	s
te
p	
(%
)

Partition	1 Partition	2/3 Shuffle Join	/	Aggregate

Figure 6.16: Step breakdown for join and aggregation

In Figure 6.16, we show the percentage of time spent on each step for hash join and

group-by aggregation on synthetic data. We use the same settings as Figures 6.13 and 6.15

and vary the payload columns. On slow memory (LBW), hash joins perform fewer parti-

tioning passes and the last join step takes ∼20% of the total execution time. For group-by

aggregation, the last aggregation step takes a smaller fraction of the total time on slow

memory, since the aggregates are very simple.

To evaluate VIP on a group-by aggregation with many aggregates and arithmetic ex-

pressions, we use TPC-H Q1. The group-by aggregation step of Q1 is shown below. We

use the smallest data type that fit the values of each column, which is a 16-bit integer for

l_quantity, an 8-bit decimal for l_tax, an 8-bit decimal for l_discount, and a 32-bit

decimal for l_extendedprice. The l_returnflag and l_linestatus group-by keys are

both 1-byte strings. Since there are no null values in TPC-H, we can reuse the count(*)

aggregate to compute the compute the avg aggregates as well. These optimizations are

applied to both the baseline query-specific code and in the VIP input.

select l_returnflag, l_linestatus,

sum(l_quantity), -- 64-bit sum

sum(l_extendedprice), -- 64-bit sum

sum(l_extendedprice * (1 - l_discount)), -- 64-bit sum expression rounded

sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)), -- 64-bit sum expression rounded

avg(l_quantity), -- reuse the sum and count

avg(l_extendedprice), -- reuse the sum and count

avg(l_discount) -- compute separate sum and reuse count

count(*) -- the count used for average

from lineitem

group by l_returnflag, l_linestatus;



CHAPTER 6. QUERY EXECUTION ENGINES FOR THE MANY-CORE ERA 190

0

2

4

6

10 30 100 100 300 10 30 100 100 300

HBW LBW HBW LBW

With	group	by Without	 group	by

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Scale	factor

Baseline
VIP

Figure 6.17: Group-by aggregation step from TPC-H Q1

In the baseline method, we compute the expressions one tuple at a time, keep the column

values in registers, and update the partial aggregates in thread-private hash tables. In the

VIP design, we compute one expression at a time for the next block of tuples and keep

the intermediate results in the cache. We avoid recomputing common sub-expressions by

reusing intermediate results across aggregates. As shown in Figure 6.17, VIP is 2.7–3.2X

faster regardless of memory type. Estimating the groups is an order of magnitude faster

here. Finally, we execute the same query without the group-by clause. Both methods now

keep the partial aggregates in registers. In VIP, we compute each expression and aggregate

separately for the next block of tuples. In the baseline method, we compute all aggregates

for one tuple a time at once. VIP is 3.6–4.3X faster on both memory types.

6.6 Conclusion

We studied analytical query execution engine designs on the latest many-core CPUs. Com-

bining a state-of-the-art design from mainstream CPUs with SIMD vectorization under-

utilizes the features of many-core CPUs due to being bound by random memory accesses.

Instead, we proposed VIP, a query engine built bottom-up from pre-compiled data-parallel

sub-operators, implemented entirely in SIMD, while utilizing the high-bandwidth on-chip

MCDRAM of many-core CPUs to facilitate cache-conscious execution. VIP outperforms

query-specific hand-written operators even if we ignore the compilation overhead. The VIP

design effectively utilizes the hardware features of many-core CPUs and will also be relevant

for the upcoming mainstream CPUs that will provide at least some of these features.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 191

Chapter 7

Conclusions and Future Work

In this thesis, we optimized analytical query execution for all layers of modern hardware.

Each chapter focused on a set of hardware layers, network, NUMA, main memory, processor

caches, and the pipeline within each processor core. In each chapter, we also reuse ideas from

other chapters, highlighting the fact that hardware conscious query execution optimizations

are tightly coupled. In order to provide high-performance analytical query execution, while

effectively utilizing modern hardware features, we need to apply the optimizations across

layers in unison.

In Chapter 2, we introduced track join, a distributed join algorithm for minimal net-

work traffic. Track joins avoids redundant transfers of tuples over the network by logically

decomposing into Cartesian products and by generating optimal transfer schedules for each

distinct join key. We motivated our work using a commercial database system where we

showed that we can spend a significant amount of execution time transferring tuples over

the network. Using track join, we provide an additional algorithm to trade-off CPU time

for network traffic. We compared track join against hash join using both synthetic and real

workloads and showed that track join always outperforms hash join in terms of network

traffic. Furthermore, track join takes advantage of pre-existing locality to widen the gap

against hash join.

Track join can facilitate complex strategies for data placement since it automatically

identifies and takes advantage of locality. The typical placement strategies use hash dis-

tribution on one or more attributes but still need to redistribute the data to join on any



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 192

other attribute. Hash join eliminates all network traffic only if the data are pre-partitioned

based on hashing. On the other hand, track join eliminates most network traffic as long as

the matching tuples are on the same nodes. Thus, we can potentially use more advanced

placement strategies to cluster matching tuples across multiple dimensions and then use

track join to detect the collocated matching tuples and avoid transferring them over the

network. Even in the absence of locality, track join naturally adapts between broadcast join

and hash join. Thus, we can use it for joins on intermediate results when the cardinalities

cannot be estimated with sufficient confidence.

To reduce the end-to-end execution time, we can stress the overlap of CPU processing

with network transfers by splitting the input in parts that are executed in parallel. Then, we

can pipeline the different phases of different parts, executing a different phase of each part

at the same time. Thus, if a phase is CPU-bound while another phase is network-bound,

we overlap them to better utilize the hardware. Additionally, if the network transfers are

not balanced, we can relax the requirement for minimal network traffic and transfer data

to other nodes to ensure their CPUs do not remain idle.

In Chapter 3, we studied a multiple partitioning variants across all layers of the memory

hierarchy. Partitioning is a vital operator for in-memory query execution since it facilitates

cache-resident execution by eliminating cache misses. Prior to our work, certain types

of partitioning were prohibitively expensive and there was no practical space-time trade-off

since any in-place partitioning algorithm would be significantly slower than the non-in-place

counterpart. In our work, we introduced the first large-scale in-place partitioning algorithm,

showed how to minimize the transfers across CPUs via the NUMA interconnection layer,

and designed a SIMD-based range index to optimize the computation of range partitioning

function, making range partitioning comparably fast with radix or hash partitioning.

We show that all partitioning variants can be efficient and provide practical trade-offs

between time and space. This work can serve as a tool for building other operations such as

joins and aggregation by combining the most suitable partitioning variants that best meet

the design goals. We highlight the versatility of the different partitioning variants by using

them to build multiple sorting algorithms that have different advantages and disadvantages.

We build time-efficient sorting using LSB radix-sort, space-efficient sorting using in-place



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 193

MSB radix-sort, and skew-efficient sorting using comparison-based sorting via range par-

titioning. All these sorting algorithms are the fastest to date in their respective category,

highlighting the efficiency of our algorithms and implementations across all partitioning

variants.

In Chapter 4, we studied lightweight in-memory compression. Databases use dictionary

compression that allows queries to be executed directly on the compressed data. The dic-

tionary encoding bits can be stored in multiple variants with different trade-offs. The two

main variants is horizontal bit packing, where the bits are stored contiguously, and vertical

bit packing, where the bits are interleaved. In our work, we optimized the compression and

decompression of vertical bit packing beyond an order of magnitude using SIMD instruc-

tions. We also reimplemented introducing slight improvements to other variants. In our

evaluation, we compare the compression, decompression, and selection scan speed of hori-

zontal and vertical bit packing across multiple configurations. Our evaluation highlights the

trade-offs between the encoding variants, showing that horizontal bit packing is easier to

decompress but vertical bit packing allows for very fast scans without incurring prohibitive

cost in compressing or decompressing the layout.

In Chapter 5, we presented advanced SIMD vectorization techniques for the most fun-

damental in-memory database operators including random-access operators that are not

sequential and hence not inherently data parallel. Selection scans and compression are

standard use cases for SIMD since the data access is contiguous and in most cases already

data parallel. However, for operations such as hash tables, the memory access pattern is

non-sequential, thus limiting the effectiveness of basic SIMD instructions. In this work, we

extend SIMD vectorization to cover non-sequential operators covering almost all in-memory

query execution operators. Initially, we define a set of fundamental vectorization operations

for contiguous and non-contiguous memory access that we reuse in our vectorized implemen-

tations of multiple database operators. Then, we describe vectorized algorithms for building

and probing hash tables with multiple hashing schemes as well as other non-sequential access

data structures such as Bloom filters. We also describe vectorized algorithms for in-memory

partitioning. Finally, we combine our vectorized algorithms to build sorting and multiple

hash join variants.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 194

Our vectorized algorithms maximize efficiency for compute-bound query execution for

any SIMD-capable hardware without relying on special instructions besides for the basic

non-contiguous memory accesses, namely gathers and scatters. In contrast to ad-hoc vector-

ized SIMD implementations by earlier work, our vectorized algorithms utilize all vector lanes

regardless of the size of the vector and are designed to be more efficient as the vector size

increases and outperform scalar code by almost an order of magnitude even for operations

that are not data parallel. Our vectorized algorithms transform complicated control flow

dependencies into data parallel data flow dependencies without utilizing operator-specific

ad-hoc optimizations and without changing the layout of the data structures to match the

SIMD layout. As a result, they can be used to implement vectorized implementations for

the most important database operators across multiple SIMD instruction sets or hardware

generations with different SIMD register sizes.

In our work, we also highlight the impact of SIMD vectorization in determining the best

algorithm for each database operator. For instance, we show that non-partitioned hash joins

are faster than partitioned hash joins using scalar code but partitioned hash joins become

significantly faster if SIMD is used for both. In general, compute-bound algorithms are

expected to get a substantial speedup from SIMD vectorization potentially outperforming

the alternatives that were measured to be faster in scalar code. Moreover, our work shows

that simple CPU cores can be comparably fast to complex cores for in-memory query

execution, raising the question for which type of hardware is more efficient or more energy

efficient for database workloads.

In Chapter 6, we proposed VIP, a new query engine design to more effectively utilize

the features of the latest many-core CPUs, namely large SIMD vectors and high-bandwidth

memory. Query compilation and operator pipelining form the most popular design for

analytical database execution engines on mainstream CPUs. We combine this design with

advanced SIMD vectorization using the vectorization techniques described in Chapter 5.

Nevertheless, the mainstream CPU design diminishes the impact of both SIMD vectorization

and high-bandwidth memory due to being dominated by random memory accesses and cache

misses. As a result, we propose a new design, VIP, based on the decomposition of database

operators into pre-compiled data-parallel sub-operators that are designed to be data parallel



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 195

and are implemented entirely in SIMD. The design favors partitioning and cache conscious

execution by taking advantage of the high-bandwidth on-chip memory. The high-bandwidth

memory has significantly faster bandwidth than DRAM but not as much better latency.

Thus, partitioning and cache conscious execution take advantage of the bandwidth boost

and are unaffected by memory latency since they eliminate cache misses.

The VIP design uses vectorization in the context of a realistic query engine. We support

multiple data types and complex predicates, in contrast to earlier work that uses keys and

record identifiers and is typically limited to a single basic predicate per operator. VIP

is the first fully vectorized query execution engine and was designed bottom up from sub-

operators designed to be data parallel, in contrast to SIMD re-implementations of operators

designed and implemented in scalar code. VIP executes operators for a block of tuples at a

time but each sub-operator processes a single column for that block. The sub-operators are

pre-compiled and are not query specific, thus avoiding the per-query compilation overhead.

In VIP, we also introduce the first columnar group-by algorithm, we show how to combine

selection scans with compression while avoiding to decompress data that can be skipped,

and we describe how to evaluate numeric operators in SIMD. Finally, our evaluation shows

that, on many-core CPUs, the VIP design achieves significantly higher performance than the

design used in mainstream CPUs by utilizing their additional hardware features, advanced

SIMD vectorization and high-bandwidth memory, more effectively.

In VIP, we used early materialization of payloads as part of each operator. Nevertheless,

the engine design can also support late materialization as well as hybrid approaches. Late

materialization may be preferable when the number of payload columns is high or the data

types are large. We plan to further study materialization strategies and operators built in

the VIP design using data-parallel sub-operators. Furthermore, we can extend the design

by pipelining multiple operators when cache misses cannot occur. For instance, we can

combine the output of the selection scan with the input of the first partitioning pass, hash

join, or group-by aggregation, while still processing one block of tuples at a time with

sub-operators.

Overall, our work optimizes analytical query execution by focusing on a different layer

of the hardware hierarchy in each chapter. Certain optimizations can be either orthogonal



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 196

to optimizations on other layers and can be applied independently of other design decisions.

Other optimizations require a design that enforces specific design choices on other layers.

Even in the latter case, using each optimization as proposed here in isolation will still

improve performance. For example, even if we do not use partitioning and cache resident

execution, SIMD vectorization will still marginally improve performance for queries whose

execution time is dominated by cache misses, and will still provide significant speedups to

queries with high selectivity and small joins. Track join can also work in a pipelined and

a non-pipelined fashion without affecting the goal of minimizing the network traffic. A

final example is the use of NUMA-aware partitioning to minimize transfers across CPUs.

While this optimization works in synergy with cache resident execution, we can minimize

the partitioning fanout to minimize transfers across CPUs without enforcing cache-resident

execution for each CPU and NUMA region.

This thesis presents holistic solutions to well defined problems that we believe to be

substantial steps towards saturating the hardware capabilities for analytical query execu-

tion. We present a generic distributed join algorithm for minimizing network traffic that

is orthogonal to compression, schema properties, or data organization within the database.

The present partitioning variants we study cover all types of partitioning and offer practical

time and space trade-offs without limiting to a specific partitioning variant which might not

be suitable to meet certain design goals. The compression algorithms also cover multiple

variants and present practical trade-offs. Our work on vectorized algorithms is designed to

take advantage of future hardware with stronger SIMD capabilities for nearly all database

operators and the fundamental operations to the control flow to data flow transformation

can be reused to extend vectorization to other algorithms. Finally, the VIP design uses

these advanced optimizations in the premise of a realistic analytical query engine combin-

ing optimizations from multiple hardware layers into a single synergistic design.

Finally, we believe that the algorithms and implementations presented in this thesis

transcend the current and near-future generation of hardware advances and are not bound

by artifacts specific to the current generation of hardware capabilities, including network

and memory technologies as well as mainstream and non-mainstream processors and co-

processors. For instance, we introduced a distributed join algorithm that introduces a



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 197

trade-off between CPU and network. Future processors and network technologies will always

present trade-offs between scale-up to more advanced shared-memory machines and scale-

out to larger numbers of machines. Furthermore, we presented techniques for optimal usage

of the memory hierarchy layers and as the number of memory layers increases over time,

the same trend is likely to continue and introduce additional layers. Advances on modern

processors are focused on extracting additional performance in the same energy budget by

evolving on three sources of parallelism: instruction level parallelism, thread parallelism,

and data parallelism. Here, we described generic vectorized algorithms that fully utilize

the data parallelism capabilities provided by modern and future processors. Providing the

platform for query execution engines to effectively utilize data parallelism is a vital step

towards hardware-conscious database systems.



BIBLIOGRAPHY 198

Bibliography

[Abadi et al., 2006] Daniel J. Abadi, Samuel R. Madden, and Miguel C. Ferreira. Integrat-

ing compression and execution in column-oriented database systems. In SIGMOD, pages

671–682, 2006.

[Abadi et al., 2007] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R.

Madden. Materialization strategies in a column-oriented DBMS. In ICDE, pages 466–

475, 2007.

[Afrati and Ullman, 2010] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a

map-reduce environment. In EDBT, pages 99–110, 2010.

[Alagiannis et al., 2014] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2o:

A hands-free adaptive store. In SIGMOD, pages 1103–1114, 2014.

[Albutiu et al., 2012] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann.

Massively parallel sort-merge joins in main memory multi-core database systems.

PVLDB, 5(10):1064–1075, June 2012.

[Arulraj et al., 2016] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the

archipelago between row-stores and column-stores for hybrid workloads. In SIGMOD,

pages 583–598, 2016.

[Bakkum and Skadron, 2010] Peter Bakkum and Kevin Skadron. Accelerating SQL

database operations on a GPU with CUDA. In GPGPU, pages 94–103, 2010.



BIBLIOGRAPHY 199

[Balkesen et al., 2013a] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer

Ozsu. Multicore, main-memory joins: Sort vs. hash revisited. PVLDB, 7(1):85–96,

September 2013.

[Balkesen et al., 2013b] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer

Ozsu. Main-memory hash joins on multi-core cpus: Tuning to the underlying hardware.

In ICDE, pages 362–373, 2013.

[Barthels et al., 2015] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Koss-

mann. Rack-scale in-memory join processing using rdma. In SIGMOD, pages 1463–1475,

2015.

[Barthels et al., 2017] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and

Torsten Hoefler. Distributed join algorithms on thousands of cores. PVLDB, 10(5):517–

528, January 2017.

[Bernstein and Chiu, 1981] Philip A. Bernstein and Dah-Ming W. Chiu. Using semi-joins

to solve relational queries. J. ACM, 28(1):25–40, January 1981.

[Bernstein et al., 1981] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christo-

pher L. Reeve, and James B. Rothnie. Query processing in a system for distributed

databases. TODS, 6:602–625, 1981.

[Binnig et al., 2016] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and

Erfan Zamanian. The end of slow networks: It’s time for a redesign. PVLDB, 9(7):528–

539, March 2016.

[Blanas et al., 2011] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation

of main memory hash join algorithms for multi-core CPUs. In SIGMOD, pages 37–48,

2011.

[Bloom, 1970] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

CACM, 13(7):422–426, July 1970.

[Boncz et al., 2005] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:

Hyper-pipelining query execution. In CIDR, 2005.



BIBLIOGRAPHY 200

[Cheng et al., 2017] Xuntao Cheng, Bingsheng He, Xiaoli Du, and Chiew Tong Lau. A

study of main-memory hash joins on many-core processor: A case with intel knights

landing architecture. In CIKM, pages 657–666, 2017.

[Chhugani et al., 2008] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy,

Mostafa Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.

Efficient implementation of sorting on multi-core SIMD CPU architecture. In VLDB,

pages 1313–1324, 2008.

[Cho et al., 2015] Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent

Kulandaisamy, and Ruchir Puri. PARADIS: An efficient parallel algorithm for in-place

radix sort. PVLDB, 8(12):1518–1529, August 2015.

[Chu et al., 2015] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to

practice: Efficient join query evaluation in a parallel database system. In SIGMOD,

pages 63–78, 2015.

[Cieslewicz and Ross, 2007] John Cieslewicz and Kenneth A. Ross. Adaptive aggregation

on chip multiprocessors. In VLDB, pages 339–350, 2007.

[Cieslewicz et al., 2010] John Cieslewicz, Kenneth A. Ross, Kyoho Satsumi, and Yang Ye.

Automatic contention detection and amelioration for data-intensive operations. In SIG-

MOD, pages 483–494, 2010.

[Cudre-Mauroux et al., 2009] Philippe Cudre-Mauroux, Hideaki Kimura, K.-T. Lim, Jen-

nie Rogers, R. Simakov, Emad Soroush, Pavel Velikhov, Daniel L. Wang, Magdalena

Balazinska, Jacek Becla, David J. DeWitt, B. Heath, D. Maier, Samuel R. Madden, Jig-

nesh M. Patel, Michael R. Stonebraker, and Stan B. Zdonik. A demonstration of sciDB:

A science-oriented DBMS. PVLDB, 2(2):1534–1537, August 2009.

[Dageville et al., 2016] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim

Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin

Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven

Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. The

snowflake elastic data warehouse. In SIGMOD, pages 215–226, 2016.



BIBLIOGRAPHY 201

[Dean and Ghemawat, 2004] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified

data processing on large clusters. In OSDI, pages 137–150, 2004.

[DeWitt and Gray, 1992] David J. DeWitt and Jim Gray. Parallel database systems: the

future of high performance database systems. CACM, 35:85–98, 1992.

[DeWitt et al., 1984] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,

Michael R. Stonebraker, and David A. Wood. Implementation techniques for main mem-

ory database systems. In SIGMOD, pages 1–8, 1984.

[DeWitt et al., 1990] David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider,

Allan Bricker, Hui-I. Hsiao, and Rick Rasmussen. The Gamma database machine project.

TKDE, 2(1):44–62, March 1990.

[Epstein et al., 1978] Robert Epstein, Michael Stonebraker, and Eugene Wong. Distributed

query processing in a relational data base system. In SIGMOD, pages 169–180, 1978.

[Feng and Lo, 2015] Ziqiang Feng and Eric Lo. Accelerating aggregation using intra-cycle

parallelism. In ICDE, pages 291–302, 2015.

[Feng et al., 2015] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. ByteSlice: Pushing

the envelop of main memory data processing with a new storage layout. In SIGMOD,

pages 31–46, 2015.

[Flajolet and Martin, 1985] Philippe Flajolet and G. Nigel Martin. Probabilistic counting

algorithms for data base applications. J. Comput. Syst. Sci., 31(2):182–209, September

1985.

[Fowler et al., 2017] Glenn Fowler, Landon Curt Noll, Kiem-Phong Vo, Donald Eastlake,

and Tony Hansen. The FNV non-cryptographic hash algorithm. Technical report, 2017.

http://www.ietf.org/internet-drafts/draft-eastlake-fnv-13.txt.

[Frey et al., 2009] Philip W. Frey, Romulo Goncalves, Martin L. Kersten, and Jens Teubner.

Spinning relations: high-speed networks for distributed join processing. In DaMoN, pages

27–33, 2009.



BIBLIOGRAPHY 202

[Graefe, 1994] Goetz Graefe. Volcano: An extensible and parallel query evaluation system.

TKDE, 6(1):120–135, February 1994.

[Grund et al., 2010] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe

Cudre-Mauroux, and Samuel R. Madden. HYRISE: A main memory hybrid storage

engine. PVLDB, 4(2):105–116, November 2010.

[Gupta et al., 2015] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul

Pathak, Stefano Stefani, and Vidhya Srinivasan. Amazon redshift and the case for simpler

data warehouses. In SIGMOD, pages 1917–1923, 2015.

[Hofmann et al., 2014] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein.

Comparing the performance of different x86 SIMD instruction sets for a medical imaging

application on modern multi- and manycore chips. CoRR, arXiv:1401.7494, 2014.

[Holloway et al., 2007] Allison L. Holloway, Vijayshankar Raman, Garret Swart, and

David J. DeWitt. How to barter bits for chronons: Compression and bandwidth trade

offs for database scans. In SIGMOD, pages 389–400, 2007.

[Idreos et al., 2007] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database

cracking. In CIDR, pages 68–78, 2007.

[Inoue and Taura, 2015] Hiroshi Inoue and Kenjiro Taura. SIMD- and cache-friendly algo-

rithm for sorting an array of structures. PVLDB, 8(11):1274–1285, July 2015.

[Inoue et al., 2007] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio

Nakatani. AA-sort: A new parallel sorting algorithm for multi-core SIMD processors.

In PACT, pages 189–198, 2007.

[Inoue et al., 2014] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. Faster set intersec-

tion with SIMD instructions by reducing branch mispredictions. PVLDB, 8(3):293–304,

November 2014.

[Jha et al., 2015] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung

Huynh. Improving main memory hash joins on Intel Xeon Phi processors: An experi-

mental approach. PVLDB, 8(6):642–653, February 2015.



BIBLIOGRAPHY 203

[Johnson et al., 2008] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret

Swart. Row-wise parallel predicate evaluation. PVLDB, 1(1):622–634, August 2008.

[Johnson et al., 2009] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ail-

amaki, and Babak Falsafi. Shore-MT: a scalable storage manager for the multicore era.

In EDBT, pages 24–35, 2009.

[Kara et al., 2017] Kaan Kara, Jana Giceva, and Gustavo Alonso. Fpga-based data parti-

tioning. In SIGMOD, pages 433–445, 2017.

[Kim et al., 2009] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D.

Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs.

hash revisited: fast join implementation on modern multi-core CPUs. PVLDB, 2(2):1378–

1389, August 2009.

[Kim et al., 2010] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-

thony D. Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.

Fast: fast architecture sensitive tree search on modern CPUs and GPUs. In SIGMOD,

pages 339–350, 2010.

[Kim et al., 2012] Changkyu Kim, Jongsoo Park, Nadathur Satish, Hongrae Lee, Pradeep

Dubey, and Jatin Chhugani. CloudRAMsort: fast and efficient large-scale distributed

RAM sort on shared-nothing cluster. In SIGMOD, pages 841–850, 2012.

[Kitsuregawa et al., 1983] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka.

Application of hash to data base machine and its architecture. New Generation Comput-

ing, 1:63–74, 1983.

[Krikellas et al., 2010] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra. Gen-

erating code for holistic query evaluation. In ICDE, pages 613–624, 2010.

[Lamport, 1975] Leslie Lamport. Multiple byte processing with full-word instructions.

CACM, 18(8):471–475, August 1975.

[Lang et al., 2016] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz,

Thomas Neumann, and Alfons Kemper. Data blocks: Hybrid OLTP and OLAP on com-



BIBLIOGRAPHY 204

pressed storage using both vectorization and compilation. In SIGMOD, pages 311–326,

2016.

[Larsen and Amarasinghe, 2000] Samuel Larsen and Saman Amarasinghe. Exploiting su-

perword level parallelism with multimedia instruction sets. In PLDI, pages 145–156,

2000.

[Lee et al., 2014] Jae-Gil Lee, Gopi Attaluri, Ronald Barber, Naresh Chainani, Oliver

Draese, Frederick Ho, Stratos Idreos, Min-Soo Kim, Sam Lightstone, Guy Lohman, Kon-

stantinos Morfonios, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Raman,

Vincent Kulandai Samy, Richard Sidle, Knut Stolze, and Liping Zhang. Joins on encoded

and partitioned data. PVLDB, 7(13):1355–1366, August 2014.

[Leis et al., 2014] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.

Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-

core age. In SIGMOD, pages 743–754, 2014.

[Lemire and Boytsov, 2015] Daniel Lemire and Leonid Boytsov. Decoding billions of inte-

gers per second through vectorization. Softw. Pract. Exper., 45(1):1–29, January 2015.

[Lemire et al., 2016] Daniel Lemire, Leonid Boytsov, and Nathan Kurz. SIMD compression

and the intersection of sorted integers. Softw. Pract. Exper., 46(6):723–749, June 2016.

[Li and Patel, 2013] Yinan Li and Jignesh M. Patel. BitWeaving: Fast scans for main

memory data processing. In SIGMOD, pages 289–300, 2013.

[Li and Ross, 1995] Zhe Li and Kenneth A. Ross. PERF join: an alternative to two-way

semijoin and Bloomjoin. In CIKM, pages 137–144, 1995.

[Li et al., 2013] Yinan Li, Ippokratis Pandis, Rene Mueller, Vijayshankar Raman, and Guy

Lohman. NUMA-aware algorithms: the case of data shuffling. In CIDR, 2013.

[Mackert and Lohman, 1986] Lothar F. Mackert and Guy M. Lohman. R* optimizer val-

idation and performance evaluation for distributed queries. In VLDB, pages 149–159,

1986.



BIBLIOGRAPHY 205

[Manegold et al., 2000a] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Opti-

mizing database architecture for the new bottleneck: memory access. J. VLDB, 9(3):231–

246, 2000.

[Manegold et al., 2000b] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. What

happens during a join? dissecting CPU and memory optimization effects. In VLDB,

pages 339–350, 2000.

[Manegold et al., 2002] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Opti-

mizing main-memory join on modern hardware. TKDE, 14(4):709–730, July 2002.

[Manegold et al., 2004] Stefan Manegold, Peter A. Boncz, Niels Nes, and Martin L. Kersten.

Cache-conscious radix-decluster projections. In VLDB, pages 684–695, 2004.

[Menon et al., 2017] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. Relaxed oper-

ator fusion for in-memory databases: Making compilation, vectorization, and prefetching

work together at last. PVLDB, 2017.

[Mühlbauer et al., 2013] Tobias Mühlbauer, Wolf Rödiger, Robert Seilbeck, Angelika

Reiser, Alfons Kemper, and Thomas Neumann. Instant loading for main memory

databases. PVLDB, 6(14):1702–1713, September 2013.

[Müller et al., 2015] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and

Franz Färber. Cache-efficient aggregation: Hashing is sorting. In SIGMOD, pages 1123–

1136, 2015.

[Mullin, 1990] James K. Mullin. Optimal semijoins for distributed database systems. TSE,

16(5):558–560, May 1990.

[Musser, 1997] David R. Musser. Introspective sorting and selection algorithms. Softw.

Pract. Exper., 27(8):983–993, August 1997.

[Neumann, 2011] Thomas Neumann. Efficiently compiling efficient query plans for modern

hardware. PVLDB, 4(9):539–550, June 2011.

[Okcan and Riedewald, 2011] Alper Okcan and Mirek Riedewald. Processing theta-joins

using mapreduce. In SIGMOD, pages 949–960, 2011.



BIBLIOGRAPHY 206

[Pagh and Rodler, 2004] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.

Algorithms, 51(2):122–144, May 2004.

[Pavlo et al., 2009] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi,

David J. DeWitt, Samuel R. Madden, and Michael Stonebraker. A comparison of ap-

proaches to large-scale data analysis. In SIGMOD, pages 165–178, 2009.

[Pirk et al., 2011] Holger Pirk, Stefan Manegold, and Martin L. Kersten. Accelerating

foreign-key joins using asymmetric memory channels. In ADMS, 2011.

[Pirk et al., 2014a] Holger Pirk, Stefan Manegold, and Martin L. Kersten. Waste not...

efficient co-processing of relational data. In ICDE, pages 508–519, 2014.

[Pirk et al., 2014b] Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, and Mar-

tin L. Kersten. Database cracking: Fancy scan, not poor man’s sort! In DaMoN, 2014.

[Pirk et al., 2015] Holger Pirk, Samuel R. Madden, and Michael Stonebraker. By their

fruits shall ye know them: A data analyst’s perspective on massively parallel system

design. In DaMoN, 2015.

[Pirk et al., 2016] Holger Pirk, Oscar Moll, Matei Zaharia, and Samuel R. Madden. Voodoo

- a vector algebra for portable database performance on modern hardware. PVLDB,

9(14):1707–1718, October 2016.

[Polychroniou and Ross, 2013] O. Polychroniou and Kenneth A. Ross. High throughput

heavy hitter aggregation for modern SIMD processors. In DaMoN, 2013.

[Polychroniou and Ross, 2014a] Orestis Polychroniou and Kenneth A. Ross. A comprehen-

sive study of main-memory partitioning and its application to large-scale comparison-

and radix-sort. In SIGMOD, pages 755–766, 2014.

[Polychroniou and Ross, 2014b] Orestis Polychroniou and Kenneth A. Ross. Vectorized

Bloom filters for advanced SIMD processors. In DaMoN, 2014.

[Polychroniou and Ross, 2015] Orestis Polychroniou and Kenneth A. Ross. Efficient

lightweight compression alongside fast scans. In DaMoN, 2015.



BIBLIOGRAPHY 207

[Polychroniou et al., 2014] Orestis Polychroniou, Rajkumar Sen, and Kenneth A. Ross.

Track join: Distributed joins with minimal network traffic. In SIGMOD, pages 1483–

1494, 2014.

[Polychroniou et al., 2015] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross.

Rethinking SIMD vectorization for in-memory databases. In SIGMOD, pages 1493–1508,

2015.

[Psaroudakis et al., 2016] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader

Sellami, and Anastasia Ailamaki. Adaptive numa-aware data placement and task schedul-

ing for analytical workloads in main-memory column-stores. PVLDB, 10(2):37–48, Oc-

tober 2016.

[Raman and Swart, 2006] Vijayshankar Raman and Garret Swart. How to wring a table

dry: Entropy compression of relations and querying of compressed relations. In VLDB,

pages 858–869, 2006.

[Raman et al., 2013] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh

Chainani, David Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone,

Shaorong Liu, Guy M. Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni

Schiefer, David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. DB2 with BLU

acceleration: So much more than just a column store. PVLDB, 6(11):1080–1091, August

2013.

[Rödiger et al., 2014] Wolf Rödiger, Tobias Mühlbauer, Philipp Unterbrunner, Angelika

Reiser, Alfons Kemper, and Thomas Neumann. Locality-sensitive operators for parallel

main-memory database clusters. In ICDE, pages 592–603, 2014.

[Rödiger et al., 2015] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neu-

mann. High-speed query processing over high-speed networks. PVLDB, 9(4):228–239,

December 2015.

[Rödiger et al., 2016] Wolf Rödiger, Sam Idicula, Alfons Kemper, and Thomas Neumann.

Flow-Join: Adaptive skew handling for distributed joins over high-speed networks. In

ICDE, pages 1194–1205, 2016.



BIBLIOGRAPHY 208

[Ross and Cieslewicz, 2009] Kenneth A. Ross and John Cieslewicz. Optimal splitters for

database partitioning with size bounds. In ICDT, pages 98–110, 2009.

[Ross, 2004] Kenneth A. Ross. Selection conditions in main memory. TODS, 29(1):132–161,

March 2004.

[Ross, 2007] Kenneth A. Ross. Efficient hash probes on modern processors. In ICDE, pages

1297–1301, 2007.

[Roussopoulos and Kang, 1991] Nick Roussopoulos and Hyunchul Kang. A pipeline n-way

join algorithm based on the 2-way semijoin program. TKDE, 3(4):486–495, December

1991.

[Roy et al., 2012] Pratanu Roy, Jens Teubner, and Gustavo Alonso. Efficient frequent item

counting in multi-core hardware. In SIGKDD, pages 1451–1459, 2012.

[Satish et al., 2010] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen,

Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on CPUs and GPUs: a case

for bandwidth oblivious SIMD sort. In SIGMOD, pages 351–362, 2010.

[Schuh et al., 2016] Stefan Schuh, Xiao Chen, and Jens Dittrich. An experimental com-

parison of thirteen relational equi-joins in main memory. In SIGMOD, pages 1961–1976,

2016.

[Seiler et al., 2008] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael

Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,

Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: A many-core

x86 architecture for visual computing. ACM Trans. Graphics, 27(3), August 2008.

[Shin, 2007] Jaewook Shin. Introducing control flow into vectorized code. In PACT, pages

280–291, 2007.

[Sidirourgos and Kersten, 2013] Lefteris Sidirourgos and Martin L. Kersten. Column im-

prints: A secondary index structure. In SIGMOD, pages 893–904, 2013.

[Sidirourgos and Mühleisen, 2017] Lefteris Sidirourgos and Hannes Mühleisen. Scaling col-

umn imprints using advanced vectorization. In DaMoN, 2017.



BIBLIOGRAPHY 209

[Sidler et al., 2017] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. Ac-

celerating pattern matching queries in hybrid cpu-fpga architectures. In SIGMOD, pages

403–415, 2017.

[Sirin et al., 2016] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki.

Micro-architectural analysis of in-memory OLTP. In SIGMOD, pages 387–402, 2016.

[Sitaridi and Ross, 2012] Evangelia A. Sitaridi and Kenneth A. Ross. Ameliorating memory

contention of olap operators on gpu processors. In DaMoN, pages 39–47, 2012.

[Sitaridi and Ross, 2013] Evangelia A. Sitaridi and Kenneth A. Ross. Optimizing select

conditions on GPUs. In DaMoN, 2013.

[Sitaridi and Ross, 2016] Evangelia A. Sitaridi and Kenneth A. Ross. Gpu-accelerated

string matching for database applications. J. VLDB, 25(5):719–740, October 2016.

[Sitaridi et al., 2016] Evangelia A. Sitaridi, Orestis Polychroniou, and Kenneth A. Ross.

SIMD-accelerated regular expression matching. In DaMoN, 2016.

[Stamos and Young, 1993] James W. Stamos and Honesty C. Young. A symmetric fragment

and replicate algorithm for distributed joins. TPDS, 4(12):1345–1354, December 1993.

[Stehle and Jacobsen, 2017] Elias Stehle and Hans-Arno Jacobsen. A memory bandwidth-

efficient hybrid radix sort on gpus. In SIGMOD, pages 417–432, 2017.

[Stepanov et al., 2011] Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J.

Ernst, and Paramjit S. Oberoi. SIMD-based decoding of posting lists. In CIKM, pages

317–326, 2011.

[Stonebraker et al., 2005] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong

Chen, Mitch F. Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel R. Mad-

den, Elizabeth O’Neil, Patrick E. O’Neil, Alexander Rasin, Nga Tran, and Stan Zdonik.

C-store: a column-oriented DBMS. In VLDB, pages 553–564, 2005.

[Stonebraker et al., 2007] Michael Stonebraker, Samuel R. Madden, Daniel J. Abadi,

Stavros Harizopoulos, Nabil Hachem, and Pat Helland. The end of an architectural

era: (it’s time for a complete rewrite). In VLDB, pages 1150–1160, 2007.



BIBLIOGRAPHY 210

[Thusoo et al., 2009] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a

warehousing solution over a map-reduce framework. PVLDB, 2(2):1626–1629, August

2009.

[Verbitski et al., 2017] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brah-

madesam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Ten-

giz Kharatishvili, and Xiaofeng Bao. Amazon aurora: Design considerations for high

throughput cloud-native relational databases. In SIGMOD, pages 1041–1052, 2017.

[Wang et al., 2017] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven

Swanson. An experimental study of bitmap compression vs. inverted list compression. In

SIGMOD, pages 993–1008, 2017.

[Wassenberg and Sanders, 2011] Jan Wassenberg and Peter Sanders. Engineering a multi

core radix sort. In EuroPar, pages 160–169, 2011.

[Willhalm et al., 2009] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plat-

tner, Alexander Zeier, and Jan Schaffner. SIMD-scan: ultra fast in-memory table scan

using on-chip vector processing units. PVLDB, 2(1):385–394, August 2009.

[Wong et al., 1985] Harry K. T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem, and

Linda Wong. Bit transposed files. In VLDB, pages 448–457, 1985.

[Wu et al., 2013] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross.

Navigating big data with high-throughput, energy-efficient data partitioning. In ISCA,

pages 249–260, 2013.

[Wu et al., 2014] Lisa Wu, Orestis Polychroniou, Raymond J. Barker, Martha A. Kim, and

Kenneth A. Ross. Energy analysis of hardware and software range partitioning. TOCS,

32(3), August 2014.

[Ye et al., 2011] Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. Scalable aggregation

on multicore processors. In DaMoN, pages 1–9, 2011.



BIBLIOGRAPHY 211

[Yu et al., 2013] Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. CS2:

a new database synopsis for query estimation. In SIGMOD, pages 469–480, 2013.

[Zamanian et al., 2015] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. Locality-

aware partitioning in parallel database systems. In SIGMOD, pages 17–30, 2015.

[Zhou and Ross, 2002] Jingren Zhou and Kenneth A. Ross. Implementing database opera-

tions using SIMD instructions. In SIGMOD, pages 145–156, 2002.

[Zukowski et al., 2006] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter A. Boncz.

Super-scalar RAM-CPU cache compression. In ICDE, 2006.


	List of Figures
	List of Tables
	1 Introduction
	1.1 Modern Hardware Hierarchy
	1.1.1 Mainstream CPUs
	1.1.2 Cache Hierarchy
	1.1.3 Main Memory and NUMA
	1.1.4 Network Layer

	1.2 Additional Background
	1.2.1 SIMD Vectorization
	1.2.2 Many Integrated Cores

	1.3 Contributions
	1.3.1 Distributed Joins with Minimal Network Traffic
	1.3.2 In-Memory Partitioning and Large-Scale Sorting
	1.3.3 Lightweight Compression Alongside Fast Scans
	1.3.4 Advanced SIMD Vectorization Techniques
	1.3.5 Query Execution Engines for the Many-Core Era

	1.4 Additional Work
	1.4.1 Heavy Hitter Aggregation for SIMD Processors
	1.4.2 Energy Analysis of Hardware and Software Range Partitioning
	1.4.3 SIMD-accelerated Regular Expression Matching

	1.5 Related Work
	1.5.1 Parallel and Distributed Databases
	1.5.2 Batch Distributed Data Processing
	1.5.3 Network-Optimized Databases
	1.5.4 Query Execution Engines
	1.5.5 Main-Memory Partitioning
	1.5.6 In-Memory Joins and Group-by Aggregation
	1.5.7 Lightweight In-Memory Compression
	1.5.8 SIMD Vectorization
	1.5.9 Databases on GPUs and FPGAs


	2 Distributed Joins with Minimal Network Traffic
	2.1 Introduction
	2.2 Track Join
	2.2.1 2-Phase Track Join
	2.2.2 3-Phase Track Join
	2.2.3 4-Phase Track Join
	2.2.4 Traffic Compression

	2.3 Query Optimization
	2.3.1 Network Cost Model
	2.3.2 Tracking-Aware Hash Join
	2.3.3 Semi-Join Filtering

	2.4 Experimental Evaluation
	2.4.1 Simulations
	2.4.2 Implementation

	2.5 Conclusion

	3 In-Memory Partitioning and Large-Scale Sorting
	3.1 Introduction
	3.2 Partitioning Variants
	3.2.1 Partitioning In-Cache
	3.2.2 Partitioning Out-of-Cache
	3.2.3 Partitioning Across NUMA Regions
	3.2.4 Radix / Hash Histogram
	3.2.5 Range Histogram

	3.3 Sorting Algorithms
	3.3.1 Setting
	3.3.2 Radixsort
	3.3.3 Comparison-Based Sorting

	3.4 Experimental Evaluation
	3.5 Conclusion

	4 Lightweight Compression Alongside Fast Scans
	4.1 Introduction
	4.2 Horizontal Bit Packing
	4.2.1 Scalar Packing and Unpacking
	4.2.2 Word-Aligned Scalar Scanning
	4.2.3 SIMD Unpacking and Scanning

	4.3 Vertical Bit Packing
	4.3.1 Scalar Packing and Unpacking
	4.3.2 SIMD Packing
	4.3.3 SIMD Unpacking
	4.3.4 Selection Scan

	4.4 Experimental Evaluation
	4.5 Conclusion

	5 Advanced SIMD Vectorization Techniques
	5.1 Introduction
	5.2 Fundamental Operations for Vectorization
	5.2.1 Logical Design
	5.2.2 Gather/Scatter Implementation
	5.2.3 Implementing Selective Loads / Stores
	5.2.4 Algorithmic Notation

	5.3 Selection Scans
	5.4 Hash Tables
	5.4.1 Linear Probing
	5.4.2 Double Hashing
	5.4.3 Cuckoo Hashing

	5.5 Bloom Filters
	5.6 Partitioning
	5.6.1 Radix / Hash Histogram
	5.6.2 Range Histogram
	5.6.3 Data Shuffling
	5.6.4 Buffered Data Shuffling

	5.7 Sorting and Hash Joins
	5.8 Experimental Evaluation
	5.8.1 Selection Scans
	5.8.2 Hash Tables
	5.8.3 Bloom Filters
	5.8.4 Partitioning
	5.8.5 Sorting and Hash Joins

	5.9 SIMD CPUs and SIMT GPUs
	5.10 Conclusion

	6 Query Execution Engines for the Many-Core Era
	6.1 Introduction
	6.2 Background
	6.2.1 Mainstream & Many-Core Processors
	6.2.2 Analytical Query Execution Engines

	6.3 Vectorized Code Generation
	6.3.1 Scalar Code Generation
	6.3.2 SIMD Code Generation

	6.4 Proposed Query Engine Design
	6.4.1 Selection Scans
	6.4.2 Compression
	6.4.3 Hash Joins
	6.4.4 Partitioning
	6.4.5 Materialization
	6.4.6 Group-by Aggregation

	6.5 Experimental Evaluation
	6.6 Conclusion

	7 Conclusions and Future Work
	Bibliography

