&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

A GComprehensive Study of Main-Memory
Partiioning and 1ts Application to
Large-Scale Comparison- and Radix-Sort

Orestis Polychroniou
Kenneth A. Ross

Usage of partitioning

“* Joins
+ Hash partition to small (cache-resident) pieces
+ Build & probe (shared-nothing) hash tables in-cache
+ Zero cache misses in the final phase
+ Best approach on single-core [Manegold et al. VLDB "00]

+ Best approach on multi-core [Kim et al. VLDB "09]

+ Aggregation
+ Hash partition to small (cache-resident) pieces
+ Update partial aggregates in-cache
+ Avoid synchronization between threads [Ye et al., DaMoN "11, Raman et al. VLDB "13]

+ Avoid contention of hot aggregates [Cieslewicz et al., SIGMOD "10]

Usage of partitioning

+ Sorting
+ A sub-problem of all other problems ...
+ Sort-merge-join
+ Sort-aggregation

s nGempression; .

<+ Radix-sort

+ Faster than merge-sort [Satish et al. SIGMOD "10, Wassenberg et al. EuroPar "11]

+ Hybrid approaches in related work

+ First range partition the data (using MSB radix)
+ Then sort using quick-sort & heap-sort [Albutiu VLDB "12]

+ Then sort using merge-sort [Balkesen VLDB "14]

Outhne

+ Discuss partitioning
+ Categorization
+ Shared-nothing partitioning
+ In-cache

+ Out-of-cache
+ Parallel in-place partitioning

+ Range partitioning

+ Apply partitioning to sorting
+ Mix all partitioning variants to create sorting algorithms with good properties
+ Each with different characteristics
+ Minimize NUMA transfers

+ Ensure load-balancing & skew-awareness

(ategories of partiioning

+ Types of partitioning
+ Hash / radix / range

+ Memory usage

+ Non-in-place / in-place

+ Parallelization model
+ Shared / shared-nothing

+ Memory hierarchy layer
<+ In-cache / out-of-cache / out-of-CPU

+ NUMA awareness
+« NUMA aware / NUMA oblivious

(ategories of partiioning

radix

hash

range

out—ofA—cache

non-in-place

A £

in-cache

partition

> shalred
NUMA NUMA
oblivious aware
shared-nothing shared

in-cache

previously known

our contributions

>

Y

in-place

in block lists

out-of-cache

In segments

Partition mn-cache

+ Non-in-place
+ Compute histogram

<+ Prefix sum to offsets

+ Transfer each tuple once

+ Input to output (separate array)

+ In-place

+ Compute histogram

+ Transfer in-place

+ Swap tuples in-place

+ Minimize “swap cycles”

—

-III:IIIII

 EERE

Partition mn-cache

+ On large working sets (larger than the cache)

+ TLB thrashing [Manegold et al. VLDB "00]
+ Best case: fanout ~ L1 TLB capacity (64 in Intel CPUs)

+ Otherwise TLB miss for every tuple

%+ Cache conflicts [Satish et al. SIGMOD “10]

+ Worst case: fanout ~ cache set-associativity (8-way in Intel CPUs)

+ Otherwise cache miss for every tuple (on top of TLB miss)

+ Cache pollution [Wassenberg et al. EuroPar "11]

+ Minimize output caching & write-combining

Partithion out-of-cache

+ Adjust in-cache version

+ Buffer each partition in-cache

+ Maintain one buffer per partition Input

Buffers

+ TLB thrashing reduced L times

+ Only 1 access out-of-cache (TLB miss)

+ For every L accesses in-cache (TLB hit)

<+ Cache conflicts reduced L times

+ Associativity irrelevant for buffer accesses

+ Write-combining bypasses private caches

Partithion out-of-cache

+ Adjust to do in-place

Input / output

<+ Transfer data in cache lines

+ Amortize out-of-cache accesses

+ “Work” on the cached buffers

+ Similar to in-cache (“swap cycles”)

<+ Data transferred across buffers

+ Recycle buffers when done
+ Flush buffer when filled

<« Refill buffer with next data

(Same)
input / output

In-place =
partitioning ATkl
across buffers

e |

o0 0o ap 0o

10

Shared-nothing partitioning

32-bit key & 32-bit payload 64-bit key & 64-bit payload
O non-in-place out-of-cache O non-in-place out-of-cache
O in-place out-of-cache O in-place out-of-cache
non-in-place in-cache non-in-place in-cache
O in-place in-cache O in-place in-cache
§ 6 — G §
Q. 4 Q.
& 3
Ly 3 Lo
e :
g g
= =
2 42
AN FH oo oAl SH OO AN H O O N o= - 00 O IaE S 00F AD T SHA GO SROSSEN
B e Sl SRS
o 5 Rl SO) OIS e
Partitioning fanout (number of Partitioning fanout (number of

partitions) partitions) 11

Parallel in-place partitioning

+ Partitioning job shared across threads

+ Non-in-place ? Easy.
+ “Interleave” histograms using prefix-sum
+ Common approach for LSB radix-sort

+ Coarse grain granularity synchronization (barriers)

Swaps by N threads
-_‘
+ In-place? Hard'! =
{1 Wi s S _-
+ As before “swap” items in-place |

‘e

+ Ensure “safe” swapping (with atomics)

+ Fine grain granularity synchronization

o

+ Impractical to synchronize for every tuple

l
o

Swaps by 1 thread
12

Parallel in-place partitioning

Partition
+ Split in two steps Inaut f:".bkiks"
:l =
+ Partition in-place and generate “blocks” > =
+ Contiguous segments are not the only way : = I
+ A “block” contains tuples from 1 partition only i
+ Traverse list-of-blocks: amortized random access

+ Can be done in-place: re-use input space

+ Partition blocks in-place

+ “Swap” blocks in-place (not tuples)
+ No buffering needed since blocks are large

+ Synchronization cost amortized

Radix / hash / range function

+ Radix partitioning

+ Trivial to compute (key >> shift) & mask

+ 1 shift & 1 logical-and (or 2 shifts)

+ Hash partitioning

+ Using multiplicative hashing (Key. * factor) o= chil

+ 1 multiplication & 1 shift

+ Minimum collisions are not useful for partitioning

+ Range partition function b
+ Binary search on sorted array of delimiters 5 {r{]}cd(:ey:
+ Very slow compared to the previous even if L1 cache resident lo =
+ Data dependent cache lookups —> L1 latency fully exposed 0 =

} while (lo <

+ hi) >> 1;
delim[mid])
mid + 1;

mid;
hid;

14

Range partitioning function

+ Compute using cache-resident SIMD range tree index

+ Index design dwords_1 = _mm_cmpeqg_epi32(x, del_ABCD);
dwords_2 = _mm_cmpeq_epi32(x, del_EFGH);
+ Store only keys = range splitters dwords_3 = _mm_cmpeq_epi32(x, del_TJKL);
dwords_4 = _mm_cmpeq_epi32(x, del_MNOP);
< Store no pointers words_1 = _mm_pack_epi32(dwords_1, dwords_2);
words_2 = _mm_pack_epi32(dwords_3, dwords_4);

bytes = _mm_pack_epilo(words_1, words_2);
bits = _mm_movemask_epi8(bytes);
dest = trailing_zero_count(bits);

+ Use SIMD to do comparisons

+ On root: “Vertical” SIMD search (see paper)

+ On nodes: “Horizontal” SIMD search: k SIMD comparisons to find which path to follow

+ Optimize for range partitioning
+ Unroll access to each tree level

+ Use different fanout per tree level

8

Histogram Generation

32-bit key & 32-bit payload 64-bit key & 64-bit payload

— range (index) = range (bs) — range (index) = range (bs)

radix hash radix hash
40 20

15

Billion tuples per second
N
)

Billion tuples per second
==
)

128
200
256
360
B2
1000
1024
1800
2048
128
200
256
360
512
1000
1024
1800
2048

Partitioning fanout Partitioning fanout

Sorting

+ Applying partitioning to sorting

+ Sorting is ubiquitous in OLAP

+ Sub-problem of joins

+ Sub-problem of aggregations

+ NUMA-aware setup
+ Array equally split in N parts, one per NUMA region

+ Sorting algorithms

+ Stable LSB radix-sort
+ In-place MSB radix-sort

%+ Comparison-sort

%

(Our) LLSB Radix-sort

+ Stable algorithm

+ Parallel LSB-radix & range partition
+ Shared across threads of same CPU (NUMA region) only

+ Sample and use C range partitions for C NUMA regions (C CPUs)

+ Shuffle data across NUMA regions using C range partitions
+ The C range partitions used with the MSB radix bits

+ Parallel radix partition iteratively

+ Shared across threads of same CPU only
+ Skip single key range partitions

+ Always saturate partitioning fanout to minimize passes

18

(Our) MSB Radix-sort

+ In-place algorithm

+ Parallel in-place range partition to split across T threads

+ Sample T range delimiters and create T delimiters using MSB radix

+ Range partition locally using 2T delimiters in-blocks

+ Shuffle range (& radix) partitioned blocks across NUMA

+ Move blocks (not tuples) to amortize synchronization cost

+ In-place radix partition recursively per thread

+ Starting with out-of-cache until parts can fit in the cache
+ Switch to in-cache and use wider fanout to create very small parts

+ Switch to insert-sort for very small parts of items (if radix bits not covered yet)

9

(Our) Comparison-sort

+ Algorithm (non-stable, non-in-place)

+ Parallel range partition & shuffle across NUMA regions
+ Shared across threads of same CPU (NUMA region) only

+ Range partition iteratively per thread

+ Dynamically share partitions across threads of same CPU
+ Sample range delimiters (load balancing)

+ Skip single key range partitions (skew efficiency)

<+ When in-cache, switch to SIMD comb-sort
+ SIMD comb-sort [Inoue et.al. PACT '07] > SIMD bitonic sort [Chhugani et.al. VLDB "08]

+ On W-wide SIMD: (n/W)logn < (n/W)log(n/W)+nlogW < (n/W)log2n

20

Sorting Results

32-bit key & 32-bit payload

O LSB ©O MSB CMP

800

Million tuples per second

1 A, 5, 10 29 50

Billion tuples

64-bit key & 64-bit payload

O ISB ©O MSB CMP
400
5®)
C
S o~
o 300
T
Q. W
3 200
Q,
is
g 100
=
0

05t sl 505 2 12.5' 589

Billion tuples

4l

Comparison of Sorting Algorithms

+ Qur sorting algorithms

<« Stable LSB radix-sort
+ Best for small key domains (LSB)

<+ Immune to skew

+ In-place MSB radix-sort
+ Best for large key domains (MSB)

+ Doubles maximum array size (in-place)

+ Comparison sort

+ Comparably efficient on all domains

<+ Faster under skew

20

Comparison of Sorting Algorithms

<+ Related work

+ In-place radix partitioning & intro-sort [Albutiu et al. VLDB "12]

+ Using in-cache variant out-of-cache & scalar intro-sort

+ Radix partitioning & merge-sort [Balkesen et al. VLDB "14]

+ Radix-based approach: ~675 million tuples / second (not a radix-sort)

+ Comparison-based approach: ~350 million tuples / second (we sort ~550 million)

+ Range-partitioning is faster than merging
+* -12.4% for 1 GB versus half (0.5 GB) [Chhugani et al. VLDB "08]
<+ -25% for 8 GB versus half (4 GB) [Balkesen et al. VLDB "14]

+ Our comparison sort: -13% for 25 billion tuples (~186 GB) versus 1 billion tuples

25

NUMA Awareness

+ NUMA (out-of-CPU) partitioning

+ Using local RAM is faster 70
+ Avoid random NUMA placement

+ Using out-of-cache variants

o0

5]

o
S 40
%+ Minimize NUMA transfers & L

<)

+ Shuffle across NUMA once =
ES2(

+ Make all other passes local

10
0

+« NUMA aware > oblivious

+ 1.23Xin 3 passes (32-bit LSB)
+ 1.53Xin 6 passes (64-bit LSB)

NUMA aware

&
B NUMA oblivious 10 tuples

LSB CMP S5 CMP
32-bit key & 64-bit key &
32-bit payload 64-bit payload

24

Conclusions

+ Partitioning variants with different properties
+ Non-in-place & in-place
+ In-cache & out-of-cache & across-NUMA
+ Range & radix & hash

+ Sorting = Partitioning
+ For radix-sort (known)

+ For comparison-sort (our result)

+ Combine partitioning variants: trade-offs
+ In-place partitioning: space/time tradeoff
+ Range partitioning: load balancing & skew etficiency

+ NUMA optimality: better scalability & performance

08

Questions

