
Track Join
Distributed Joins with  
Minimal Network Traffic

Orestis Polychroniou!
Rajkumar Sen!
Kenneth A. Ross

Local Joins
❖ Algorithms!

❖ Hash Join!

❖ Sort Merge Join!

❖ Index Join!

❖ Nested Loop Join!
!!!

❖ Spilling to disk!
❖ Bounded by disk bandwidth!

❖ When RAM resident!
❖ Scale by number of cores!

❖ Bounded by RAM bandwidth

2

RAM > Network
❖ RAM bandwidth ?!

❖ An example!
❖ 2-channel 1333 MHz RAM = ~18 GB/s!

❖ Add 4-channel RAM = ~30 GB/s!

❖ Add 4 CPUs = ~120 GB/s!
!

❖ Partition = ~1/3 of bandwidth!
❖ Partition = copy  

[Satish et.al. SIGMOD ’10,  
Wassenberg et.al. EuroPar ’11]!

!!
❖ Network bandwidth ?!

❖ Measure (partition) all-to-all!
❖ 10 Gbit Ethernet < 1 GB/s!

❖ QDR InfiniBand 4X < 3 GB/s

3

Ba
nd

w
id

th

(G
B/

se
c)

0

40

80

120

2-c
han

nel

4-c
han

nel

x4
 CPUs

0
0.6
1.2
1.8
2.4

3

10
 G

bit E
thern

et

QDR In
finiBan

d 4X

Broadcast Join

4

R

Tables /!
Nodes

S

1 2 3 4

❖ Network cost!
❖ Transfer min(|R|,|S|) * 3!

❖ Schedule transfers optimally

Hash Join

5

R

Tables /!
Nodes

S

1 2 3 4

…

…

…

…

❖ Network cost!
❖ Transfer (|R|+|S|) * 3/4!

❖ Distribution of (almost) equal partitions

❖ Pros & cons!
!

❖ Broadcast join can be expensive!

❖ Useful only if |R| << |S|!
!!

❖ Good for load balancing!

❖ Hashing randomizes the keys!
!!

❖ Bad in locality awareness!

❖ (Again) Hashing randomizes the keys!
!!

❖ Real datasets have locality!

❖ Deliberate clustering (optimization)!

❖ Time-based locality due to appends

Hash Join

6

…

…

key: X!
val: Y

key: X!
val: Z

…

…

key: X!
val: Y

Before!
partition

After!
partition

1 2 3

1 2 3

Node:

key: X!
val: Y

Track Join (2-phase)

R

S

Nodes
1 2 3 4

…

…

…

…

…

…

1 2 3 4

1) Partition unique keys

2) Distribute unique keys

Nodes

Ta
bl

es

❖ Tracking!
❖ Hash distribute join keys!

❖ Eliminate duplicates

Track Join (2-phase)

8

21 3 4

1 2 3 4

key X
nodes 1,3,4

tuples
(key=X)

tuples
(key=X)

tuples
(key=X)

21 3 4

1 2 3 4

key X
nodes 1,3,4

tuples
(key=X)

tuples
(key=X)

tuples
(key=X)

❖ Selective broadcast (last step)!
❖ For a single join key

R

S

Track Join (2-phase)
❖ 2-phase track join!

!
❖ Move R tuples to S tuple locations!

❖ S payloads stay in place: never move over the network!
!

❖ Cost: tracking + min(|R|,|S|) * repeats!
❖ min(|R|,|S|) decided by tuple width (= payload width)!

!!
❖ 3-phase track join!

!
❖ Decides tuple “direction” dynamically!

❖ Which table to move & which to keep in-place!
!

❖ Augment tracking with counts!
❖ Counts per unique key

9

Track Join (3-phase)

R

S

1 2 3 4

…

…

…

…

…

…

1 2 3 4

2) Partition unique!
keys & counts

3) Distribute unique!
keys & counts

1) Count-Aggregate!
unique keys

ke
ys

co
un

ts

Ta
bl

es

Nodes Nodes

❖ Tracking!
❖ Count-aggregate keys!

❖ Hash distribute keys & counts

Schedules / Algorithm
❖ Hash Join (cost = 10)

11

❖ 3-phase Track Join (cost = 8)

❖ 2-phase Track Join (cost = 12)

❖ 4-phase Track Join (cost = 6)

…""""""""""""""""""""""""""""""…"R" 2 0 4 0 0

…""""""""""""""""""""""""""""""…"S" 0 3 0 1 0

…""""""""""""""""""""""""""""""…"2 0 4 0 0

…""""""""""""""""""""""""""""""…"0 3 0 1 0

…""""""""""""""""""""""""""""""…"2 0 4 0 0

…""""""""""""""""""""""""""""""…"0 3 0 1 0

…""""""""""""""""""""""""""""""…"2 0 4 0 0

…""""""""""""""""""""""""""""""…"0 3 0 1 0

Track Join (4-phase)
❖ Compute optimal Cartesian product join schedule!

❖ Track using keys & counts!
❖ As in 3-phase track join!

!
❖ Optimize R to S broadcast, and S to R!

❖ Compute R to S broadcast, and S to R!

❖ Allow migration of S tuples for R to S, and R tuples for S to R!

❖ Provably optimal in linear time!

❖ Pick best (optimized) direction for migrate & broadcast!
!

❖ Execute the optimal schedule!
❖ First migrate tuples from one table!

❖ Then broadcast tuples from the other table

12

Schedule Optimization
❖ Broadcast (cost = 0 + 33)

13

❖ Migrate 9? No (cost = 13 + 16 > 28)

❖ Migrate 4? Yes (cost = 4 + 24 < 33)

❖ Migrate 6? Yes (cost = 10 + 14 < 28)

…""""""""""""""""""""""""""""""…"R" 0 4 8 9 6

…""""""""""""""""""""""""""""""…"S" 0 2 5 3 1

max"
…""""""""""""""""""""""""""""""…"0 4 8 9 6

…""""""""""""""""""""""""""""""…"0 2 5 3 1

…""""""""""""""""""""""""""""""…"0 4 8 9 6

…""""""""""""""""""""""""""""""…"0 2 5 3 1

…""""""""""""""""""""""""""""""…"0 4 8 9 6

…""""""""""""""""""""""""""""""…"0 2 5 3 1

Network Cost Approximation
❖ When to use instead of hash join ?!

❖ Using standard statistics!
❖ # tuples!

❖ # distinct keys!
!

❖ Distinguish classes of correlation (= similar cartesian products)!
❖ Use correlated sampling [Yu et.al. SIGMOD ’13]!

!
❖ Use track join!

❖ 2-phase if at least one table has unique keys!

❖ 4-phase if many key repeats or locality is expected!
!

❖ Use hash join!
❖ If payloads are small (e.g. key & record id only) and no locality exists

14

Track/Hash/Semi Joins
❖ Track join is a form of semi-join!

❖ Tracking generates schedules for valid Cartesian products only!

❖ Non-approximate like Bloom filter based semi-join (Bloom join)!

❖ Cost (of tracking) = distribute unique join keys (& counts)!
!

❖ Still may use semi-join on top of track join!

❖ Bloom filtering < tracking!
!

❖ However may skip semi-join unlike hash join!

❖ Tracking < Bloom filtering!
!!

❖ Hash join can become tracking-aware!
❖ Use record ids (rids) to track joining payloads!

❖ In the best case as good as 2-phase track join

15

Network Traffic Simulations
❖ Unique keys join (1 billion vs. 1 billion tuples)

16

N
et

w
or

k
Tr

af
fic

 (G
B)

0

30

60

90

120

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

30

60

90

120

HJ 2TJ-S 4TJ
0

30

60

90

120

H
J

2T
J-R

2T
J-S 3T

J

4T
J

Keys & Counts
Keys & Nodes
R Tuples
S Tuples

❖ R: 20 bytes!

❖ S: 60 bytes

❖ R: 40 bytes!

❖ S: 60 bytes

❖ R: 60 bytes!

❖ S: 60 bytes

Simulating Locality
❖ Simulate locality patterns and degree of locality!

❖ Experiment 1: 1 vs. 5 keys per Cartesian product!

❖ Experiment 2: 5 vs. 5 keys (=25 in result) intra-table collocated!

❖ Experiment 3: 5 vs. 5 keys intra-table & inter-table collocated

17

N
et

w
or

k
Tr

af
fic

(G

B)

0

20

40

60

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

20

40

60
H

J

2T
J-R

2T
J-S 3T

J

4T
J 0

20

40

60

H
J

2T
J-R

2T
J-S 3T

J

4T
J

Keys & Counts
Keys & Nodes
R Tuples
S Tuples

❖ 5,0,0,0,0,0,… ❖ 2,2,1,0,0,0,… ❖ 1,1,1,1,1,0,…

Simulating Locality

18

N
et

w
or

k
Tr

af
fic

(G

B)

0

20

40

60
H

J

2T
J-R

2T
J-S 3T

J

4T
J 0

20

40

60

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

20

40

60

H
J

2T
J-R

2T
J-S 3T

J

4T
J

N
et

w
or

k
Tr

af
fic

(G

B)

0

20

40

60

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

20

40

60
H

J

2T
J-R

2T
J-S 3T

J

4T
J 0

20

40

60

H
J

2T
J-R

2T
J-S 3T

J

4T
J

Real Workloads
❖ Real commercial vendor workloads!

❖ Profiled using commercial DBMS!
❖ 4 nodes x 2 CPUs (2.9 GHz) x 8 cores!

❖ QDR InfiniBand 4X!
!

❖ Extracted the most expensive queries!
❖ Extracted the most expensive join from them!

❖ Executed in the DBMS as a hash join!
!!

❖ Simulating track join!
❖ Multiple encoding schemes!

❖ Variable length types!

❖ Optimal compression schemes

19

Real Workload 1 Traffic Simulation
❖ Most expensive query of workload!

❖ Query joins 7 relations and aggregates!

❖ Most expensive join takes 23% of time!

❖ Almost entirely unique keys

20

N
et

w
or

k
Tr

af
fic

(G

B)

0
10
20
30
40
50

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

10
20
30
40
50

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

10
20
30
40
50

H
J

2T
J-R

2T
J-S 3T

J

4T
J

Keys & Counts
Keys & Nodes
R Tuples
S Tuples

❖ Fixed byte
encoding

❖ Variable byte
encoding

❖ Dictionary
compression

Real Workload 1 Traffic Simulation
❖ Most expensive query of workload!

❖ Exhibited significant locality!

❖ Shuffle the data randomly!

❖ No locality is possible now

21

N
et

w
or

k
Tr

af
fic

(G

B)

0
10
20
30
40
50

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

10
20
30
40
50

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

10
20
30
40
50

H
J

2T
J-R

2T
J-S 3T

J

4T
J

Keys & Counts
Keys & Nodes
R Tuples
S Tuples

❖ Fixed byte
encoding

❖ Variable byte
encoding

❖ Dictionary
compression

Real Workload 2 Traffic Simulation
❖ Most expensive query of workload!

❖ 2-phase suffices for unique keys!
❖ 3-phase / 4-phase are redundant!

!
❖ Workload 2 is different!

❖ No unique keys!
!

❖ Very high selectivity!
❖ R: ~40 million tuples!

❖ S: ~200 million tuples!

❖ RS: >1 billion tuples!
!

❖ Variable byte encoding!
❖ Base 100 / byte

22

N
et

w
or

k
Tr

af
fic

(G

B)

0

10

20

30

40

H
J

2T
J-R

2T
J-S 3T

J

4T
J 0

10

20

30

40

H
J

2T
J-R

2T
J-S 3T

J

4T
J

Keys & Counts
Keys & Nodes
R Tuples
S Tuples

❖ Original order ❖ Shuffled order

Real Workload Experiments
❖ Implementation!

❖ Sort for in-memory join!
!

❖ De-pipelined operators!
❖ De-couple network & CPU measurement!

❖ Experiments are invariant of network speed!
!

❖ Run on small private cluster!
❖ 4 nodes x 2 CPUs (2.66 GHz) x 4 cores!

❖ Accurately project any network speed!
!

❖ Evaluate real workloads!
❖ The same cases we simulated!

❖ On the same expensive join

23

Real Workload Time Experiments
❖ Projected (accurately) to 10 Gbit Ethernet!

❖ CPU vs. network analogous to commercial platforms!

❖ DBMS profiling platform: ~2.8X network & ~2.2X CPU!

❖ Schedule generation is fast (insignificant in workload 2)

24

Ti
m

e
(s

ec
on

ds
)

0

4

8

12

16

H
J

2T
J

3T
J

4T
J

❖ Original real
workload 1

0

4

8

12

16

H
J

2T
J

3T
J

4T
J 0

2

4

6

8

H
J

2T
J

3T
J

4T
J 0

2

4

6

8

H
J

2T
J

3T
J

4T
J

CPU
Network

❖ Shuffled real
workload 1

❖ Original real
workload 2

❖ Shuffled real
workload 2

Conclusions
❖ We introduced Track Join!

❖ For distributed joins!
❖ Not a hash join!

❖ Not a broadcast join!
!

❖ Optimize network traffic!

❖ Track matching keys using hash join!

❖ Works at join key granularity (not at hash groups)!

❖ Generate optimal Cartesian join schedules fast (and in linear time)!
!

❖ Experimental results!
❖ Reduces network traffic significantly!

❖ CPU time penalty is modest!

❖ Better with data locality

25

Questions

26

