TraCk J Oin Orestis Polychroniou

Rajkumar Sen

D IStrlbUted J OiHS Wlth Kenneth A. Ross

Minimal Network Traftic

@ COLUMBIA UNIVERSITY
OraCIe LabS IN THE CITY OF NEW YORK

l.ocal Joins

+ Algorithms
+ Hash Join
= Sort Merge Join
+ Index Join

* Nested Loop Join

= Spilling to disk
+ Bounded by disk bandwidth
» When RAM resident

» Scale by number of cores

» Bounded by RAM bandwidth

+ Network bandwidth ?

RAM > Network

+* RAM bandwidth ?

* An example

+ 2-channel 1333 MHz RAM = ~18 GB/s

» Add 4-channel RAM = ~30 GB/s '_,:*_, s

S 9

¢+ Add 4 CPUs = ~120 GB/s 5 @

on)

T m

5 : =10

+ Partition = ~1/3 of bandwidth Cg —

« Partition = copy
[Satish et.al. SIGMOD 10,
Wassenberg et.al. EuroPar "11]

* Measure (partition) all-to-all

+ 10 Gbit Ethernet <1 GB/s

= QDR InfiniBand 4X <3 GB/s

Broadcast Join

ablesi)
Nodes

+ Network cost

+ Transfer min(|RI1,1S1) *3

* Schedule transfers optimally

Hash Join

Tables /

P 3 4
Nodes
: N =
; - B

+ Network cost
% Transfer (IRI+1S51)* 3/4

* Distribution of (almost) equal partitions

Hash Join

Before
partition

+ Pros & cons

* Broadcast join can be expensive

» Useful only if IR| << |S|

* Good for load balancing Node:

- Hashing randomizes the keys

* Bad in locality awareness

(Again) Hashing randomizes the keys

* Real datasets have locality
- Deliberate clustering (optimization)

- Time-based locality due to appends partition

T'rack Join (2-phase)

» =
I =
KN

Tables

'l 8

« Tracking

* Hash distribute join keys

* Eliminate duplicates

Nodes

2 3 4

1) Partition unique keys

Nodes
s DeaieBiieied
EREE
EEEE

2) Distribute unique keys

Track Join (2-phase

« Selective broadcast (last step)

* For a single join key

1+ -..'; L55 'y N
1 :t:f‘ N1 [
RS VHEREED

key X
nodes 1,3,4

key X
nodes 1,3,4

: tuples
: (key=X)

S

4,

i % 5 = 1 2 S, .

T'rack Join (2-phase)

« 2-phase track join

* Move R tuples to S tuple locations

» S payloads stay in place: never move over the network
Cost: tracking + min(|R1|,|S1) * repeats
» min(IR1,1S1) decided by tuple width (= payload width)
« 3-phase track join

* Decides tuple “direction” dynamically

= Which table to move & which to keep in-place

* Augment tracking with counts

- Counts per unique key

T'rack Join (3-phase)

Nodes Nodes
2 3 4

S e

I l . 3) Distribute unique

keys & counts

e
B -
KN

R B EEE keys

Tables

vp
' 8

EEEE B EEE counts

1) Count-Aggregate

unique keys 2) Partition unique

keys & counts » Tracking
* Count-aggregate keys

* Hash distribute keys & counts

Schedules / Algorithm

Hash Join (cost = 10) 2-phase Track Join (cost = 12)

R ..[2|d[4]d]d.. 2 (ald|d]|q ..

T RPEEERE . o3 d]d]d ..

3-phase Track Join (cost = 8) 4-phase Track Join (cost = 6)

v

EIEICIEIED 2 %o‘] .

Ad 3| d[d][d .. a3l 1] ..

7H¢

T'rack Join (4-phase)

+ Compute optimal Cartesian product join schedule

+ Track using keys & counts

» As in 3-phase track join

* Optimize R to S broadcast, and S to R
» Compute R to S broadcast, and S to R
» Allow migration of S tuples for R to S, and R tuples for S to R

» Provably optimal in linear time

- Pick best (optimized) direction for migrate & broadcast

» Execute the optimal schedule
+ First migrate tuples from one table

+ Then broadcast tuples from the other table

117

Schedule Optmizaton

Broadcast (cost = 0 + 33)

Max

R .. |94
= .LE

8

Migrate 9? No (cost =13 + 16 > 28)

¥

9

N
|

153}

Migrate 4? Yes (cost = 4 + 24 < 33)

T3

r

41l 8 | 9

E[E[E

Migrate 6? Yes (cost = 10 + 14 < 28)

— =

ir

41819

a

2 [5] 3

Network Cost Approximation

* When to use instead of hash join ?

+ Using standard statistics
» # tuples

- # distinct keys

+ Distinguish classes of correlation (= similar cartesian products)

» Use correlated sampling [Yu et.al. SIGMOD "13]

= Use track join
» 2-phase if at least one table has unique keys

» 4-phase if many key repeats or locality is expected

+ Use hash join

- If payloads are small (e.g. key & record id only) and no locality exists

14

Track/Hash/Semi Joins

+ Track join is a form of semi-join

* Tracking generates schedules for valid Cartesian products only
- Non-approximate like Bloom filter based semi-join (Bloom join)

- Cost (of tracking) = distribute unique join keys (& counts)

Still may use semi-join on top of track join

» Bloom filtering < tracking

* However may skip semi-join unlike hash join

- Tracking < Bloom filtering

+ Hash join can become tracking-aware

« Use record ids (rids) to track joining payloads

» In the best case as good as 2-phase track join

15

Network Traffic (GB)

Network Traffic Stimulations

Unique keys join (1 billion vs. 1 billion tuples) B STuples
& R Tuples
R: 20 bytes * R:40 bytes # R: 60 bytes B Keys & Nodes
S: 60 bytes & S: 60 byteS & S: 60 byteS . Keys & COuntS
120 120 120
90 90 90
60 60
30 30
U v 0 - ¥ W = =
E;ggg H 5 D=5 4] T L E B R
o= G e S

16

Network Traffic

Simulating Locality

« Simulate locality patterns and degree of locality B S Tuples
+ Experiment 1: 1 vs. 5 keys per Cartesian product B R Tuples
_ : , B Keys & Nodes
« Experiment 2: 5 vs. 5 keys (=25 in result) intra-table collocated
B Keys & Counts
+ Experiment 3: 5 vs. 5 keys intra-table & inter-table collocated
S0 00 = 2200 1 o 1 A S A e
60 60 60
—~ 40 40 40
S
20 20 I I 20
N 1 ' T ;
= = e o e e T P
35Sl = S T = o T = S
= = =
N N N N N N

117

[L¥ [L¥
(1€ filie
S-(12 S-(12
q-(1¢: I-(12
[H [H

,MJ 2 § 8 S

"

) (17 [1¥

Q (ngit (1€

] S-(1c: 5-(12

=1 A (1T ¥-[1T =

: m (Hi (H

— m

18 8§ § -

= |

m “ (17 (1%

oy [T liic

. m-DLNW €(17
(1 ¥-[1z
(I W =

2 § R S
G) (ao)

ogjel], JI0MIsN © DYJeI], JIOMION

Real Workloads

+ Real commercial vendor workloads

* Profiled using commercial DBMS
» 4 nodes x 2 CPUs (2.9 GHz) x 8 cores
+ QDR InfiniBand 4X

+ Extracted the most expensive queries

» Extracted the most expensive join from them

» Executed in the DBMS as a hash join

+ Simulating track join
* Multiple encoding schemes

» Variable length types

- Optimal compression schemes

o

Real Workload 1 Tratfic Simulation

* Most expensive query of workload
+ Query joins 7 relations and aggregates
+ Most expensive join takes 23% of time

+ Almost entirely unique keys

Fixed byte # Variable byte
encoding encoding

g 50

ks 40

=~

®, @ 30

-

o = 20

£

0 10

4

B S Tuples
B R Tuples
B Keys & Nodes
B Keys & Counts

Dictionary
compression

Real Workload 1 Tratfic Simulation

* Most expensive query of workload B S Tuples
« Exhibited significant locality H R Tuples
+ Shuffle the data randomly e NeyE s e

B Keys & Counts

+ No locality is possible now

Fixed byte + Variable byte + Dictionary
encoding encoding compression
S 50
=
= 40 40
=
g
» % 30 30
g = 20
e xo o
T o S5 5
i
N N

Real Workload 2 Tratfic Simulation

* Most expensive query of workload

2-phase suffices for unique keys

» 3-phase / 4-phase are redundant

» Workload 2 is different

+ No unique keys Original order

40
“ Very high selectivity =
(i
©
R: ~40 million tuples ol 30
aa)
S: ~200 million tuples 'cﬁ) < 20
RS: >1 billion tuples % 10
7 0 . B
“ Variable byte encoding O e o) i e
e ey
Base 100 / byte ; a

7

40
30
20
10

S Tuples
R Tuples

Keys & Nodes
Keys & Counts

Shuffled order

Real Workload Experiments

+ Implementation

* Sort for in-memory join

» De-pipelined operators
- De-couple network & CPU measurement

- Experiments are invariant of network speed

* Run on small private cluster
- 4 nodes x 2 CPUs (2.66 GHz) x 4 cores

- Accurately project any network speed

+ Evaluate real workloads
» The same cases we simulated

- On the same expensive join

25

Real Workload Time Experiments

* Projected (accurately) to 10 Gbit Ethernet

GRLJ twork anal t ial platf S e
: vs. network analogous to commercial platforms B CPU
+ DBMS profiling platform: ~2.8X network & ~2.2X CPU
« Schedule generation is fast (insignificant in workload 2)
Original real # Shuffled real # QOriginal real # Shuffled real
workload 1 workload 1 workload 2 workload 2

16 8 8

, 4
—_—
: s

i
N

1

Time (seconds)

Qo
H o

2T]J

N
HY 0 N

P e,
T & &

417 o

AT]
AT]
2T]
317 B

24

Conclusions

+ We introduced Track Join

+ For distributed joins
» Not a hash join

- Not a broadcast join

+ Optimize network traffic
» Track matching keys using hash join
= Works at join key granularity (not at hash groups)

» Generate optimal Cartesian join schedules fast (and in linear time)

* Experimental results
» Reduces network traffic significantly
» CPU time penalty is modest
» Better with data locality

29

(Juestions

