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l.ocal Joins

+ Algorithms
+ Hash Join
= Sort Merge Join
+ Index Join

* Nested Loop Join

= Spilling to disk
+ Bounded by disk bandwidth
» When RAM resident

» Scale by number of cores

» Bounded by RAM bandwidth



+ Network bandwidth ?

RAM > Network

+* RAM bandwidth ?

* An example

+ 2-channel 1333 MHz RAM = ~18 GB/s

» Add 4-channel RAM = ~30 GB/s '_,:*_, s
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¢+ Add 4 CPUs = ~120 GB/s 5 @
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+ Partition = ~1/3 of bandwidth Cg —

« Partition = copy
[Satish et.al. SIGMOD 10,
Wassenberg et.al. EuroPar "11]

* Measure (partition) all-to-all

+ 10 Gbit Ethernet <1 GB/s

= QDR InfiniBand 4X <3 GB/s



Broadcast Join
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+ Network cost

+ Transfer min(|RI1,1S1) *3

* Schedule transfers optimally



Hash Join

Tables /
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+ Network cost
% Transfer (IRI+1S51)* 3/4

* Distribution of (almost) equal partitions



Hash Join

Before
partition

+ Pros & cons

* Broadcast join can be expensive

» Useful only if IR| << |S|

* Good for load balancing Node:

- Hashing randomizes the keys

* Bad in locality awareness

# (Again) Hashing randomizes the keys

* Real datasets have locality
- Deliberate clustering (optimization)

- Time-based locality due to appends partition



T'rack Join (2-phase)
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« Tracking

* Hash distribute join keys

* Eliminate duplicates
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1) Partition unique keys
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2) Distribute unique keys



Track Join (2-phase

« Selective broadcast (last step)

* For a single join key
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T'rack Join (2-phase)

« 2-phase track join

* Move R tuples to S tuple locations

» S payloads stay in place: never move over the network
# Cost: tracking + min(|R1|,|S1) * repeats
» min(IR1,1S1) decided by tuple width (= payload width )
« 3-phase track join

* Decides tuple “direction” dynamically

= Which table to move & which to keep in-place

* Augment tracking with counts

- Counts per unique key



T'rack Join (3-phase)
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1) Count-Aggregate

unique keys 2) Partition unique

keys & counts » Tracking
* Count-aggregate keys

* Hash distribute keys & counts



Schedules / Algorithm

Hash Join (cost = 10) 2-phase Track Join (cost = 12)
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T'rack Join (4-phase)

+ Compute optimal Cartesian product join schedule

+ Track using keys & counts

» As in 3-phase track join

* Optimize R to S broadcast, and S to R
» Compute R to S broadcast, and S to R
»  Allow migration of S tuples for R to S, and R tuples for S to R

» Provably optimal in linear time

- Pick best (optimized) direction for migrate & broadcast

» Execute the optimal schedule
+ First migrate tuples from one table

+ Then broadcast tuples from the other table
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Schedule Optmizaton

Broadcast (cost = 0 + 33)
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Network Cost Approximation

* When to use instead of hash join ?

+ Using standard statistics
» # tuples

- # distinct keys

+ Distinguish classes of correlation ( = similar cartesian products )

» Use correlated sampling [Yu et.al. SIGMOD "13]

= Use track join
» 2-phase if at least one table has unique keys

» 4-phase if many key repeats or locality is expected

+ Use hash join

- If payloads are small (e.g. key & record id only) and no locality exists
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Track/Hash/Semi Joins

+ Track join is a form of semi-join

* Tracking generates schedules for valid Cartesian products only
- Non-approximate like Bloom filter based semi-join (Bloom join)

- Cost (of tracking) = distribute unique join keys (& counts)

# Still may use semi-join on top of track join

» Bloom filtering < tracking

* However may skip semi-join unlike hash join

- Tracking < Bloom filtering

+ Hash join can become tracking-aware

« Use record ids (rids) to track joining payloads

» In the best case as good as 2-phase track join
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Network Traffic (GB)

Network Traffic Stimulations

Unique keys join (1 billion vs. 1 billion tuples) B STuples
& R Tuples
R: 20 bytes *  R:40 bytes #  R: 60 bytes B Keys & Nodes
S: 60 bytes & S: 60 byteS & S: 60 byteS . Keys & COuntS
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Network Traffic

Simulating Locality

« Simulate locality patterns and degree of locality B S Tuples
+ Experiment 1: 1 vs. 5 keys per Cartesian product B R Tuples
_ : , B Keys & Nodes
« Experiment 2: 5 vs. 5 keys (=25 in result) intra-table collocated
B Keys & Counts
+ Experiment 3: 5 vs. 5 keys intra-table & inter-table collocated
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Real Workloads

+ Real commercial vendor workloads

* Profiled using commercial DBMS
» 4 nodes x 2 CPUs (2.9 GHz) x 8 cores
+ QDR InfiniBand 4X

+ Extracted the most expensive queries

» Extracted the most expensive join from them

» Executed in the DBMS as a hash join

+ Simulating track join
* Multiple encoding schemes

» Variable length types

- Optimal compression schemes

o



Real Workload 1 Tratfic Simulation

* Most expensive query of workload
+ Query joins 7 relations and aggregates
+ Most expensive join takes 23% of time

+ Almost entirely unique keys
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Real Workload 1 Tratfic Simulation

* Most expensive query of workload B S Tuples
« Exhibited significant locality H R Tuples
+ Shuffle the data randomly e NeyE s e

B Keys & Counts

+ No locality is possible now
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Real Workload 2 Tratfic Simulation

* Most expensive query of workload

2-phase suffices for unique keys

» 3-phase / 4-phase are redundant

» Workload 2 is different

+ No unique keys Original order
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Real Workload Experiments

+ Implementation

* Sort for in-memory join

» De-pipelined operators
- De-couple network & CPU measurement

- Experiments are invariant of network speed

* Run on small private cluster
- 4 nodes x 2 CPUs (2.66 GHz) x 4 cores

- Accurately project any network speed

+ Evaluate real workloads
» The same cases we simulated

- On the same expensive join
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Real Workload Time Experiments

* Projected (accurately) to 10 Gbit Ethernet

GRLJ twork anal t ial platf S e
: vs. network analogous to commercial platforms B CPU
+ DBMS profiling platform: ~2.8X network & ~2.2X CPU
« Schedule generation is fast (insignificant in workload 2)
Original real #  Shuffled real #  QOriginal real #  Shuffled real
workload 1 workload 1 workload 2 workload 2
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Conclusions

+ We introduced Track Join

+ For distributed joins
» Not a hash join

- Not a broadcast join

+ Optimize network traffic
» Track matching keys using hash join
= Works at join key granularity (not at hash groups)

» Generate optimal Cartesian join schedules fast (and in linear time)

* Experimental results
» Reduces network traffic significantly
» CPU time penalty is modest
» Better with data locality
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