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Local Joins
❖ Algorithms!

❖ Hash Join!

❖ Sort Merge Join!

❖ Index Join!

❖ Nested Loop Join!
!!!

❖ Spilling to disk!
❖ Bounded by disk bandwidth!

❖ When RAM resident!
❖ Scale by number of cores!

❖ Bounded by RAM bandwidth

2



RAM > Network
❖ RAM bandwidth ?!

❖ An example!
❖ 2-channel 1333 MHz RAM = ~18 GB/s!

❖ Add 4-channel RAM = ~30 GB/s!

❖ Add 4 CPUs = ~120 GB/s!
!

❖ Partition = ~1/3 of bandwidth!
❖ Partition = copy  

[Satish et.al. SIGMOD ’10,  
Wassenberg et.al. EuroPar ’11]!

!!
❖ Network bandwidth ?!

❖ Measure (partition) all-to-all!
❖ 10 Gbit Ethernet  < 1 GB/s!

❖ QDR InfiniBand 4X  < 3 GB/s
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Broadcast Join
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❖ Network cost!
❖ Transfer  min(|R|,|S|) * 3!

❖ Schedule transfers optimally



Hash Join
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❖ Network cost!
❖ Transfer  (|R|+|S|) *  3/4!

❖ Distribution of (almost) equal partitions



❖ Pros & cons!
!

❖ Broadcast join can be expensive!

❖ Useful only if |R| << |S|!
!!

❖ Good for load balancing!

❖ Hashing randomizes the keys!
!!

❖ Bad in locality awareness!

❖ (Again) Hashing randomizes the keys!
!!

❖ Real datasets have locality!

❖ Deliberate clustering (optimization)!

❖ Time-based locality due to appends

Hash Join
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Track Join (2-phase)
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1) Partition unique keys

2) Distribute unique keys
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❖ Tracking!
❖ Hash distribute join keys!

❖ Eliminate duplicates



Track Join (2-phase)
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Track Join (2-phase)
❖ 2-phase track join!

!
❖ Move R tuples to S tuple locations!

❖ S payloads stay in place: never move over the network!
!

❖ Cost:  tracking + min(|R|,|S|) * repeats!
❖ min(|R|,|S|) decided by tuple width ( = payload width )!

!!
❖ 3-phase track join!

!
❖ Decides tuple “direction” dynamically!

❖ Which table to move & which to keep in-place!
!

❖ Augment tracking with counts!
❖ Counts per unique key
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Track Join (3-phase)
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❖ Count-aggregate keys!
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Schedules / Algorithm
❖ Hash Join (cost = 10)
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❖ 3-phase Track Join (cost = 8)

❖ 2-phase Track Join (cost = 12)

❖ 4-phase Track Join (cost = 6)

…""""""""""""""""""""""""""""""…"R" 2 0 4 0 0

…""""""""""""""""""""""""""""""…"S" 0 3 0 1 0

…""""""""""""""""""""""""""""""…"2 0 4 0 0

…""""""""""""""""""""""""""""""…"0 3 0 1 0

…""""""""""""""""""""""""""""""…"2 0 4 0 0

…""""""""""""""""""""""""""""""…"0 3 0 1 0

…""""""""""""""""""""""""""""""…"2 0 4 0 0

…""""""""""""""""""""""""""""""…"0 3 0 1 0



Track Join (4-phase)
❖ Compute optimal Cartesian product join schedule!

❖ Track using keys & counts!
❖ As in 3-phase track join!

!
❖ Optimize R to S broadcast, and S to R!

❖ Compute R to S broadcast, and S to R!

❖ Allow migration of S tuples for R to S, and R tuples for S to R!

❖ Provably optimal in linear time!

❖ Pick best (optimized) direction for migrate & broadcast!
!

❖ Execute the optimal schedule!
❖ First migrate tuples from one table!

❖ Then broadcast tuples from the other table
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Schedule Optimization
❖ Broadcast (cost = 0 + 33)
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❖ Migrate 9? No (cost = 13 + 16 > 28)

❖ Migrate 4? Yes (cost = 4 + 24 < 33)

❖ Migrate 6? Yes (cost = 10 + 14 < 28)

…""""""""""""""""""""""""""""""…"R" 0 4 8 9 6

…""""""""""""""""""""""""""""""…"S" 0 2 5 3 1

max"
…""""""""""""""""""""""""""""""…"0 4 8 9 6

…""""""""""""""""""""""""""""""…"0 2 5 3 1

…""""""""""""""""""""""""""""""…"0 4 8 9 6

…""""""""""""""""""""""""""""""…"0 2 5 3 1

…""""""""""""""""""""""""""""""…"0 4 8 9 6

…""""""""""""""""""""""""""""""…"0 2 5 3 1



Network Cost Approximation
❖ When to use instead of hash join ?!

❖ Using standard statistics!
❖ # tuples!

❖ # distinct keys!
!

❖ Distinguish classes of correlation ( = similar cartesian products )!
❖ Use correlated sampling [Yu et.al. SIGMOD ’13]!

!
❖ Use track join!

❖ 2-phase if at least one table has unique keys!

❖ 4-phase if many key repeats or locality is expected!
!

❖ Use hash join!
❖ If payloads are small (e.g. key & record id only) and no locality exists
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Track/Hash/Semi Joins
❖ Track join is a form of semi-join!

❖ Tracking generates schedules for valid Cartesian products only!

❖ Non-approximate like Bloom filter based semi-join (Bloom join)!

❖ Cost (of tracking) = distribute unique join keys (& counts)!
!

❖ Still may use semi-join on top of track join!

❖ Bloom filtering < tracking!
!

❖ However may skip semi-join unlike hash join!

❖ Tracking < Bloom filtering!
!!

❖ Hash join can become tracking-aware!
❖ Use record ids (rids) to track joining payloads!

❖ In the best case as good as 2-phase track join
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Network Traffic Simulations
❖ Unique keys join (1 billion vs. 1 billion tuples)
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Simulating Locality
❖ Simulate locality patterns and degree of locality!

❖ Experiment 1:  1 vs. 5 keys per Cartesian product!

❖ Experiment 2: 5 vs. 5 keys (=25 in result) intra-table collocated!

❖ Experiment 3: 5 vs. 5 keys intra-table & inter-table collocated
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Simulating Locality
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Real Workloads
❖ Real commercial vendor workloads!

❖ Profiled using commercial DBMS!
❖ 4 nodes x 2 CPUs (2.9 GHz) x 8 cores!

❖ QDR InfiniBand 4X!
!

❖ Extracted the most expensive queries!
❖ Extracted the most expensive join from them!

❖ Executed in the DBMS as a hash join!
!!

❖ Simulating track join!
❖ Multiple encoding schemes!

❖ Variable length types!

❖ Optimal compression schemes
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Real Workload 1 Traffic Simulation
❖ Most expensive query of workload!

❖ Query joins 7 relations and aggregates!

❖ Most expensive join takes 23% of time!

❖ Almost entirely unique keys
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Real Workload 1 Traffic Simulation
❖ Most expensive query of workload!

❖ Exhibited significant locality!

❖ Shuffle the data randomly!

❖ No locality is possible now
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Real Workload 2 Traffic Simulation
❖ Most expensive query of workload!

❖ 2-phase suffices for unique keys!
❖ 3-phase / 4-phase are redundant!

!
❖ Workload 2 is different!

❖ No unique keys!
!

❖ Very high selectivity!
❖ R: ~40 million tuples!

❖ S: ~200 million tuples!

❖ RS: >1 billion tuples!
!

❖ Variable byte encoding!
❖ Base 100 / byte
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Real Workload Experiments
❖ Implementation!

❖ Sort for in-memory join!
!

❖ De-pipelined operators!
❖ De-couple network & CPU measurement!

❖ Experiments are invariant of network speed!
!

❖ Run on small private cluster!
❖ 4 nodes x 2 CPUs (2.66 GHz) x 4 cores!

❖ Accurately project any network speed!
!

❖ Evaluate real workloads!
❖ The same cases we simulated!

❖ On the same expensive join
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Real Workload Time Experiments
❖ Projected (accurately) to 10 Gbit Ethernet!

❖ CPU vs. network analogous to commercial platforms!

❖ DBMS profiling platform: ~2.8X network & ~2.2X CPU!

❖ Schedule generation is fast (insignificant in workload 2)
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Conclusions
❖ We introduced Track Join!

❖ For distributed joins!
❖ Not a hash join!

❖ Not a broadcast join!
!

❖ Optimize network traffic!

❖ Track matching keys using hash join!

❖ Works at join key granularity (not at hash groups)!

❖ Generate optimal Cartesian join schedules fast (and in linear time)!
!

❖ Experimental results!
❖ Reduces network traffic significantly!

❖ CPU time penalty is modest!

❖ Better with data locality
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Questions
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