
A Comprehensive Study of Main-Memory Partitioning and
its Application to Large-Scale Comparison- and Radix-Sort

Orestis Polychroniou
Columbia University

orestis@cs.columbia.edu

Kenneth A. Ross∗
Columbia University

kar@cs.columbia.edu

ABSTRACT
Analytical database systems can achieve high throughput
main-memory query execution by being aware of the dynam-
ics of highly-parallel modern hardware. Such systems rely
on partitioning to cluster or divide data into smaller pieces
and thus achieve better parallelism and memory locality.
This paper considers a comprehensive collection of variants
of main-memory partitioning tuned for various layers of the
memory hierarchy. We revisit the pitfalls of in-cache parti-
tioning, and utilizing the crucial performance factors, we in-
troduce new variants for partitioning out-of-cache. Besides
non-in-place variants where linear extra space is used, we
introduce large-scale in-place variants, and propose NUMA-
aware partitioning that guarantees locality on multiple pro-
cessors. Also, we make range partitioning comparably fast
with hash or radix, by designing a novel cache-resident index
to compute ranges. All variants are combined to build three
NUMA-aware sorting algorithms: a stable LSB radix-sort;
an in-place MSB radix-sort using different variants across
memory layers; and a comparison-sort utilizing wide-fanout
range partitioning and SIMD-optimal in-cache sorting. To
the best of our knowledge, all three are the fastest to date on
billion-scale inputs for both dense and sparse key domains.
As shown for sorting, our work can serve as a tool for build-
ing other operations (e.g., join, aggregation) by combining
the most suitable variants that best meet the design goals.

1. INTRODUCTION
The increasing main-memory capacity of contemporary

hardware allows query execution to occur entirely in mem-
ory. If the entire database also fits in RAM, analytical
query workloads that are typically read-only need no disk
access after the initial load, setting the memory bandwidth
as the only performance bound. Since analytics are at the
core of business intelligence tasks today, the need for high-
throughput main-memory query execution is apparent.

∗This work was supported by National Science Foundation
grant IIS-0915956 and a gift from Oracle Corporation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610522.

To maximize memory bandwidth and capacity, a few CPUs
can be combined in a shared-memory system using a fast
interconnection. Such hardware combines the parallelism of
multiple multi-core CPUs with a higher aggregate memory
bandwidth. The shared-memory functionality is provided by
the non-uniform-memory-access (NUMA) interconnection,
adding an additional layer in the memory hierarchy.

In a modern multi-core CPU, the best performance is
achieved when all cores work in a shared-nothing fashion
and the working set is small enough to fit in the fast (and
private per core) caches. The same approach was more effi-
cient even before the advent of the multi-core era [11], since
random RAM accesses are too expensive out-of-cache.

Query execution is decomposed into a series of operations,
the most time consuming of which are typically joins and
aggregations. To speed up these operations using hardware
parallelism, we partition into small pieces using the keys,
then process each piece independently. For instance, an effi-
cient algorithm for joins is to hash partition in parallel until
the input is split into cache resident pieces before we execute
the join using a hash table [11]. In fact, even in-cache join
can further partition into trivial parts with very few distinct
items, before executing a nested loop to join them [7].

This paper considers a comprehensive menu of partition-
ing options across several dimensions. The three types of
partitioning are hash, radix and range partitioning, depend-
ing on the function that takes the key as an input and out-
puts the destination partition. Partitioning also depends on
the layer of the memory hierarchy that it targets, namely
in-cache, out-of-cache and across NUMA regions. Finally,
we distinguish partitioning variants based on whether they
use auxiliary space that is linear to the input size or not.

Until recently, prior work used the in-cache versions of
partitioning and, if parallel, the non-in-place variant, which
can be trivially distributed across threads. In all cases, when
the input is larger than the cache, the performance is throt-
tled by TLB misses [11] and cache conflicts [14]. Satish et al.
[14] suggested in-cache buffering to mitigate TLB misses and
Wassenberg et al. [15] used non-temporal writes on cache
line sized buffers to facilitate hardware write-combining.

Efficient out-of-cache partitioning [14, 15] assumes free
access to linear auxiliary space, to write the output. We
introduce several in-place out-of-cache partitioning variants
utilizing the same crucial performance factors: an in-place
method analogous to the shared-nothing non-in-place method;
a modified non-in-place method that generates the output
as a list of blocks that overwrites the input; and a parallel
non-in-place method that combines the previous two.

To support scaling to multiple CPUs, we consider how the
NUMA layer affects partitioning performance and modify
both in-place and non-in-place out-of-cache partitioning to
guarantee minimal transfers across NUMA boundaries, also
ensuring sequential accesses so that hardware pre-fetching
can hide the latency of the NUMA interconnection [1].

All of the above algorithms target the data shuffling part
of partitioning and implicitly assume that the partition func-
tion is cheap and can be computed at virtually no cost.
While this assumption holds for radix and hash partitioning
given a suitable hash function choice, the cost of computing
a range partition function is higher than the cost to transfer
the tuple, especially when the number of partitions increases
beyond the TLB capacity. The standard (and slow) imple-
mentation is a binary search in a sorted array of delimiters
that define the partition ranges. The slowdown is caused
by the logarithmic number of cache loads. We introduce a
specialized SIMD-based cache-resident index that speeds up
range function computation up to 6 times and makes range
partitioning a practical choice for many applications.

All partitioning variants discussed in this paper are shown
in Figure 1, where we also mark our contributions. We ap-
ply all variants to design and implement three large-scale
NUMA-aware sorting algorithms. We use sorting, rather
than joins or aggregations for two reasons. First, because
it is a wider problem that can be a sub-problem for both
join and aggregation. Second, we can apply all partitioning
variants to build unique sorting algorithms, such that each
is more scalable in distinct cases depending on input size,
key domain size, space requirements, and skew efficiency.

The first sorting algorithm we propose is stable least-
significant-bit (LSB) radix-sort based on non-in-place out-
of-cache radix partitioning [14] where we add two innova-
tions. We use hybrid range-radix partitioning to provide
perfect load balancing, and guarantee that each tuple will
cross NUMA boundaries at most once, even if the algorithm
would by default re-organize the entire array in each pass.

The second sorting algorithm we propose is an in-place
most-significant-bit (MSB) radix-sort that uses all variants
of in-place partitioning that we introduce, one for each dis-
tinctive level in the memory hierarchy: shared out-of-cache
in-place partitioning, shared-nothing out-of-cache partition-
ing, and in-cache partitioning. We reuse the range-radix idea
of LSB radix-sort for NUMA optimality and load balancing.

The third sorting algorithm we propose is a comparison-
sort that uses the newly optimized range partitioning. We
perform very few out-of-cache range partitioning passes with
a very wide fanout until we reach the cache, providing NUMA
optimality. In the cache, we employ sorting [6] that scales to
the SIMD length, modified to use the cache more effectively.

radix

hash

range partition

in-cache

non-in-place

out-of-cache

out-of-cache

in-place

in-cache

shared

in block lists

in segments

sharedshared-nothing

NUMA
oblivious

NUMA
aware

previously known

our contributions

Figure 1: Partitioning variants and contributions

We use fixed length integer keys and payloads, typical of
analytical database applications. We evaluate on both dense
and sparse key domains. If order-preserving compression is
used [12, 16], any sparse or dense domain with fixed or vari-
able length data is compacted into a dense integer domain.

Skewed workload distribution can reduce parallelism in
some näıve approaches. In our context, when we statically
distribute partitions to threads, we ensure that the parti-
tions are as balanced as possible. Specifically, we never use
radix partitioning to any range of bits to divide the work-
load. Instead, we combine range with radix partitioning to
guarantee that, if specific bit ranges have very few distinct
values, we can find delimiters that split the workload equally
among threads, independently of the key value range.

We summarize our contributions:

• We introduce several new variants for main-memory
partitioning, most notably large-scale in-place parti-
tioning and efficient range partitioning, and also guar-
antee minimal NUMA transfers across multiple CPUs.

• We combine partitioning variants to design three sort-
ing algorithms, all the fastest of their class for billion-
scale inputs, and evaluate the best options depending
on input size, key domain, available space, and skew.

The rest of the paper is organized as follows. Section 2
outlines related work. In Section 3 we describe partitioning
variants. In Section 4 we discuss sorting. Section 5 presents
our experimental results, and we conclude in Section 6.

2. RELATED WORK
We first outline related work on partitioning. Manegold et

al. [11] identified the TLB thrashing problem when näıvely
partitioning to a large number of outputs. Satish et al. [14]
introduced efficient out-of-cache partitioning and Wassen-
berg et al. [15] identified the significance of write-combining.
Manegold et al. [11] proposed partitioning to cache-resident
hash tables to join and Kim et al. [7] reused the same design
on a multi-core CPU. Wu et al. [17] proposed hardware ac-
celerated partitioning for performance and power efficiency.

We briefly outline recent work on sorting for modern hard-
ware, due to space constraints. Inoue et al. [6] proposed in-
cache SIMD-vector comb-sort followed 2-way SIMD merg-
ing. Chhugani et al. [5] proposed in-cache sorting networks
followed by cyclic merging in buffers to avoid being memory
bound. Kim et al. [7] compared sort-merge-join against hash
join, projecting that sort-merge-join will eventually outper-
form hash with wider SIMD. Satish et al. [14] compared
radix-sort and merge-sort in CPUs and GPUs on multiple
key domain sizes and concluded in favor of merge-sort. How-
ever, the result is based on small arrays and only LSB radix-
sort is considered. Wassenberg et al. [15] improved over
Satish et al. [14] and claimed that radix-sort is better. Kim
et al. [9] studied network-scale sorting maximizing network
transfer with CPU computation overlap. Albutiu et al. [1]
studied the NUMA effects using sort-merge-join on multiple
CPUs with billion-scale arrays. Balkesen et al. [4] claimed
that non-partitioning hash joins are competitive, but Balke-
sen et al. [3] improved over Blanas et al. [4] and concluded
that partitioning joins are generally faster, even without us-
ing fast partitioning [14, 15]. Balkesen et al. [2] further im-
proved joins on multiple CPUs using fast partitioning. Thus,
on the fastest CPUs [3], partitioning appears to be the best
choice for both hash joins and radix-sort-merge-joins.

3. PARTITIONING

3.1 In-Cache
We start by considering the versions that best operate

when the table fits in the cache. The non-in-place version
(Algorithm 1) uses a separate array from the input to store
the output, while the in-place version (Algorithm 2) uses one
array for both input and output. Each partition is generated
in a single segment. In-cache partitioning can be run in
parallel, if the threads operate in a shared-nothing fashion.

Algorithm 1 Non-in-place in-cache partitioning

i← 0 // P : the number of partitions
for p← 0 to P -1 do

offset[p]← i // point at the start of each partition
i← i + histogram[p]

end for
for iin ← 0 to |Tin|-1 do
t← Tin[iin] // Tin: the input table
iout ← offset[f(t.key)] + + // f : the partition function
Tout[iout]← t // Tout: the output table

end for

The simplest non-in-place version does only two random
accesses per item. When operating in the cache, we need the
output and the offset array to be cache-resident. A slightly
more complicated version of the algorithm allows the parti-
tioning to happen in-place, by swapping items across loca-
tions. In short, we start by reading an item, find the correct
partition and the output destination through the offset ar-
ray, swap it with the item stored there, and continue for
the new item until the cycle is closed. Each item is moved
exactly once and we stop when the whole array is covered.

Item swaps are performed in cycles of transfers, defined
as swap cycles. When the items are processed low-to-high
[1], the cycle starts by doing a read and then swaps until
it reaches the same location it initially read from, to write
back. This case occurs 1/P of time on average but requires
branching. In Algorithm 2 below, the partitions are written
high-to-low and swap cycles close when all items of a parti-
tion have been placed, avoiding branching for every tuple.

Algorithm 2 In-place in-cache partitioning

i← 0 // P : the number of partitions
for p← 0 to P -1 do
i← i + histogram[p]
offset[p]← i // point at the end of each partition

end for
p← iend ← 0
while histogram[p] = 0 do
p+ + // skip initial empty partitions

end while
repeat
t← T [iend] // T : the input & output table
repeat
p← f(t.key) // f : the partition function
i← −−offset[p]
T [i]↔ t // swap

until i = iend

repeat
iend ← iend + histogram[p+ +] // skip if empty

until p = P or iend 6= offset[p]
until p = P

3.2 Out-of-Cache
Out-of-cache performance is throttled by increased cache

conflicts [14] and cache pollution with output tuples [15].
TLB thrashing occurs when the number of partitions ex-
ceeds the TLB capacity [11], unless the entire dataset can
be placed in equally few large OS pages to be TLB resident.

3.2.1 Non-in-place
To mitigate these problems, prior work [14] proposed using

the cache as an intermediate buffer before writing back to
memory. Also, when write backs occur, they bypass the
higher cache levels entirely and avoid polluting the cache
[15]. Recent work [2] uses the same basic technique for out-
of-cache radix partitioning during hash join execution.

Buffering data for each partition reduces the working set
size and eliminates the TLB problem when operating in the
buffer. TLB misses still occur, but 1/L of the time, if L is the
number of tuples buffered for each partition before writing
to output. If the buffer for each partition is exactly as big as
a cache line, writing the full cache line to memory is accel-
erated by write-combining and avoids polluting the higher
cache levels with output data. The partitioning fanout is
now bounded by the number of cache lines in the fast core-
private cache, rather than the TLB entries. Buffer flushing
is optimally done using wider registers [15]. To maximize
the cache use, we use the last buffer slot to save the output
offset and access one cache line per iteration (Algorithm 3).

To extend the above method to multiple columns stored in
separate arrays, the standard case in RAM-resident database
data, we use one cache line per column in the buffer of each
partition. A generic implementation can use one cache line
per column and flush it separately depending on the column
width. We can also interleave the columns in a single tuple
and de-interleave the columns when the buffer is flushed.
For example, when partitioning arrays of 32-bit keys and
32-bit payloads, we store 64-bit tuples in the cached buffer.
Tuple (de-)interleaving can be accelerated using SIMD.

Parallel execution of the non-in-place out-of-cache parti-
tioning is trivial. The input can be split to equal pieces, one
for each thread. By executing a prefix sum of all individ-
ual histograms, one can ensure that each partition output is
written in a distinct location. Threads are only synchronized
after individual histograms are built. This is the only known
technique for parallel partitioning on shared segments.

Algorithm 3 Non-in-place out-of-cache partitioning

iout ← 0 // P : the number of partitions
for p← 0 to P -1 do

buffer[p][L-1]← iout // L: # of tuples per cache line
iout ← iout + histogram[p]

end for
for iin ← 0 to |Tin|-1 do
t← Tin[iin] // Tin/Tout: the input/output table
p← f(t.key) // f : the partition function
iout ← buffer[p][L-1] + +
buffer[p][iout mod L]← t
if iout mod L = L-1 then

for ibuf ← 0 to L-1 do
Tout[iout + ibuf − L]← buffer[p][ibuf] // no cache

end for
buffer[p][L-1]← iout + 1

end if
end for

3.2.2 In-place, Shared-Nothing Segments
Adapting the out-of-cache buffering technique to in-place

partitioning requires a more complicated approach. The ba-
sic idea is to perform the swaps inside the buffer, so that the
sparse RAM locations are accessed only 1/L of the time, re-
ducing the overhead from TLB misses. Compared with non-
in-place out-of-cache partitioning, which uses the buffer as
an intermediate layer to group tuples before writing them,
in-place out-of-cache partitioning performs all tuples swaps
in the buffer, and accesses RAM one cache line at-a-time.

Before the main partitioning loop starts, we load cache
lines from all starting partition locations. Item swaps be-
tween partitions occur using the last L tuples that are stored
in the buffer. When a buffer has swapped all L items, the
cache line is streamed to the RAM location it was loaded
from and the buffer is re-filled with the next L items of the
same partition. Thus, we operate in the buffer (L− 1)/L of
the time and do not miss in the TLB. The offsets are stored
inside the buffer and the last L items of each partition are
handled differently to eliminate branching in the inner loop.

If having T contiguous segments per partition (T is the
number of threads) is acceptable, then we can run in-place
partitioning in parallel. However, unlike the non-in-place
variant, generating one segment per partition across threads
is impossible with coarse-grained synchronization.

Algorithm 4 In-place out-of-cache partitioning

i← 0 // P : the number of partitions
for p← 0 to P -1 do

end[p]← i
i← i + histogram[p]
for ibuf ← 0 to L-1 do

buffer[p][ibuf]← T [i− (i mod L) + ibuf]
end for
item0[p]← buffer[p][0] // save 1st item out of buffer
buffer[p][0]← i
[...] // special handling for partitions smaller than L

end for
p← 0
while histogram[p] = 0 do
p+ + // skip initial empty partitions

end while
t← T [0] // T : the input & output table
loop

repeat
p← f(t.key) // f : the partition function
i← −−buffer[p][0]
buffer[p][i mod L] ↔ t // swap

until i mod L = 0 // L: # of tuples per cache line
[...] // (rare) branch for end of partition (exits here)
for ibuf ← 0 to L-1 do
T [i]← buffer[p][ibuf] // no cache

end for
for ibuf ← 0 to L-1 do

buffer[p][ibuf]← T [i− L] // cache
end for
t← item0[p]
item0[p]← buffer[p][0]
buffer[p][0]← i
if i − end[p] < L then

[...] // (rare) branch for last L items of partition
end if

end loop

3.2.3 In-place, List of Blocks
For large-scale out-of-cache partitioning, the requirement

of producing all partitions in P non-splitting segments can
be relaxed. Instead of writing each partition output sequen-
tially, we can write large blocks that only contain items from
a single partition. When the block is full, we get a new block
at some new available location. The block size must be large
enough to amortize sequential writes, but not too large, in
order to avoid external fragmentation from non-full blocks.

To access data from a single partition only, we create a
small linked list that connects all blocks that contain data
of the same partition. While the access is not entirely se-
quential as in the single segment case, the list hops after
scanning each block are amortized by a sufficient block size.

This method can be done in place, if we remove P ·B items
from the start of the input and save it in private space (B
is the block capacity in tuples). We start range partitioning
the input from the (P ·B)-th tuple. By the time any partition
is filled, the input pointer will have advanced enough for
the output to safely use the space of input we read before,
without overwriting tuples not yet read. At the end, we also
add the data initially copied out back to the correct block
lists. For each partition, only the last block of the block list
can be non-full. Thus, unused space has an upper bound of
P ·B and is negligible compared to size of the input.

Block-based partitioning has a number of nice properties.
First, it uses the fast non-in-place out-of-cache partition-
ing. Second, it does not require the pre-computation of a
histogram. Third, it can be done in place by ensuring no
overlap between input and output data. Finally thread par-
allelism is trivial; the only requirement is to connect the
linked lists of blocks from all threads for each partition.

3.2.4 In-place, Shared Segments
In order to partition and shuffle data in parallel inside the

same segment, we need fine-grain synchronization. Since us-
ing OS latches are overly expensive, we use atomic instruc-
tions. Atomic fetch-and-add reads a memory location, in-
crements it by some value and returns its previous value.
Imagine an array of items and multiple threads where each
item must be processed by exactly one thread. Each thread
can safely use item at index i which is returned by invok-
ing fetch-and-add(c,1) on a shared counter c. When done,
the thread asks for the next item to process or terminates
if i exceeds the number of items. We apply the same idea
to in-place partitioning using one shared counter for each
partition to represent the number of tuples swapped so far.

We use fetch-and-add on the shared counter of partition
p, to “lock” the cell of the next yet unread item of partition
p. We store the first index that initiates the cycle. After
swapping an arbitrary number of keys, when we return to
the original partition p, we store the last tuple in the initial
location. Only the P counters are shared across threads.

As mentioned in Section 3.1, we define a swap cycle as a
sequence of swaps that starts by reading a key from a specific
partition and after a number of swaps, returns to the same
partition to write a key in the initially read location. We
cannot know in advance how large a swap cycle will be, thus
we cannot lock all locations the cycle will go through before
actually moving tuples. Imagine a scenario where the first
partition has only one item found in the last cell of the array.
Then, one thread would perform a single swap cycle covering
all items before the last cell is reached and the cycle is closed.

To solve this first problem, threads lock only one location
at a time for one swap. However, when close to comple-
tion, multiple threads may compete for swap cycles, creating
deadlocks. For example, assuming one item per partition,
if thread t1 reads item kx (must go to lx) from location ly
(must bring ky here) and thread t2 reads kz (must go to lz)
from lx (must bring kx here), t1 will find no space for kx, be-
cause the offset of partition X was incremented by t2 when
it read kz. If t1 waits, t2 will reach ky. Then, a deadlock
will occur, since t1 holds (kx, ly) and t2 holds (ky, lx).

To solve this second problem and avoid waiting for others,
when a thread finds a partition to be full, it records both
the current key and the locked location that the swap cycle
started from. In the above example, t1 records (kx, ly) and
t2 records (ky, lx). A final fix step occurs “offline” and takes
trivial time, as the number of such pairs is upper bounded
by the number of partitions P , times the number of threads.

So far, we presented a way for multiple threads to partition
items in-place concurrently, but this solution is impractical
if used as is. First, we make no use of buffering to improve
out-of-cache performance and second, for each key we move
to its destination, we update a shared variable triggering
cache invalidations on every tuple move. To make this ap-
proach practical, we change the unit of transfer from tuples
to blocks. Each block must have a fixed size and all tuples
must belong to the same partition. We generate such blocks
using the technique described previously (see Section 3.2.3).
Out-of-cache accesses are amortized by the block size, as is
the synchronization cost of accessing shared variables.

Algorithm 5 Synchronized in-place partitioning

Pactive ← {} // Pactive: set of yet unfinished partitions
Tdeadlock ← {} // Tdeadlock: set of tuple & location pairs
i← 0 // P : the number of partitions
for p← 0 to P -1 do
Pactive ← Pactive + {p}
offset[p]← i
i← i + histogram[p]

end for
while |Pactive| > 0 do
p← any ∈ Pactive

i← used[p] + + // atomic fetch-and-add
if i ≥ histogram[p] then
Pactive ← Pactive− {p}
goto loop-end

end if
ibeg ← i + offset[p]
t← T [ibeg] // T : the input & output table
pnext ← f(t.key) // f : the partition function
while p 6= pnext do
i← used[p] + + // atomic fetch-and-add
if i ≥ histogram[pnext] then
Tdeadlock ← Tdeadlock + {t, iinit}
goto loop-end

end if
i← i + offset[pnext]
T [i]↔ t // swap
pnext ← f(t.key)

end while
T [ibeg]← t
loop-end:

end while
[...] // handle tuples that could cause deadlock (Tdeadlock)

3.3 Across NUMA
Moving RAM-resident data across multiple CPUs raises

questions about the effectiveness of NUMA RAM transfers.
Accessing remote memory locations goes through an inter-
connection channel that issues operations to remote RAM
modules, increasing the latency. Normally, random accesses
are much slower than sequential access and the gap increases
when the accesses reference remote RAM regions and go
through the CPU interconnection. Prior work [1] proposed
doing sequential accesses to remote memory, since hardware
pre-fetching hides the latency. To avoid imbalanced use of
the NUMA layer when all transfers are directed to a subset
of CPUs, we can pre-schedule the transfers and supervise
them via synchronization to ensure load balancing [10].

One way to make NUMA-oblivious code scale on multiple
CPUs is to allocate both arrays to be physically interleaved
across all RAM regions. The OS can support interleaved al-
location, where the physical locations of a single array are in-
terleaved across all NUMA regions. Randomization of page
placement balances accesses across the NUMA interconnec-
tion, but precludes NUMA locality. Thus, if we do random
accesses, we pay the extra NUMA latency. Cache-line buffer-
ing, used by out-of-cache partitioning to avoid TLB misses
and facilitate write-combining, also mitigates the NUMA
overhead. Still, we measured out-of-cache partitioning to
be up to 55% slower on four NUMA regions on interleaved
space. The overhead for single tuple random access is higher.

A more NUMA-friendly allocation is to split space into
large segments bound to a specific region. We can have one
segment per thread or one segment per NUMA region. We
use the second approach for sorting (see Section 4.1).

3.3.1 Non-in-place
Using NUMA-bound segmented allocation for threads or

CPUs and if extra space is allowed, we can ensure that all
tuples will cross the NUMA boundaries at most once. We
use shared-nothing partitioning locally and then use a sep-
arate step to shuffle across CPUs. We can use the NUMA
interconnection in a balanced way without manual sched-
ules [10]. We distribute each segment across all threads of
the destination CPU, and do the transfers in a per thread
random order. Since some tuples are already on destination,
the expected number of transfers is (x− 1)/x for x regions.

The NUMA-oblivious partitioning might perform faster
than the two step method of shared-nothing partitioning
followed by NUMA shuffling, since out-of-cache partition-
ing mitigates latencies. The decision to guarantee minimal
transfers by incurring shuffling, depends on the hardware.

3.3.2 In-place
Assuming NUMA-bound segmented allocation, the only

in-place variant where threads do not work in a shared-
nothing fashion is during block shuffling (see Section 3.2.4).
During the phase of block shuffling on multiple NUMA re-
gions, threads can read and write blocks from all regions, but
all accesses are sequential, since the block is large enough
to amortize the random access penalty. In the worst case,
the operating thread CPU, the source, and the destination
of the swapped block, will be on three different regions.
Thus, the tuples can cross the interconnection at most twice.
Since collocations occur, the expected number of transfers is
(2x2 − 3x+ 1)/x2 for x regions, given x > 2. On 4 regions,
we do 1.3125 transfers, 75% more than when not in-place.

3.4 Radix/Hash Histogram
Hash and radix partitioning are similar because the time

required to compute the partition function is trivial. Com-
plicated hash functions are used to decrease the collisions
in hash tables. In our context, we need partitions of almost
equal size that separate the keys randomly. Thus, employing
hash functions designed to minimize hash table collisions,
would waste CPU cycles without offering any advantage.

The radix function is a shift operation followed by a logical
and. To isolate bit range [x,y), we shift by x, then mask
with 2y−x − 1. Using multiplicative hashing and P = 2k

partitions, we multiply with an odd factor and then shift
by B − logP for B-bit data. In both cases, computing the
partition function only marginally affects performance.

3.5 Range Histogram
For hash and radix partitioning, computing the destina-

tion partition comes almost at zero cost, whereas range par-
titioning is more expensive [17]. To split into P ranges, we
need P -1 delimiters that define the lower and upper bounds
of each partition. We sort the P -1 delimiters and do a binary
search for each input key. The difference from textbook bi-
nary search is that we search ranges rather than keys. Thus,
we omit equality comparisons and do not exit the loop in less
than logP steps even if an exact match is found earlier.

Scalar binary search is one example where being cache-
resident is not fast enough to give good performance. The
delimiter array of P -1 items always remains L1-cache-resident.
However, the delays from waiting to load a new delimiter to
proceed to the next comparison and the logarithmic number
of loads that have to be performed, slow down range function
computation almost by an order of magnitude compared to
hash and radix. Replacing branches with conditional moves
performs even worse, proving that the problem here is not
the branches, but the logarithmic number of cache accesses
that are tightly coupled due to data (or conditional control
flow) dependencies and thus incur their full latency cost.

3.5.1 In SIMD registers
We first show range function computation can be accel-

erated using SIMD instructions, since every SIMD register
can hold a number of values and do all comparisons at the
same time. In the simplest case, we try to do small fanout
range partitioning using register-resident delimiters.

The first approach holds different delimiters in each SIMD
register and a single input key broadcast to all cells of an-
other SIMD register. We can do a SIMD comparison, con-
vert the result to a bit-mask and search the least-significant-
set-bit to see which delimiter is actually larger than the key.

To extend the fanout, we can store W × R delimiters in
R ·W -wide SIMD registers. We perform R SIMD compar-
isons and R-1 SIMD packs, then we extract and append
the masks. The number of range partitions we can cover
depends on the number of available registers. In practice,
we do not have that many registers before stack (thus cache)
spilling starts happening and, unlike binary search, this hor-
izontal approach is also linear in the number of delimiters.

We now briefly describe the Intel SSE SIMD intrinsics
used in the paper. _mm_shuffle_epi32 forms the 4 32-bit
lanes of the result from the 4 lanes of the input register
according to a constant mask. _mm_cmpgt_epi32(x,y) (or
_mm_cmpeq_epi32) compares 32-bit integers and outputs a
-1/0 mask per lane if xi > yi (or xi = yi). _mm_packs_epi32

(or _mm_packs_epi16) packs 8X 32-bit (or 16X 16-bit) in-
tegers from 2 registers into 8X 16-bit (or 16X 8-bit) inte-
gers. The _mm_movemask_epi8 (or _mm_movemask_ps) gener-
ates a bit-mask from the high bits of 16 bytes (or 4 32-bit
words). In _mm_blendv_epi8(m,x,y), each byte of the re-
sult is equal to yi, if mi<0, or xi otherwise. _mm_add_epi32,
_mm_sub_epi32, _mm_min_epu32, and _mm_max_epu32 per-
form 4 32-bit add, subtract, min, and max. _mm_load_si128
and _mm_store_si128 perform 16-byte reads and writes.1

We show an example of SIMD code that does 17-way range
partitioning for 32-bit integer keys. The 16 32-bit range de-
limiters are sorted and stored in four 128-bit SIMD registers:
del_ABCD, del_EFGH, del_IJKL, and del_MNOP.

// broadcast 1 32-bit key to all SIMD lanes
key = _mm_loadl_epi32(input_keys++); // asm: movd
key = _mm_shuffle_epi32(key, 0);
// compare with 16 delimiters stored in 4 registers
cmp_ABCD = _mm_cmpgt_epi32(key, del_ABCD);
cmp_EFGH = _mm_cmpgt_epi32(key, del_EFGH);
cmp_IJKL = _mm_cmpgt_epi32(key, del_IJKL);
cmp_MNOP = _mm_cmpgt_epi32(key, del_MNOP);
// pack results to 16-bytes in a single SIMD register
cmp_A_to_H = _mm_packs_epi32(cmp_ABCD, cmp_EFGH);
cmp_I_to_P = _mm_packs_epi32(cmp_IJKL, cmp_MNOP);
cmp_A_to_P = _mm_packs_epi16(cmp_A_to_H, cmp_I_to_P);
// extract the mask the least significant bit
mask = _mm_movemask_epi8(cmp_A_to_P);
res = _bit_scan_forward(mask | 0x10000); // asm: bsf

The transposed approach is to broadcast each delimiter
to a different SIMD register and compare W keys from the
input at the same time. We use the results from earlier com-
parisons to blend delimiters into new custom delimiters. For
instance, suppose we want to do 4-way range partitioning us-
ing 3 delimiters A < B < C. We first compare the keys with
(the SIMD register with broadcast) B, then blend A with C
to create a new delimiter D. Each lane will either have A or
C based on the comparison of the input key with B. Then,
we compare the keys with the custom D and combine the
results. This vertical approach can be seen as a binary tree
structure of depth D with 2D-1 delimiters. On each compar-
ison, the first half nodes of each level are blended with the
other half, creating a new tree of depth D-1. The result is
generated by bit-interleaving the D comparisons into ranges
∈ [0, 2D). We now show an 8-way range function for 4 32-bit
keys using 7 delimiters del_1, ..., del_7 (D = 3).

// load 4x 32-bit keys from the input
keys = _mm_load_si128(input_keys); input_keys += 4;
// perform 4x 3-level binary tree comparisons
cmp_L1 = _mm_cmpgt_epi32(keys, del_4);
del_15 = _mm_blendv_epi8(keys, del_1, del_5);
del_26 = _mm_blendv_epi8(keys, del_2, del_6);
del_37 = _mm_blendv_epi8(keys, del_3, del_7);
cmp_L2 = _mm_cmpgt_epi32(keys, delim_26);
del_1357 = _mm_blendv_epi8(keys, del_15, del_37);
cmp_L3 = _mm_cmpgt_epi32(keys, del_1357);
// bit-interleave 4x the 3 binary comparison results
res = _mm_sub_epi32(_mm_setzero_si128(), cmp_L1);
res = _mm_sub_epi32(_mm_add_epi32(res, res), cmp_L2);
res = _mm_sub_epi32(_mm_add_epi32(res, res), cmp_L3);

The vertical version does fewer partitions than R×W of
the horizontal, but is faster in small fanout. We use both
in the following section. We also use the vertical version to
combine range with radix partitions (see Section 4.2.1).
1For a complete guide to Intel SIMD intrinsics, refer here:
http://software.intel.com/sites/landingpage/IntrinsicsGuide/

3.5.2 In-cache
Register-resident range partitioning is very fast, but the

number of partitions we generate is not enough to saturate
the partitioning fanout. Fast tree-index search has been
studied using SIMD [8]. The speed-ups are very good be-
cause scalar index search performs very poorly. To search
each tree level, [8] performs a horizontal search with one
register. The fanout increases from 2 to W making the tree
shorter, while node accesses remain almost equally fast.

We extend and optimize the idea of larger fanout to op-
timize range partitioning function computation. First, we
remove the pointers entirely. A cache-resident index tree
does not need pointers; each level of the tree can be a single
sorted array. For example, a tree with 24 delimiters can be
represented in 2 levels as follows: the first level holds delim-
iters 5,10,15, and 20; the second level of the tree holds de-
limiters (1,2,3,4), (6,7,8,9), (11,12,13,14), (16,17,18,19), and
(21,22,23,24). Nodes are accessed using one SIMD register if
W ≥ 4. The node distinction implied by the parentheses is
not explicit; accessing the arrays at different offsets works as
accessing a different node. No delimiters are repeated across
tree levels. The index does not (need to) support updates.

The array pointers representing the tree levels are kept in
scalar registers and all tree node accesses are “hard-coded”
with ad-hoc code per tree level. Thus, we can design trees
with different fanout on each level based on the total num-
ber of range partitions. We generate a menu of tree fanout
configurations in order to be able to choose the best par-
titioning fanout, similar to picking the number of bits for
radix or hash partitioning. The sensible configurations are
the ones where we load and horizontally search k SIMD reg-
isters, giving tree node fanout of the form k ·W + 1. We
can hold the zero level (root) of the tree in registers during
the operation using horizontal register search, but we found
that using vertical SIMD search to access the root is faster.

For 32-bit keys and 128-bit SIMD registers, we use 5-way
or 9-way fanout on tree levels. Having a 17-way fanout is
outperformed by two consecutive 5-way levels that also give
a total fanout of 25. The best configurations that work well
with out-of-cache partitioning fanout, are a 360-way range
function using a 3-level (8× 5× 9)-way tree search, a 1000-
way function using a 4-level (8 × 5 × 5 × 5)-way tree, and
a 1800-way function using an (8 × 5 × 5 × 9)-way tree. We
show the 360-way tree access code omitting the root.

// access level 1 (non-root) of the index (5-way)
lvl_1 = _mm_load_si128(&index_L1[r_0 << 2]);
cmp_1 = _mm_cmpgt_epi32(lvl_1, key);
msk_1 = _mm_movemask_ps(cmp_1); // ps: epi32
r_1 = _bit_scan_forward(r_1 ^ 0x1FF);
r_1 += (r_0 << 2) + r_0;
// access level 2 of the index (9-way)
lvl_2_A = _mm_load_si128(&index_L2[r_1 << 3]);
lvl_2_B = _mm_load_si128(&index_L2[(r_1 << 3) + 4]);
cmp_2_A = _mm_cmpgt_epi32(lvl_2_A, key);
cmp_2_B = _mm_cmpgt_epi32(lvl_2_B, key);
cmp_2 = _mm_packs_epi32(cmp_2_A, cmp_2_B);
cmp_2 = _mm_packs_epi16(cmp_2, _mm_setzero_si128());
msk_2 = _mm_movemask_epi8(cmp_2);
r_2 = _bit_scan_forward(r_2 ^ 0x1FFFF);
r_2 += (r_1 << 3) + r_1;

To maximize parallel cache accesses and boost perfor-
mance, we loop-unroll all tree level accesses to 4 keys at-a-
time and the root vertical search to 16 keys at-a-time. The
optimal loop-unrolling degree was evaluated experimentally.

4. SORTING

4.1 Setting
Like most prior work, we operate on fixed-length keys and

payloads. In read-only workloads typical of data analytics,
more complex types can be dictionary coded into compact
integer types that preserve the key order [12, 16]. Keys and
payloads are assumed to reside in separate arrays, as would
be typical of a column-store analytical database. When the
algorithm starts, we assume that our input is evenly divided
among the C NUMA regions in contiguous segments. All
columns of the same tuple reside in the same NUMA region.

The requirement for C separate segments is because the
OS either interleaves allocated memory across regions, or
allocates space from one region exclusively. To maximize
performance, we use C segments, one per NUMA region.
The output is also a collection of C segments of sorted data,
each residing in a distinct NUMA region. All keys in region
i have a smaller key than all keys in region j when i < j.
The sorted output is thus a concatenation of the segments.

4.2 Radix-Sort
Radix-sort is a very efficient sorting method for analyti-

cal databases that use order-preserving compression to the
data [12, 16]. The number of passes done is dependent on
the number of bits required to encode the distinct values in
the array. If we store n distinct values using logn bits, we
still need n logn operations, same as traditional comparison
sorts. The speed-up of radix-sort over comparison sorting is
not primarily due to decreased complexity, but due to the
(as of now) faster radix compared to range partitioning.

4.2.1 Stable LSB
The simplest algorithm we describe in this paper is the

least-significant-bit (LSB) radix-sort. The algorithm is well
known and performs a fixed number of passes over the data,
depending on their width. If all bit ranges are processed, the
array is sorted and needs no further processing. Building on
the partitioning techniques described in Section 3, we can
readily present how a NUMA-aware LSB radix-sort works.

In order for LSB radix-sort to work, we must ensure that
during partitioning, we never swap items with equal keys.
The order of the items is defined by the bit range of the radix
function. All passes (except for the first) must be stable (i.e.
preserve the ordering of equal items). In-place partitioning
is not stable, thus can only be used for the first pass.

If we overlook NUMA transfers entirely, each tuple will
cross NUMA regions several times. This design is clearly
suboptimal. We ensure that each tuple is transferred through
the NUMA interconnection network exactly once. In the
first partitioning step, we do C-way range partitioning. The
C-1 delimiters are acquired by uniform sampling. Since C
is small and the logC bits cannot saturate the partitioning
fanout, we fill up with low order radix bits. In steps:

1. Sample and determine C-1 range delimiters that equally
split the data across the C NUMA regions.

2. Range-radix partition locally on each NUMA using a range
(C-way) & radix function (Section 3.2.1) and use enough
bits to optimize the partitioning fanout.

3. Shuffle across C NUMA nodes (Section 3.3.1).
4. Until all bits of the key domain are covered continue

radix-partitioning locally per NUMA (Section 3.2.1) us-
ing enough bits to optimize the partitioning fanout.

All data movement during any partitioning pass are based
on parallel out-of-cache partitioning (see Section 3.2.1) be-
tween the threads of the same NUMA region only. Data
transfers across NUMA nodes happen only during the shuf-
fling of the C ranges (see Section 3.3.1). Threads operat-
ing on the same NUMA nodes always split the workload in
equal pieces, regardless of partition sizes and skew. The C
range delimiters ensure equalized segment sizes across the
C NUMA regions. Finally, to compute the mixed range-
radix partitioning function of the first phase, we use register-
resident delimiters (see Section 3.5.1) and concatenate the
range function result with the low order radix bits.

The number of passes is the same as before, only adding
a minor logC range partition bits. This design can also
support balancing of workload across non-uniform CPUs,
by dividing the data to C non-equal range partitions, if we
can estimate the relative performance between CPUs.

When the key domain is dense, LSB radix-sort does the
minimum number of passes. When the key domain is large,
however, and the value domain is significantly larger than
the number of items, the LSB approach does more passes
than required over the data, eliminating its advantage over
other approaches. The total number of passes is determined
by logD, where D is the size of the key domain.

4.2.2 In-place MSB
The second variant we present is the most-significant-bit

(MSB) radix-sort. In this version, the bits are processed
high-to-low, rather than low-to-high as in LSB. The par-
titioning passes are dividing the data to non-overlapping
domains, creating a radix-based analog to quick-sort. The
outputs of each pass do not need to be interleaved. Since
each pass does not need to maintain the ordering of previous
passes, stable partitioning is not useful for MSB radix-sort.

The MSB radix-sort in this paper is done entirely in-place.
Alongside in-place partitioning, our work first describes ef-
ficient large-scale in-place sorting. LSB is faster than MSB
in compressed data, but the small performance gap justifies
paying a small price in time and in exchange save space and
use it in some other concurrent operator more effectively.

In the first pass, we use shared segment in-place partition-
ing across all NUMA regions (see Section 3.3.2). If the initial
bits do not divide the data in a balanced fashion, the later
phases will either operate on unbalanced sub-array sizes, or
transfer data across NUMA regions more than once to re-
balance work. Mixing radix with range partitioning during
the first pass is more robust. Balancing is unaffected even
if the upper key bits are almost always the same. This case
is not uncommon for databases that use fixed data types, or
schemas with larger types than necessary. In steps:

1. Sample and determine T -1 range delimiters that equally
split the data across T threads. Add T ′ more range de-
limiters (T ′ ≥ T) generated from log T ′ high bits.

2. Range partition T + T ′-way in-blocks (Section 3.2.3).
3. Shuffle across NUMA regions using synchronized in-place

partitioning of blocks (Sections 3.2.4 and 3.3.2).
4. Sort each part recursively in a shared-nothing fashion:
(a) If (sub-)array is larger than the cache, employ out-of-

cache shared-nothing radix partitioning (Section 3.2.2)
and make a recursive call for each part.

(b) Else, radix partition in-cache (Section 3.1). If not all
radix bits are covered, either make recursive call or use
insert-sort for trivial part sizes.

As in LSB, we split our range-split data on T ranges,
where T is the number of total threads (not the number of
NUMA regions) and acquire the T -1 delimiters using sam-
pling. After this phase, threads can proceed in a shared-
nothing fashion. We add log T bits to the total key length
processed, in the same way LSB added logC bits. We hide

the extra bits by overlapping with 2dlog T ′e radix partitions
generated from the high dlog T ′e radix bits T ′ ≥ T . This
process adds at most one bit to the total key domain size.

After the T -way range split across T threads and NUMA
shuffling, we work shared-nothing. Depending on the sub-
array size, we use both out-of-cache (see Section 3.2.2) and
in-cache (see Section 3.1) variants. When a sub-array of
size n reaches the cache, using ≈ logn radix bits generates
parts of trivial size [7]. We use dlogne− 2 bits and generate
partitions of average size 4–8 that are insert-sorted ignoring
the remaining bits. Thus, unlike LSB that covers logD bits
(D: domain size), MSB can cover logn bits (n: array size).

4.3 Comparison-Sort
Traditional algorithms for sorting are based on item com-

parisons, providing perfect balancing and skew immunity.
The standard variants are quick-sort [1] and merge-sort [5,
14]. The latter has been extensively optimized using SIMD.

4.3.1 In-cache
Prior work [2, 5, 6, 14] has suggested SIMD-aware sort-

ing. The proposed method [2, 5, 14] starts from sorting
in SIMD registers, then combines multiple registers using
sorting networks or bitonic sort, then switches to merging.
Outside the database community, an approach that scales
to the SIMD length has been proposed [6], initially using
W -way comb-sort in-cache without comparing keys across
lanes, then transpose and merge all parts out-of-cache.

Optimally, we need (n/W) logn instructions to do n logn
comparisons on W -way SIMD. In practice, only sorting net-
works and bitonic sort optimally scale to the length of SIMD
givingO((n/W) log2 n). If we view the array as n/W vectors
rather than n keys and never compare keys across lanes, we
need O((n/W) log (n/W)) SIMD comparisons. Afterwards,
we merge the W arrays with n logW comparisons. In total,
we need O((n/W) log (n/W) +n logW) comparisons, which
is very close to O((n/W) logn) and better than bitonic sort.
However, for most average O(n logn) algorithms, the loca-
tion of the next key read is dependent on the previous key
comparisons. The hardware must gather-load W keys as
fast it loads one, which is impractical. Thus, we use comb-
sort that has no such dependency. The key exchanges need
a pair of min/max instructions, as shown below (Intel SSE):

j = i + comb_sort_gap;
x = _mm_load_si128(&input_keys[i]);
y = _mm_load_si128(&input_keys[j]);
min = _mm_min_epu32(x, y);
max = _mm_max_epu32(x, y);
_mm_store_si128(&input_keys[i], min);
_mm_store_si128(&input_keys[j], max);

After W -wide comb-sort finishes, we have to merge the
W lanes. For this task, we keep the “last” key from the W
arrays in a SIMD register. We do the same for the merge
pointer and payloads. On each iteration, we find the lane of
the minimum key, extract the payloads and the index, write
the minimum tuple to the output, read one new tuple from
the min key index + W , and replace the min key lane.

We show one loop of 4-way merging for 32-bit keys on
128-bit SIMD below, omitting payloads for simplicity. The
keys are read in the transposed form that is the output from
the W -way comb-sort. All phases are shown in Figure 2.

// find the min key and output it
min_key = min_across(keys);
k = _mm_cvtsi128_si32(min_key);
_mm_stream_si32(output_keys++, k);
// find the location (index) of min key
min_loc = _mm_cmpeq_epi32(keys, min_key);
min_loc = _mm_xor_si128(min_loc, all_bits_1);
min_loc = _mm_or_si128(min_loc, locs);
min_loc = min_across(min_loc);
// load the next key and update the index
i = _mm_cvtsi128_si32(min_loc);
new_key = _mm_loadl_epi32(&input_keys[i + 4]);
new_key = _mm_shuffle_epi32(new_key, 0);
new_loc = _mm_add_epi32(min_loc, all_words_4);
// insert new key and location
mask = _mm_cmpeq_epi32(min_loc, locs);
keys = _mm_blendv_epi8(keys, new_key, mask);
locs = _mm_blendv_epi8(locs, new_loc, mask);

In order to compute (and broadcast) the minimum key
across a SIMD cell holding W keys we need logW compar-
isons and logW shuffle instructions. We show the implemen-
tation of min-across on Intel SSE below for 4 32-bit keys (X,
Y , Z, W , where A = min(X,Y) and B = min(Z,W)):

__m128i min_across(__m128i XYZW) {
__m128i YXWZ = _mm_shuffle_epi32(XYZW, 177);
__m128i AABB = _mm_min_epu32(XYZW, YXWZ);
__m128i BBAA = _mm_shuffle_epi32(AABB, 78);
return _mm_min_epu32(AABB, BBAA); }

The W -way merging phase takes significantly less time than
the W -way comb-sort step and skips the need for 2-way
merging [6] or bitonic sort [5]. The interleaved arrays are
not transposed before merging, we avoid using extra space
during sorting, and the output can bypass the cache. The
algorithm does O((n/W) log (n/W)) +n logW comparisons
and works for any SIMD length (W) with no adjustment.

1

17

6

5

10

13

18

15

9

7

19

20

8

14

12

3

4

11

16

2

1

5

6

10

17

7

9

13

15

18

8

12

14

19

20

2

3

4

11

16

8 11 5 9 14 16 10 7 12 21 13 19 3 17 18 20 4 6 15

11 12 13 14 15 16 17 18 19 201 2 3 4 5 6 7 8 9 10

Input Array

Input
Array

Input
Array

Output Array

Figure 2: In-cache sorting on 4-wide SIMD

4.3.2 Out-of-cache
Prior work [2, 5, 14] has suggested merge-sort as the most

effective comparison-based sort for databases. Since merg-
ing two streams on each pass is bounded by the RAM band-
width, merging a larger number of arrays is a better ap-
proach. Quick-sort splits the array using 2-way range parti-
tioning optimized to avoid histograms, but is also bounded
by the RAM bandwidth when running out-of-cache.

We introduce a new variant for comparison sorting based
on range partitioning that uses a large fanout on each pass.
Since radix-sort can do a lot of radix partitions on each pass,
we could do the same for range partitioning. Until recently,
this idea hit the wall of slow out-of-cache partitioning, and,
until now, the wall of slow range function computation.

The comparison-based algorithm we propose is quite sim-
ilar to radix-sort, but replaces radix with range partitioning.
The version we present here uses non-in-place partitioning,
thus, uses linear auxiliary space, similarly to merge-sort.
The algorithm decides on a number of range partitioning
passes to range-split the data to cache-resident range parts.

To compute the range function, we build a specialized in-
dex in the cache (see Section 3.5.2) and, alongside computing
the histogram, we store the range partition for each tuple to
avoid re-computing it. While the tuples are actually moved,
we (sequentially) read the range partitions from the array
where they are stored during range histogram generation.
The data movement part of partitioning performs almost as
fast as radix partitioning, since scanning an additional short
range array has a small cost. The boost in performance is
due to the fast range partition function. In recursive steps:

1. If in-cache, sort using SIMD comb-sort and exit.
2. Sample the data and gather range delimiters.
3. Generate histogram using in-cache ranges index.
4. If not 1st pass, employ shared-nothing range partition.
5. Else range partition locally per NUMA (Section 3.2.1)

and shuffle across the C NUMA regions (Section 3.3.1).
6. Call sorting recursively for each range part.

Using the large fanout of partitioning is essential to avoid
doing many passes bounded by the RAM bandwidth. The
alternative would be to use merging. Incremental merging
proposed in [5] is CPU-bound, but we transfer tuples logP
times between small intermediate buffers. More recent work
that compares merging with partitioning [2], shows 16-way
merging to be as fast as non-in-place out-of-cache radix par-
titioning for up to 11-bits. As we will see experimentally,
this advantage holds also for range partitioning, using the
efficient cache-resident range index that we propose.

In order to avoid skew and imbalance problems, before
shuffling across NUMA regions, we create more range par-
titions than the total threads. Thus, the threads can fine-
grain share the workload and the C segment sizes can have
almost equal sizes. Furthermore, to achieve good splitting
[13] and avoid repeating keys that could cause in-cache sort-
ing to work out-of-cache, when X is sampled twice or more
as a delimiter, we use only X and X-1 and switch to a
smaller range index if too many delimiters are discarded.
The single-key range partitions need no further processing.

5. EXPERIMENTAL EVALUATION
All our experiments are run on the same platform, which

has 4 Intel Xeon E5-4620 8-core CPUs at 2.2 GHz based on
the Sandy Bridge micro-architecture and a total of 512 GB
quad-channel DDR3 ECC RAM at 1333 MHz. Each CPU
supports 16 hardware threads through 2-way simultaneous
multi-threading. Each core has 32 KB private L1 data cache
and 256 KB L2 cache. Each CPU has 8 MB L3 cache shared
across the 8 cores. The bandwidth we measured is 122 GB/s
for reading, 60 GB/s for writing, and 37.3 GB/s for copying.

The operating system is Linux 3.2 and the compiler is
GCC 4.8 with -O3 optimization. We use SSE (128-bit SIMD)
instructions on AVX registers (256-bit), in order to use non-
destructive 3-operand instructions (Intel VEX) that improve
pipeline performance. We cannot fully use 256-bit SIMD
because our platform (AVX 1) supports 256-bit operations
for floating point operations only. Unless stated otherwise,
experiments use 64 threads and data are uniform random.

0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

8

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

G
B

 /
 s

ec
o

n
d

b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

number of partitions

non-in-place out-of-cache in-place out-of-cache

non-in-place in-cache in-place in-cache

Figure 3: Shared-nothing partitioning for 1010 tuples
(32-bit key and 32-bit payload on separate arrays)

In Figure 3 we show the performance of the four variants
of partitioning using 32-bit keys and 32-bit payloads run in
a shared-nothing fashion. The in-cache variants are bound
by the TLB capacity, thus, have poor performance for large
fanout. When running out-of-cache, the optimal cases are 5–
6 bits (32–64 partitions). The out-of-cache variants increase
the optimal fanout to 10–12 bits, when non-in-place, and 9–
10 bits, when in-place. Using out-of-cache variants for small
cache-resident array sizes incurs unnecessary overheads. The
optimal fanout is the one with the highest performance per
partitioning bit (= logP , for P -way partitioning) ratio.

0

10

20

30

40

50

0

1

2

3

4

5

6

7

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

G
B

 /
 s

e
co

n
d

b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

number of partitions

Zipf

Uniform

Figure 4: Partitioning as in Figure 3 using uniform
and skewed data under the Zipf distribution (θ = 1.2)

In Figure 4, we repeat the experiment of Figure 3 includ-
ing runs with data that follow the Zipf distribution with
θ = 1.2. Under skew, some partitions are accessed more
often than others. Implicit caching of these partitions de-
creases the probability of cache misses and TLB thrashes,
improving performance. With less skew (θ < 1), we found
no significant difference in partitioning performance.

0

20

40

60

80

100

120

0

8

16

24

32

128 256 512 1024 2048

G
B

 /
 s

ec
o

n
d

b
ill

io
n

 k
ey

s
/

se
co

n
d

number of partitions

range (index) range (bs) radix hash

Figure 5: Histogram generation for 1010 32-bit keys

0

10

20

30

40

50

60

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

G
B

 /
 s

ec
o

n
d

b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

number of partitions

non-in-place out-of-cache in-place out-of-cache

non-in-place in-cache in-place in-cache

Figure 6: Shared-nothing partitioning for 1010 tuples
(64-bit key and 64-bit payload on separate arrays)

In Figure 5 we show the performance of histogram gener-
ation for all variants of partitioning. Radix and hash parti-
tioning operate roughly at the memory bandwidth. Range
partitioning using the configured range function index (see
Section 3.5.2) improves 4.95–5.8X compared to binary search.

Figure 6 shows the performance of partitioning for 64-
bit keys and 64-bit payloads. Compared to the 32-bit case,
partitioning is actually slightly faster (in GB/s), since RAM
accesses and computation overlap more effectively.

0

10

20

30

40

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 16

G
B

 /
 s

ec
o

n
d

b
ill

io
n

 t
u

p
le

s
/

se
co

n
d

threads / CPU (SMT)

non-in-place (4 CPUs)

in-place (4 CPUs)

non-in-place (1 CPU)

in-place (1 CPU)

Figure 7: Shared-nothing out-of-cache partitioning
1024-way for 109 tuples (64-bit key, 64-bit payload)

Figure 7 shows the scalability of out-of-cache partitioning
variants with a 1024-way fanout. The in-place variant gets a
noticeable benefit from SMT compared to the non-in-place.

Figure 8 shows the performance of 64-bit histogram gen-
eration. Radix and hash histogram generation still run at
the memory bandwidth. Using the range function index
speeds-up the process 3.17–3.4X over scalar code, despite
the limitation of only 2-way 64-bit operations. The speed-
up decreases because scalar binary search doubles its per-
formance (in GB/s), fully shadowing the RAM accesses.

0

20

40

60

80

100

120

0

4

8

12

16

128 256 512 1024 2048

G
B

 /
 s

ec
o

n
d

b
ill

io
n

 k
ey

s
/

se
co

n
d

number of partitions

range (index) range (bs) radix hash

Figure 8: Histogram generation for 1010 64-bit keys

0

1

2

3

4

5

6

0

200

400

600

800

1 2.5 5 10 25 50

G
B

 /
 s

ec
o

n
d

m
ill

io
n

 t
u

p
le

s
/

se
co

n
d

number of tuples (in billions)

LSB MSB CMP

Figure 9: Sort performance (32-bit key, 32-bit rid)

In Figure 9, we show the performance of the three sorting
variants that we propose, using 32-bit key, 32-bit payload
tuples. LSB denotes LSB radix-sort, MSB denotes MSB
radix-sort and CMP denotes comparison-sort. MSB is 10–
20% slower than the fastest LSB and maximizes when the
array exceeds the domain size, using only radix partitioning
in the cache. CMP is slower but comparable to radix-sorts.

0

1

2

3

4

5

6

0

200

400

600

800

1 2 3 4 5 6 7 8 16

G
B

 /
 s

ec
o

n
d

m
ill

io
n

 t
u

p
le

s
/

se
co

n
d

threads / CPU (SMT)

LSB (4 CPUs)

CMP (4 CPUs)

LSB (1 CPU)

CMP (1 CPU)

Figure 10: NUMA & non-NUMA sorts for 109 tuples

Figure 10 shows the scalability of both NUMA and non-
NUMA versions of LSB and CMP (32-bit key, 32-bit rid).
CMP benefits more from SMT than LSB. Using all hardware
threads, the speed-up of 4 CPUs over 1 is 3.13X for LSB and
3.29X for CMP. The 1-CPU variants are entirely NUMA-
local and omit the NUMA shuffling step. Closer to 4X speed-
up is not achieved for 4 CPUs due to the required extra step.

Figure 11 shows the time distribution across phases. We
double the maximum size using in-place MSB. As shown,
MSB outperforms LSB when no pre-allocated memory is
available. CMP needing only two range partition passes to
reach the cache and spends ≈ 40% of the time to sort there.

LSB radix-sort and especially comparison-sort are adap-
tive to skew. For 1010 tuples following the Zipf distribution,

0

5

10

15

20

25

30

LSB CMP MSB LSB CMP

ti
m

e
(i

n
 s

ec
o

n
d

s)

pre-allocated not pre-allocated

Allocation Histogram Partition

NUMA Shuffle Local Radixsort Cache Combsort

Figure 11: Sorting 1010 tuples (32-bit key, 32-bit rid)

0

1

2

3

4

5

6

0

100

200

300

400

1 2.5 5 10 25 50

G
B

 /
 s

ec
o

n
d

m
ill

io
n

 t
u

p
le

s
/

se
co

n
d

number of tuples (in billions)

LSB MSB CMP

Figure 12: Sort performance (64-bit key, 64-bit rid)

LSB is 5% faster for θ = 1 and 15% faster for θ = 1.2. CMP
is 30% faster for θ = 1 and 80% faster for θ = 1.2 outper-
forming all other methods. MSB can be affected negatively,
but not until high skew (θ ≥ 1.2). If excessive repeats from
a key affect the balance of the C-way split across C NUMA
regions, we identify these keys during sampling and create
single key partitions [13] shared across NUMA regions.

Figure 12 shows the speed of all variants for 64-bit keys
and 64-bit payloads and Figure 13 shows the time distribu-
tion. These algorithms are most useful in cases where data-
to-query time is important and compression is too expensive,
or when tuples change rapidly and cannot be compressed.

The MSB radix-sort is faster than LSB, since it stops par-
tition passes earlier. When we reach the cache, we create
n/4 to n/8 partitions and then sort 4–8 items using insert-
sort. Our advantage over hybrid approaches, such as MSB
switching to LSB [15], is that the latter will do more passes
for sparse keys that are not free, even if cache-resident.

Comparison-sort, like MSB radix-sort, does fewer passes
than LSB. Range partitioning performs closer to radix, since
the data movement costs twice, while the range histogram is
less affected. On the other hand, in-cache SIMD sorting is
more expensive, since each 128-bit SIMD register can hold
two 64-bit keys and cannot be much faster than scalar code.

The effect of the NUMA layer is dependent on the number
of partitioning passes. Figure 14 compares NUMA-aware
and NUMA-oblivious versions. A pass can be more than
50% slower on NUMA-interleaved memory. Using an ex-
tra pass for NUMA shuffling always helps. LSB radix-sort
is ≈ 25% faster when NUMA-aware, even if only 3 passes
are required for 32-bit keys. When using 64-bit keys, being
NUMA-aware is more than 50% faster. Finally, the effect on
comparison sort is smaller (10–15%), since range histograms
are CPU-bound and the number of passes is minimal.

0

10

20

30

40

50

60

LSB CMP MSB LSB CMP

ti
m

e
(i

n
 s

ec
o

n
d

s)

pre-allocated not pre-allocated

Allocation Histogram Partition

NUMA Shuffle Local Radixsort Cache Combsort

Figure 13: Sorting 1010 tuples (64-bit key, 64-bit rid)

0

0.5

1

1.5

0

10

20

30

40

50

60

70

LSB CMP LSB CMP

sp
ee

d
u

p
 (

N
U

M
A

 a
w

ar
en

es
s)

ti
m

e
(i

n
 s

ec
o

n
d

s)

32-bit key, 32-bit rid 64-bit key, 64-bit rid

Histogram Partition NUMA Shuffle Cache Combsort

Figure 14: NUMA-aware vs. NUMA-oblivious (in-
terleaved) comparison- and radix-sort for 1010 tuples

In Figure 15, we show the performance of SIMD sorting
for 32-bit keys and payloads using small array sizes in-cache,
as done in the last phase of CMP. The speed-up over scalar
code is 2.9X on average with 4-wide SIMD (SSE) comb-sort.

0

1

2

3

4

0

800

1600

2400

3200

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

sp
ee

du
p

(4
-w

ay
 S

IM
D

)

m
ill

io
n

tu
pl

es
 /

 s
ec

on
d

(in-cache) array size

scalar simd speedup

Figure 15: Shared-nothing in-cache performance of
scalar and SIMD comb-sort (32-bit key, 32-bit rid)

Billion-scale sorting has been recently used for sort-merge-
joins [1, 2]. Albutiu et al. [1] does one in-place MSB radix
partition pass using the in-cache variant, then uses intro-
sort to sort the partitions. This hybrid approach operates
in-place, but is neither a comparison- nor a radix-sort. In-
place radix-sort is 2–3X faster than intro-sort on 32-bit keys,
and one radix partitioning step still leaves most of the work
for intro-sort. Balkesen et al. [2], that improves over Albu-
tiu et al. [1], uses similar hardware to ours (4 Intel Sandy
Bridge CPUs, 32 cores with SMT, NUMA memory). For
1 billion tuples, Balkesen et al. [2] sorts 350 million tuples
per second using merging, compared with our comparison-
sort that achieves 540 million. Again for 1 billion tuples,
Balkesen et al. [2] sorts 675 million tuples per second us-
ing non-in-place MSB radix partitioning out-of-cache, com-
pared with our non-in-place LSB radix-sort that achieves
740 million. Thus, we outperform prior work on both radix-
and comparison-based sorting. Furthermore, prior work [2]
implicitly assumes that the key value range covers the en-
tire key domain, as MSB radix partitioning is not combined
with range partitioning to guarantee load balancing across
threads. Neither work [1, 2] considers large key domains.

Merge-sort performance in Chhugani et al. [5] drops by
12.4% when sorting 228 keys (1 GB) compared to 227 and in
Balkesen et al. [2] by 25% when sorting 230 tuples (8 GB)
compared to 229. Our comparison-sort performance drops
by 13% when sorting 25 billion tuples (186.26 GB) compared
to 1 billion. Thus, our optimized range partitioning is more
scalable than merging on large-scale comparison sorting.

6. CONCLUSION
We studied a wide menu of partitioning variants across all

layers of the main-memory hierarchy, introduced large-scale
in-place partitioning, and provided guarantees for minimal
transfers across NUMA boundaries on multiple processors.
We made range partitioning comparably fast with hash or
radix by designing a SIMD-based cache-resident range index.

By combining all partitioning variants, we designed three
sorting algorithms, the fastest to date: a stable LSB radix-
sort, an in-place MSB radix-sort, and a comparison-sort that
uses range partitioning. Our evaluation on billion-scale ar-
rays suggests using LSB radix-sort on dense key domains,
MSB radix-sort on sparse key domains or to save space, and
comparison-sort for load balancing and skew efficiency.

Our work can serve as a tool for designing other opera-
tions by combining the most suitable partitioning variants.
In-place versions offer a trade-off between space and time.
Range partitioning offers optimally balanced parts regard-
less of skew or domain. Minimal NUMA transfers guarantee
efficiency and scalability on future more parallel hardware.

7. REFERENCES
[1] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively

parallel sort-merge joins in main memory multi-core
database systems. PVLDB, 5(10):1064–1075, June 2012.

[2] C. Balkesen et al. Multicore, main-memory joins: Sort vs.
hash revisited. PVLDB, 7(1):85–96, Sept. 2013.

[3] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu.
Main-memory hash joins on multi-core CPUs: Tuning to
the underlying hardware. In ICDE, pages 362–373, 2013.

[4] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In
SIGMOD, pages 37–48, 2011.

[5] J. Chhugani et al. Efficient implementation of sorting on
multi-core SIMD CPU architecture. In VLDB, pages
1313–1324, 2008.

[6] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani.
AA-sort: A new parallel sorting algorithm for multi-core
SIMD processors. In PACT, pages 189–198, 2007.

[7] C. Kim et al. Sort vs. hash revisited: fast join
implementation on modern multicore CPUs. In VLDB,
pages 1378–1389, 2009.

[8] C. Kim et al. Fast: fast architecture sensitive tree search on
modern CPUs and GPUs. In SIGMOD, pages 339–350,
2010.

[9] C. Kim et al. CloudRAMsort: fast and efficient large-scale
distributed RAM sort on shared-nothing cluster. In
SIGMOD, pages 841–850, 2012.

[10] Y. Li et al. NUMA-aware algorithms: the case of data
shuffling. In CIDR, 2013.

[11] S. Manegold, P. A. Boncz, and M. L. Kersten. What
happens during a join? dissecting CPU and memory
optimization effects. In VLDB, pages 339–350, 2000.

[12] V. Raman et al. DB2 with BLU acceleration: So much
more than just a column store. PVLDB, 6(11):1080–1091,
Aug. 2013.

[13] K. A. Ross et al. Optimal splitters for database partitioning
with size bounds. In ICDT, pages 98–110, 2009.

[14] N. Satish et al. Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort. In SIGMOD, pages
351–362, 2010.

[15] J. Wassenberg and P. Sanders. Engineering a multi core
radix sort. In EuroPar, pages 160–169, 2011.

[16] T. Willhalm et al. SIMD-scan: ultra fast in-memory table
scan using on-chip vector processing units. PVLDB,
2(1):385–394, Aug. 2009.

[17] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating big data with high-throughput, energy-efficient
data partitioning. In ISCA, pages 249–260, 2013.

