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• SIMD vectorization in databases is limited 

• Most earlier work considers individual operators 

• Too specific setting, e.g., 32/64-bit key-rid pairs & single equality predicate 

• Generic approaches to SIMD too limited 

• Auto-vectorization by compiler can handle simple cases only 

• Applying single SIMD instruction in a loop is too limited 

• VIP aims to support a more realistic set of operations 

• Multiple columns with multiple data types as input to operators 

• Any combination of predicates on selections and joins 

• Arithmetic expressions on aggregate functions on group-by 
• However VIP 

SIMD IN DATABASES



WHAT IS VIP

• VIP is an execution engine design for analytical databases 

• Goal: data parallelism via SIMD vectorization 

• O(n) scalar instructions => O(n/W) SIMD instructions 

• Operators built bottom-up from sub-operators 

• Function “kernels” invoked during query execution 

• Design choices based on data parallelism, e.g., bitmaps over rid lists 

• Sub-operators process a column at a time from a block of tuples at a time 

• Highly-optimized code tailored to data type 

• Are type-specific and highly-optimized 

• Operator invokes sub-operators via interpretation 



VIP SUB-OPERATOR EXAMPLE

• Sub-operators are optimized SIMD functions 
• Fully vectorized for data parallelism 

• Also allows easy extension to newer SIMD ISAs 

• Different code per data type or size 

• Still manageable number of versions per sub-operator

Hash sub-operator code example: 
void hash_int32(const int32_t* data, uint32_t* hash, size_t tuples) { 
  const __m512i m_255 = _mm512_set1_epi32(255); 
  const __m512i m_fnv = _mm512_set1_epi32(16777619); 
  for (size_t i = 0; i < tuples; i += 16) { 
    __m512i h = _mm512_load_epi32(hash + i); 
    __m512i d = _mm512_load_epi32(data + i); 
    for (size_t j = 0; j < 4; ++j) {  // unrolled 
      h = _mm512_ternarylogic_epi32(h, d, m_255, 120); 
      h = _mm512_mullo_epi32(h, m_fnv); 
      d = _mm512_srli_epi32(d, 8); 
    } 
    _mm512_store_epi32(hash, h); 
  } 
}

Hash prototypes: 
void hash_T(const T* data, 
                    uint32_t* hash, 
                    size_t tuples);

Execution logic example: 
x: integer (int32_t) 
y: bigint (int64_t) 
h: uint32_t

for (size_t i = 0; i < tuples; i += block) { 
   hash_init(hash, block); 
   hash_int32(x + i, hash, block); 
   hash_int64(y + i, hash, block); 
   hash_finalize(hash, block); 
}



SELECTION SCANS

• Intermediate results kept in bitmaps 
• Evaluate predicates for all values in the SIMD register 

• Use input bitmap to determine which values to evaluate 

• Use output bitmap to determine which values qualify 

• Combine the bitmaps across predicate tree levels 

• Skip (short-circuit) as many tuples as possible 

• Scan the bitmap and skip 256 consecutive values if all invalid 

• Find which strides of 16 consecutive values to process per 256 values

void select_int32(const int32_t* data, 
                             size_t tuples, 
                             const uint16_t* bitmap_in, 
                             const uint16_t* bitmap_out, 
                             int32_t constant, 
                             int operand);

Selection prototype example:



SELECTION SCANS

• Traverse predicate trees and invoke sub-operators 
• Predicate trees are provided as input 

• Output of query optimization, not execution engine 

• Not limited to CNF or DNF (2-level trees) 

• VIP supports any alternating conjunction/disjunction tree 

• Combine bitmaps across levels using bitwise and-not
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COMPRESSION

• Can apply compression alongside the scan 
• Using sorted dictionary of distinct values 

• Execute selection directly on compressed data 

• Allow us to skip compressed codes directly 

• Bit-unpacking is fast: 5 instructions per 32/16/8 codes for 16/32/64-bit data 

• We can still use localized compression for columns with unique values

Bit-unpacking code: 
__m512i x1 = _mm512_permutevar_epi32(mask_1, x); 
__m512i x2 = _mm512_permutevar_epi32(mask_2, x); 
x1 = _mm512_srlv_epi32(x1, mask_3); 
x2 = _mm512_sllv_epi32(x2, mask_4); 
x = _mm512_ternarylogic_epi32(x1, x2, mask_5, 168);



HASH JOINS

• Algorithm split in multiple steps 
• Hash both inputs from any type or number of columns 

• Map to fixed-type: uint32_t 

• Hash table build & probe uses the hash values as join key 

• Single sub-operator to build and single sub-operator to probe hash table 

• Probe sub-operator implicitly generates rids to access columns

typedef struct { 
  uint32_t hash; 
  int32_t rid; 
} join_bucket_t;

void build(const uint32_t* hash, 
                 size_t tuples, 
                 join_bucket_t* hash_table, 
                 size_t hash_buckets); 

size_t probe(const uint32_t* hash, 
                     size_t tuples, 
                     const join_bucket_t* hash_table, 
                     size_t hash_buckets, 
                     int32_t* inner_rids, 
                     int32_t* outer_rids);

Hash join sub-operator prototypes:



HASH JOINS

• Final steps of hash join algorithm 
• Use rids to gather from the columns and evaluate the predicates 

• Including equality predicates to resolve hash collisions 

• Use rids to materialize the projected columns (optional) 

• We can push rids as payloads to follow-up joins 

• VIP supports both early- and late-materialized joins 

• Cache-conscious hash joins 
• Partitioning is a pre-processing step 

• VIP supports both partitioned and non-partitioned hash join 

• Single sub-operator to compute hash partitioning output offsets 

• Type-specific sub-operators to shuffle data



GROUP-BY AGGREGATION

• Split in multiple steps 
• Estimate the group cardinality 

• By estimating the number of distinct hash values 

• Determine whether to use partitioning 

• Map hashes to unique group ids (gids) 

• Single (very complex) sub-operator using cuckoo hashing 

• Include an “rid” to the first tuple of each group
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GROUP-BY AGGREGATION

• Split in multiple steps 
• Fix hash collisions of group-by keys 

• Compare with the value of the first tuple per group and add a new group id 

• Done column at-a-time with type-specific sub-operator 

• Use group ids to compute aggregates 

• Use direct mapping from column values to aggregate functions 

• Store expression results in cache-resident buffers
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RESULTS

• Setting 
• Hardware 

• Xeon Phi 7210 CPU (Knight’s Landing) with 64 physical cores @ 1.3 GHz 

• 16GB of on-chip high-bandwidth memory (HBW) with 295GB/s load bandwidth 

• 192GB of off-chip low-bandwidth memory (LBW) with 70GB/s load bandwidth 

• Baseline 

• Hand-optimized scalar code emulating code-generation designs 

• Ignoring any runtime compilation cost (VIP has no runtime compilation) 

• Workload 

• Derived from the TPC-H benchmark



RESULTS

• TPC-H Q19 selection on PART table
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RESULTS

• TPC-H fact table joins
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CONCLUSION

• Towards full SIMD vectorization in databases 
• VIP design achieves full vectorization in a more realistic setting 

• Using pre-compiled type-specific sub-operators to build operators 

• VIP beats the state-of-the-art design 

• Future work: evaluate VIP design on mainstream CPUs with AVX-512


