
Towards Practical Vectorized AnalyticalQuery Engines

Orestis Polychroniou∗
orestis@amazon.com
Amazon Web Services

Kenneth A. Ross†
kar@cs.columbia.edu
Columbia University

ABSTRACT
Query execution engines are adapting to the underlying hardware
in order to maximize performance. Wider SIMD registers and more
complex SIMD instruction sets are emerging in mainstream CPUs
as well as new processor designs, such as the many-core platforms
that rely on data parallelism via SIMD vectorization to pack a larger
number of smaller cores per chip. In the database literature, using
SIMD to optimize stand-alone operators with key–rid pairs is com-
mon, yet the state-of-the-art query engines rely on compilation of
tightly coupled operators where hand-optimized individual opera-
tors become impractical. In this paper, we present VIP, an analytical
query engine designed and built bottom-up from pre-compiled
column-oriented data-parallel sub-operators and implemented en-
tirely in SIMD. In our evaluation derived from the TPC-H workload,
VIP outperforms query-specific hand-optimized scalar code.

1 INTRODUCTION
Hardware-conscious database design and implementation is a topic
of continuous research due to the profound impact of modern hard-
ware advances on query execution. Database systems diverged to
focus on transactional, analytical, scientific, or other workloads.
Storage and execution, now narrowed down to specific workloads,
were redesigned by adapting to the new hardware dynamics. In
analytical database systems, column-oriented storage is now a stan-
dard design choice, since queries typically access a small number
of columns from a large number of tuples, in contrast to transac-
tions that update a few tuples. However, analytical query engines
are based on multiple designs, including column-oriented versus
row-oriented execution, interpretation versus per-query code com-
pilation, cache-conscious execution versus operator pipelining.

Efficient in-memory execution requires low interpretation cost,
optimized memory access, and high CPU efficiency. Low interpre-
tation cost is coupled with high instruction-level parallelism and is
achieved by processing entire columns [27], batches of tuples per
iterator call [5, 8, 9], or by compiling query-specific code at runtime
[13, 20, 31]. Memory access can be optimized by pipelining opera-
tors to minimize materialization [12], or by partitioning to avoid

∗Work completed while the first author was affiliated only with Columbia University.
†Supported by National Science Foundation grant IIS-1422488 and an Oracle gift.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DaMoN’19, July 1, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6801-8/19/07. . . $15.00
https://doi.org/10.1145/3329785.3329928

cache and TLB misses [28]. Data parallelism is achieved via SIMD
vectorization. Linear-access operators such as scans and compres-
sion [22, 38, 49, 50], are naturally data-parallel and easy to vectorize.
The literature on applying ad-hoc SIMD optimizations to individ-
ual database operators [7, 14–16, 23, 35, 36, 41, 42, 44, 46] is rich.
Recently, we introduced generic SIMD vectorization techniques
for non-linear-access operators, such as partitioning, building and
probing of hash tables, as well as probing Bloom filters [34, 37].

In this paper, we introduce VIP1, an analytical query execu-
tion engine designed and built bottom-up from pre-compiled data-
parallel sub-operators and implemented entirely in SIMD. VIP is
the first query engine design implemented using advanced SIMD
vectorization techniques [34] that supports realistic queries, with
multiple columns and data types per operator, complex combi-
nations of predicates in scans and joins, and multiple aggregates
with expressions. To support these cases, VIP operators invoke pre-
compiled sub-operators. Each sub-operator processes data almost
exclusively in SIMD registers, from one column at a time [27], for
one block of tuples at a time [5]. Query code generation and compi-
lation is the state-of-the-art design for query engines [20, 31] and
is employed by modern commercial analytical database systems
[9, 13]. In our evaluation using queries derived from TPC-H, VIP
outperforms hand-optimized query-specific scalar code designed
to emulate the state-of-the-art, without including the per-query
compilation overhead at runtime that is non-existent in VIP.

In Section 2, we present related work. In Section 3, we describe
the VIP engine design. In Section 4, we present our evaluation, in
Section 5 we discuss future work, and we conclude in Section 6.

2 RELATEDWORK
Block-at-a-time2 execution [5] and query-specific code generation
and compilation [13, 20, 31] are the state-of-the-art designs for
analytical query engines. Both eliminate the interpretation over-
head but the latter incurs runtime compilation overhead to fuse
pipelined operators and minimize intermediate result materializa-
tion. Block-at-a-time execution can use prefetching to mitigate the
cost of cache misses [30]. Furthermore, the benefit of basic SIMD
vectorization is also diminished when we are memory bound [18].

SIMD vectorization is typically applied to isolated database op-
erators using key–rid pairs. Many join implementations exist [2–
4, 19, 45], including for many-core platforms [6, 17]. SIMD imple-
mentations of stand-alone operators such as sorting [7, 14, 36, 43]
are also common. Linear-access operators such as scans [21, 50]
and compression [22, 25, 26, 38, 49], are data-parallel and easier
to vectorize. Non-linear-access operators such as hash tables and
partitioning require more advanced SIMD vectorization techniques

1Named after and primarily based on Vectorization, Interpretation, and Partitioning.
2Block-at-a-time is a notion that was termed vectorized in related work; in this paper
we use the term vectorized to denote SIMD-vectorized design and implementation.

https://doi.org/10.1145/3329785.3329928

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Orestis Polychroniou and Kenneth A. Ross

[34, 37]. Fully vectorized implementations are not used in commer-
cial systems due to the difficulty of supporting multiple columns,
data types, and complex predicates effectively. The most principled
approach is a recently proposed vector algebra [33] for both SIMD
CPUs and SIMT GPUs. However, non-linear-access operators are
basic loops over SIMD primitives such as joins using SIMD gath-
ers for rid dereferencing out of the cache. Simple loops of SIMD
loads and gathers and compiler auto-vectorization achieve marginal
benefit [18] and are not comparable with the complexity of VIP.

3 DESIGN & IMPLEMENTATION
In VIP, we use column-oriented execution [27, 47], but never process
an entire column at once. Instead, we process one column for the
next block of tuples, retaining intermediate results in the cache
to amortize the interpretation cost [5]. However, instead of using
the Volcano model on blocks of tuples, we extend the column-at-
a-time model [27]. In our experiments, we use static allocation of
work units across threads due to the NUMA effect of our platform.
Nevertheless, VIP can be extended to use dynamic allocation [24].

VIP operators are designed and built bottom-up from column-
oriented data-parallel sub-operators and are implemented entirely in
SIMD. During query execution, each operator invokes pre-compiled
sub-operators to processes one column at a time from one block of
tuples. The block size is chosen to amortize the cost of interpretation
and retain the working set in the fast private cache of the CPU core.
Sub-operators execute a basic operation on one column of a specific
data type, thus allowing for extreme manual optimization.

To explain how sub-operators work across columns, consider
a hash join on a composite key comprised of multiple columns.
To hash the columns, we invoke the hash sub-operator for the 1st
column based on its data type and store the hash values in the cache.
Then, we call the hash sub-operator for the 2nd column and update
the hash values. If the block size is small enough, the hashes remain
in the cache. The VIP sub-operator to FNV hash [11] a 32-bit integer
column is shown below. VIP is implemented in AVX-512 SIMD.
void hash_int32(int32_t* data, uint32_t* hash, size_t tuples) {
const __m512i m_255 = _mm512_set1_epi32(255); // mask to isolate lower byte
const __m512i m_fnv = _mm512_set1_epi32(16777619); // FNV prime constant
for (size_t i = 0; i != tuples; i += 16) { // 16 SIMD lanes

__m512i h = _mm512_load_epi32(&hash[i]); // load hash values from cache
__m512i d = _mm512_load_epi32(&data[i]); // load data values from column
for (size_t j = 0; j != 4; ++j) { // FNV hash processes 1 byte at a time
h = _mm512_ternarylogic_epi32(h, d, m_255, 120); xor byte with hash
h = _mm512_mullo_epi32(h, m_fnv); // multiply hash with the FNV prime
d = _mm512_srli_epi32(d, 8); } // shift right to process the next byte

_mm512_store_epi32(&hash[i], h); } // store back the updated hash values
[...] } // process the last (up to 15) values using scalar code

Every VIP sub-operator has to be implemented for each data
type T. For instance, the hash sub-operator prototypes are of the
form: void hash_T(T* data, uint32_t* hash, size_t tuples).

3.1 Selection Scans
In modern analytical database systems, linear scans are preferred
over indexes for selections [39, 40]. Code generating engines also
prefer pre-compiled SIMD code for scans and decompression [22]. In
the original column-at-a-time execution model [27], each predicate
produces an rid list (i.e., array) denoting qualifying tuples. Conjunc-
tions and disjunctions are computed via the union or intersection
of rid lists. In VIP, we also use bitmaps to store the intermediate
results across predicates, similarly to commercial systems [39].

On linear scans, performance is dictated by the number of ac-
cessed cache lines. SIMD naturally handles predicates onW con-
tiguous values very efficiently, thus, we evaluate or skip in units
ofW tuples. The sub-operator to evaluate comparison predicates
on 32-bit integer columns is shown below. The input bitmap de-
notes which tuples can be skipped and which tuples we still need to
evaluate. The output bitmap is the evaluation result. Note that the
output bitmaps do not have to be strict subsets of the input bitmaps.
We express complex predicates as a tree and process one predicate
at a time for the same block of tuples while traversing the tree.
void select_int32(const int32_t* data, size_t tuples, // the input column

const uint16_t* bitmap_in, // bitmap denoting the yet undetermined tuples
uint16_t* bitmap_out, // bitmap denoting a superset of qualifying tuples
int32_t constant, int op) { // the comparison constant and the operator

const __m512i m_con = _mm512_set1_epi32(constant); // mask
switch (op) { // separate code per comparison operator
case '>': // code for the ">" operator (can be split as separate function)
for (i = 0; i != tuples; i += 256) { // scan over data column and bitmap
__m256i bit = _mm256_load_si256(bitmap_in); // load 256 bitmap bits
if (!_mm256_testz_si256(b, b)) { // skip 256 tuples if all bits are 0
__m512i bit_E = _mm512_cvtepu16_epi32(bit);
// find groups of 16 tuples (out of 256 tuples) that are not all 0
uint64_t m = _mm512_test_epi32_mask(bit_E, bit_E);
do { // evaluate groups of 16 tuples at a time that are not all 0
size_t j = _tzcnt_u64(m); // load 16 values from the 32-bit column
__m512i key = _mm512_load_epi32(&data[j << 4]));
// evaluate the selective predicate (in this example greater than)
bitmap_out[j] = _mm512_cmpgt_epi32_mask(key, m_con);

} while (m = _blsr_u64(m)); } // process the next 16 tuples
bitmap_in += 16, bitmap_out += 16, data += 256; }

break; [...] }} // other comparison operators, e.g., "=", "<", etc.

For complex predicate expressions, exhaustively evaluating ev-
ery predicate on every column and then merging the bitmaps is
trivial. However, in some settings, short-circuiting predicates can
be orders of magnitude faster, thus we use the output of earlier
predicates to skip evaluating later predicates as well as skip loading
columns. In conjunction nodes, the input bitmap represents the
tuples that satisfy all previous predicates, i.e., siblings of the cur-
rent node, and the remaining tuples can be skipped. In disjunction
nodes, the input bitmap represents the tuples that failed all previous
predicates. In the example of Figure 1, we show the input bitmap
denoting the tuples we need to evaluate per predicate where we do
not skip any tuples. To support null values, we can either use a
separate bitmap denoting null merged with the other predicates,
or use a special value per type evaluated as an additional predicate.

and

or

x	=	5 and

z	<>	1

and
or

x	=	5 1000

1111

1111 and
or

1000

0111

1111 and
or
and

0111

1111

y	>	3 y	<	7

y	>	3

0111

1100

and
or
and

0111

1111

0100

1100

and
or
and

0111

1111

y	<	7

0100

0111

and
or
and

0111

1111

0100

0111

and
or

0100

0011

1111and
or

0010

1100and

z	<>	1
0110

1100and

0110

0100

y	>	3 y	<	7

z	<>	1

5 2x

4 0y

z 1 3 7

and

1

69

2

set and	not

predicate
tree

data	columns
bitmap
operators

8

Figure 1: Selection scan example (without short-circuiting)

The output of the scan is a sorted list (i.e., array) of rids either
used to access column values. In case of late materialization, we
simply append rids. Materialization strategies are part of query
optimization and depend on workload factors such as selectivity,
cardinality, number of columns, and their data types, as well as the
hardware factors such as memory bandwidth [1]. The VIP design is
orthogonal to and can support multiple materialization strategies.

Towards Practical Vectorized Analytical Query Engines DaMoN’19, July 1, 2019, Amsterdam, Netherlands

3.2 Compression
Modern analytical database systems evaluate selective predicates
directly on compressed columns [39]. Dictionary encoding uses a
sorted dictionary of distinct values per column and substitutes the
column values with dictionary indexes using ⌈logn⌉ bits per index
for n distinct values. There are many ways to store the bits of the
indexes [38]; we use horizontal bit packing here [49]. In this scheme,
we can use short-circuiting, although skipping complete cache
lines is not guaranteed due to misalignment of the compressed data
layout. The VIP sub-operator that unpacks the bits of dictionary
indexes and evaluates the predicate without dereferencing the dic-
tionary is shown below. We only need 5 SIMD instructions using 2
pre-computed permutation masks to unpack 16 32-bit indexes. The
predicates are evaluated in SIMD registers directly after unpacking.
void select_int32_compressed(const void* data_in, [...] size_t dict_bits) {
[...] // showing only the innermost loop for the ">" predicate on 16 tuples
size_t j = _tzcnt_u64(m); // compute the offset of 16 tuples out of 256
__m512i x = _mm512_loadu_si512(data + dict_bits * 2 * j); // load compressed
// isolate the lower and upper 32-bit word per compressed index
__m512i x1 = _mm512_permutevar_epi32(m_per_1, x);
__m512i x2 = _mm512_permutevar_epi32(m_per_2, x);
x1 = _mm512_srlv_epi32(x1, m_srl); // align the lower 32-bit word
x2 = _mm512_sllv_epi32(x2, m_sll); // align the upper 32-bit word
// merge the aligned lower and upper 32-bit word, and clear high-order bits
x = _mm512_ternarylogic_epi32(x1, x2, m_max, 168);
bitmap_out[j] = _mm512_cmpgt_epi32_mask(x, m_con); [...] } // the predicate

For columns with many distinct values, dereferencing large dic-
tionaries can be as expensive as a hash join. Thus, compression
should be used when slow decompression is not required. Attributes
that are compressed with the same dictionary can be joined without
decompressing. On the other hand, compressing unique numeric
values used in aggregate functions adds decompression overhead.

3.3 Hash Join
Hash joins are frequently optimized as a stand-alone operator using
a key–rid pair. While we can achieve very good performance in
such a setting, the results are misleading, primarily because they
ignore the cost of late materialization [45]. Furthermore, if the join
involves composite keys or the join key is not necessarily a 32-bit
integer, many optimizations are either not applicable or are not
nearly as efficient. In practice, we have to support multiple data
types, composite keys, and additional non-equality predicates.

We outline how hash join operators work in the VIP design. First,
we hash the columns that appear in equality predicates. We execute
the hash join using the hash values instead of the actual columns.
This allows us to map any data type into an integer including
composite keys. After executing the hash join on the hash values,
we generate rid lists for joined tuples pointing to the two inputs. We
use the rids to evaluate the join predicates by accessing the actual
columns, including non-equality predicates, and store back the rids
of qualifiers. In the final phase, we can store the qualifying rids as
the output of the join to dereference later, or eagerly materialize
payload columns, similarly to materializing selection scan payloads.

When multiple SIMD lanes from the same scatter instruction
write to the same memory location, conflicts occur. To avoid this
hazard, we use special SIMD instructions that detect conflicts by
performing all-to-all comparisons within the SIMD register. With-
out the special instructions, this step would require O(W 2) scalar
or O(W) SIMD comparisons. Conflicts can also be detected using
gathers and scatters [34], but the number of cache accesses increase.

The VIP sub-operator for building a hash table using the hash
values of the hash join key columns is shown below. The bucket
indexes are computed bymasking the hash values, we do not rehash.
typedef struct { uint32_t hash; int32_t rid; } join_bucket_t;
void build_hashes(const uint32_t* hashes, size_t tuples, // the hash values

join_bucket_t* hash_table, size_t buckets) { // the hash table
const __m512i m_inc = _mm512_set_epi32(15,14,[...],0); [...] // constants
// scalar and SIMD registers holding the overall state of the function
__m512i key, rid, loc; size_t i = 0, j = 16; __mmask16 k = 0xFFFF;
while (i + j <= tuples) { // process (up to) 16 hash values per iteration
// replace finished SIMD lanes with new hash values from the input column
key = _mm512_mask_expandloadu_epi32(key, k, &hashes[i]);
__m512i inc = _mm512_add_epi32(m_inc, _mm512_set1_epi32(i)); i += j;
rid = _mm512_mask_expand_epi32(rid, k, inc); // generate inner rids
loc = [...]; // compute the bucket location and gather hash table rids
__m512i rid_H = _mm512_i32gather_epi32(loc, &hash_table[0].rid, 8);
k = _mm512_cmplt_epi32_mask(rid_H, m_0); // find empty hash table buckets
__m512i con = _mm512_conflict_epi32(loc); // detect conflicting lanes
k = _mm512_mask_testn_epi32_mask(k, con, con);
j = _mm_popcnt_u64(k); // count lanes that can be reused
// pack 32-bit keys and rids to 64-bit pairs and scatter to hash table
__m512i buc_L = _mm512_permutex2var_epi32(key, m_pak_1, rid);
__m512i buc_H = _mm512_permutex2var_epi32(key, m_pak_2, rid);
_mm512_mask_i32loscatter_epi64(hash_table, k, loc, buc_L, 8);
loc = _mm512_alignr_epi32(loc, loc, 8);
_mm512_mask_i32loscatter_epi64(hash_table, k >> 8, loc, buc_H, 8); }

[...] } // build the last (15 or less) hash values using scalar code

The VIP sub-operator for probing the hash table is shown below.
We cannot use hash table schemes that forbid key repetitions such
as cuckoo hashing [32], even for foreign-key joins where unique
inner keys are guaranteed, because inner keys may still be mapped
to the same hash value that is used as the hash table key here. We
can often guarantee no hash conflicts will occur by choosing the
right hash function. For example, 32-bit FNV hash values never
conflict if the total width of the input columns is 3 bytes or less.
size_t probe_hashes(const uint32_t* hashes, size_t tuples, // the hash values

const join_bucket_t* hash_table, size_t buckets, // the hash table
int32_t* inner_rids, int32_t* outer_rids) { // inner and outer side rids

[...] while (i + j <= tuples) { // process (up to) 16 tuples per iteration
// load new keys (hash values) from input while also reusing SIMD lanes
key = _mm512_mask_expandloadu_epi32(key, k, &hashes[i]);
__m512i inc = _mm512_add_epi32(m_inc, _mm512_set1_epi32(i)); i += j;
rid = _mm512_mask_expand_epi32(rid, k, inc); // generate outer rids
loc = [...]; // gather hash table buckets of packed key-rid pairs
__m512i buc_L = _mm512_i32logather_epi64(loc, hash_table, 8);
loc = _mm512_alignr_epi32(loc, loc, 8);
__m512i buc_H = _mm512_i32logather_epi64(loc, hash_table, 8);
// unpack key-rid pairs to keys and (implicitly generated) rids
__m512i key_H = _mm512_permutex2var_epi32(buc_L, m_unp_1, buc_H);
__m512i rid_H = _mm512_permutex2var_epi32(buc_L, m_unp_2, buc_H);
k = _mm512_cmpeq_epi32_mask(key, key_H); // compare the keys
_mm512_mask_compressstoreu_epi32(&outer_rids[o], k, rid);
_mm512_mask_compressstoreu_epi32(&inner_rids[o], k, rid_H);
o += _mm_popcnt_u64(k); // append inner & outer rids
k = _mm512_cmplt_epi32_mask(rid_H, m_0); // detect empty bucket lanes
j = _mm_popcnt_u64(k); } // count empty bucket lanes to be replaced

[...] // process the last (15 or less) tuples using scalar code
return o; } // return the total number of matching tuples

In cases where we would rather probe the slower cache than
partition the fact table [30], VIP can also support prefetching. In
such a case, we would use a shared hash table built with atomics in
scalar code; the cost of building is irrelevant. In other cases where
we would prefer a partitioned hash join [29] to avoid cache misses,
the hash tables are private per thread and no atomics are needed.
After the hash probing, we evaluate the predicates using rid lists to
dereference the columns. Hash collisions are rare because the hash
join uses partitioning until the inner table fits in the cache. Also,
the hash partitioning function is different from the hash function
used for the join. For conjunctions of join predicates, a sub-operator
evaluates each predicate and filters the rid lists. The hash collisions
are resolved by evaluating the equality predicates. After evaluating
all join predicates, we can materialize the rids or a set of payloads.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Orestis Polychroniou and Kenneth A. Ross

3.4 Partitioning
Partitioning can be used in hash join and group-by aggregation to
avoid cache misses. In VIP, we store the partitioned output contigu-
ously so we first compute a histogram. To compute the histogram,
we load and hash the next block of tuples from the key columns,
convert the hashes to partition ids based on the number of parti-
tions, and increment the histogram counters. To avoid SIMD scatter
conflicts, we replicate the histogramW times forW SIMD lanes
[34]. The sub-operator to update the histograms is shown below.
void histogram(const uint32_t* hashes, int32_t* histogram_x16,

uint8_t* pids, int bit_lo, int bit_hi) { // bit range
const __m512i m_1 = _mm512_set1_epi32(1); [...]
for (size_t i = 0; i != tuples; i += 16) { // 16 SIMD lanes

__m512i p = _mm512_load_epi32(&hashes[i]); // load hash values
p = _mm512_srl_epi32(p, m_srl); // get partition id from hash value
p = _mm512_sll_epi32(p, m_sll);
_mm_stream_si128(&pids[i], _mm512_cvtepi32_epi8(p));
__m512i o = _mm512_add_epi32(p, m_rep); // get offsets
__m512i c = _mm512_i32gather_epi32(off, histogram_x16, 4);
c = _mm512_add_epi32(c, m_1); // increment the histogram counters
_mm512_i32scatter_epi32(histogram_x16, o, c, 4); } [...] }

To pre-compute the boundaries of the partitioned output, we
compute the prefix sum of the histograms across threads [43]. Then,
we invoke the sub-operator shown below to compute the output
offset of each tuple and store it in the cache. The output offsets will
be reused by the sub-operators that shuffle each payload column
and thus we avoid computing the output offsets multiple times.
void shuffle_core(const uint8_t* pids, size_t tuples, // partition ids

int32_t* partition_offset, // the latest the output offset per partition
int8_t* conflict_offset, // compute the serialization offset per tuple
int32_t* output_offset) { [...] // compute the output offset per tuple

for (size_t i = 0; i != tuples; i += 16) { // 16 SIMD lanes
// load partition ids and gather the output offset per partition
__m512i p = _mm512_cvtepu8_epi32(_mm_load_si128(&pids[i]));
__m512i o = _mm512_i32gather_epi32(p, partition_offset, 4);
__m512i s = [...]; // serialize conflicts (9 instructions)
_mm_store_si128(&conflict_offset[i],_mm512_cvtepi32_epi8(s));
o = _mm512_add_epi32(o, s); // update and store the offsets per tuple
_mm512_store_epi32(&output_offset[i], off); // output offset per tuple
o = _mm512_add_epi32(o, m_1); // update the per-partition output offsets
_mm512_i32scatter_epi32(partition_offset, p, o, 4); } [...] }

Alongside the output offset, we store an offset to serialize scatter
conflicts [34]. Specifically, if SIMD lanes i and j point to same
partition p, the offset of lane i is o and the offset of lane j is o + 1 by
adding the serialization offset of lane j which is 1. We use special
conflict detection SIMD instructions to compute a bitmap of all-to-
all lane conflicts, and then count the set bits per SIMD lane.

After computing the offsets, we invoke sub-operators to shuffle
one column at a time for the next block of tuples. The output and
serialization offsets are reloaded from the cache. Scattering the data
to the output location directly results in too many cache conflicts
[43]. To optimize the use of the cache during partitioning, we scatter
the data in cache-resident buffers first and when the buffer of a
partition is full, we flush data to output in a batch, while also using
non-temporal stores to avoid polluting the cache [34, 36, 48].

The size of the buffer per partition is equal to two cache lines.
Once the lower half of the buffer is full, we flush the lower cache
line and shift the data from the upper. Depending on the column
data type, we need a different number of values to fill the buffer of
each partition. Since the sub-operators are specialized per data-type,
this logic is hardcoded. In some cases, we optimize even within the
same data type. For instance, long strings are horizontally shuffled
one tuple per iteration using contiguous SIMD loads and stores,
while short strings are vertically shuffled using gathers and scatters.

The 32-bit integer column shuffle sub-operator is shown below.
void shuffle_int32(const uint8_t* pids, size_t tuples,

const int8_t* conflict_offsets, const int32_t* output_offsets,
const int32_t* in, int32_t* buf, int32_t* out) { [...]

for (size_t i = 0; i != tuples; i += 16) { // 16 SIMD lanes
__m512i o = _mm512_load_epi32(&output_offsets[i]);
__m512i s = _mm512_cvtepu8_epi32(_mm_load_si128(&conflict_offsets[i]));
o = _mm512_sub_epi32(o, s); // remove serialization offset
o = _mm512_and_epi32(o, m_15); // determine buffer slot
o = _mm512_add_epi32(o, s); // add serialization offset
__mmask16 k = _mm512_cmpeq_epi32_mask(o, m_15); // partitions to flush
__m512i p = _mm512_cvtepu8_epi32(_mm_load_si128(&pids[i]));
o = _mm512_or_epi32(o, _mm512_slli_epi32(p, 5)); // offset in buffers
__m512i v = _mm512_stream_load_si512(&in[i]); // load data from column
_mm512_i32scatter_epi32(buf, o, v, 4); // store column data to buffers
if (_mm512_kortestz(k, k)) continue; // skip if no buffers are full
uint64_t m = k; // bitmask of lanes with full buffers to be flushed
do { // flush one full buffer at a time to memory using streaming stores
size_t j = i + _tzcnt_u64(m); // tuple location in input column
size_t o = output_offsets[j]; // tuple location in partitioned output
int32_t* b = &buf[pids[j] << 5]; // pick buffer to flush
__m512i x1 = _mm512_load_si512(b); // load buffer data
__m512i x2 = _mm512_load_si512(b + 16);
_mm512_stream_si512(&out[o - 15], x1); // flush lower half of buffer
_mm512_store_si512(b, x2); // overwrite lower half with upper half

} while (m = _blsr_u64(m)); } // get next set bit of mask
[...] } // process the last (up to 15) tuples in scalar code

During a partitioned hash join, each thread partitions a portion
of the input. If we need to split into many partitions that exceed
the fanout that guarantees cache-conscious execution, we split
into multiple passes like LSB radixsort [43]. Once we have more
partitions than threads, we shuffle the data across threads, similar
to a NUMA shuffling step [36]. Then, we can continue partitioning
until the partitions of the inner table fits in the cache. In the final
phase, each thread executes the final hash join for its local partitions.
To find the boundaries of partition p out of 2k partitions, we do not
store the histograms explicitly. We use binary search over the join
key columns and search for the first occurrence of hash p and p + 1
by recomputing the hash value on the fly and masking with 2k − 1.

3.5 Group-by Aggregation
In VIP, group-by aggregation has multiple steps, (i) estimate the
number of groups, (ii) partition the input for cache-conscious ex-
ecution, (iii) determine the group id (gid) per tuple, (iv) compute
intermediate expressions, and (v) use the gids to update the partial
aggregates. In contrast to joins where the smallest input size deter-
mines the number of partitions, the number of groups is estimated.

To estimate the number of groups, we use the PCSA algorithm
[10] that can be split using fully vectorized VIP sub-operators. The
core operation of PCSA is b|=h&-h where b is the PCSA bitmap
and h is the hash value. To achieve cache-resident execution, we
determine the number of partitions. If we do not partition the input,
each thread processes the local portion of tuples and the partial
aggregates are synchronously merged at the end. If we partition the
input, we generate more partitions than threads and then assign
each partition to be processed by the closest NUMA thread.

After the optional partitioning passes, the first step of the main
group-by aggregation operator is to map the hash values of the
group-by keys to gids. We use a hash table to store pairs of hash
values and gids. Each group is initially identified by a unique hash
value. We compute the hash value of the group-by columns for each
input tuple and search two possible hash buckets in the cuckoo
table for a matching hash value. If the hash value is not found, we
create a new group, assign the next implicitly generated gid, and
store the rid of the current tuple. Figure 2 shows an example.

Towards Practical Vectorized Analytical Query Engines DaMoN’19, July 1, 2019, Amsterdam, Netherlands

b

y

m

hashes

gids

rids

x x y x y yz

0 0 1 0 1 12

0 2 5

y 1

x 0
z 2hashes gids

cuckoo
hashing
table

group-by	keys	1

group-by	keys	2

hash	values

a a b b a

x x y x yz

m m m n on

b

Figure 2: Example of mapping hashes to group ids (gids)

We show the VIP sub-operator that generates gids using the
hash of the group-by columns. To mitigate complexity, we skip the
part where we insert new groups into the table. Because inserting
in a cuckoo hash table may inherently fail [32], or we may have
underestimated the number of groups, we set a threshold that, if
reached, causes the hash table to be resized and rebuilt from scratch.
typedef struct { uint32_t hash; int32_t gid; } aggr_bucket_t;
size_t hashes_to_gids(const uint32_t* hashes, int32_t* gids, size_t tuples,

size_t groups, int32_t* rids, aggr_bucket_t* hash_table, int log_buckets) {
const __m512i m_inc = _mm512_set_epi32(15,[...],1,0); [...] // constants
__m512i key, gid, loc; __mmask16 k = 0xFFFF; // initially use all lanes
size_t i = 0, j = 16, g = 0, k = [...]; // hash table rebuild threshold
while ((i = i + j) <= tuples) { // 16 SIMD lanes

if (--k == 0) { [...] } // resize and rebuild the entire hash table
key = _mm512_mask_loadu_epi32(key, k, &hashes[i - 16]); // load hashes
// compare the hash values across all lanes using conflict detection
__m512i con = _mm512_conflict_epi32(key);
__mmask16 k1 = _mm512_testn_epi32_mask(con, con);
__m512i loc_1 = [...], loc_2 = [...]; // compute hash bucket locations
// use alternative hash function for displaced tuples as per cuckoo hashing
loc = _mm512_ternarylogic_epi32(loc, loc_1, loc_2, 150);
loc = _mm512_mask_mov_epi32(loc, k1, loc_1); // 1st hash bucket location
// gather 16 hash buckets for lanes with unique hash
__m512i buc_L, buc_H; // load buckets from hash table
buc_L = _mm512_mask_i32gather_epi64(buc_L, k3, hash_table, loc_1, 8);
loc_1 = _mm512_alignr_epi32(loc_1, loc_1, 8);
buc_H = _mm512_mask_i32gather_epi64(buc_H, k3 >> 8, hash_table, loc_1, 8);
[...] // unpack buckets to hashes (key_H) and gids (gid_H)
// determine the lanes that need to gather the 2nd cuckoo hash bucket
k2 = _mm512_mask_cmpge_epi32_mask(k1, gid_H, m_0);
k2 = _mm512_mask_cmpneq_epi32_mask(k2, key, key_H);
k2 = _mm512_kand(k2, k); // 2nd hash bucket location
loc = _mm512_mask_mov_epi32(loc, k2, loc_2);
buc_L = _mm512_mask_i32logather_epi64(buc_L, k3, loc, hash_table, 8);
loc = _mm512_alignr_epi32(loc, loc, 8);
buc_H = _mm512_mask_i32logather_epi64(buc_H, k3 >> 8, loc, hash_table, 8);
[...] // re-unpack to hashes (key_H) and gids (gid_H)
// find the leftmost lane with the same hash value in the SIMD register
con = _mm512_and_epi32(con, _mm512_sub_epi32(m_0, con));
con = _mm512_sub_epi32(m_31, _mm512_lzcnt_epi32(con));
con = _mm512_mask_blend_epi32(k2, con, m_inc);
// determine lanes with hashes that need to be scattered to the hash table
k3 = _mm512_cmpge_epi32_mask(gid_H, m_0)
k = _mm512_mask_cmpneq_epi32_mask(k3, key, key_H);
k = _mm512_kor(_mm512_kand(k, k2), _mm512_kandn(k3, k2));
if (!_mm512_kortestz(k, k)) { // check if there are no new groups
// copy gid from lestmost lane with same hash and store gids in order
_mm512_storeu_epi32(&gids[i - 16], _mm512_permutevar_epi32(con, gid_H));
j = 16, k = _mm512_kxnor(k, k); // reuse all lanes

} else { [...] }} // create new gids, append rids, and update hash table
[...] return g; } // process the last tuples and return the number of groups

In contrast to joins where we cannot use cuckoo hashing, here
we explicitly use cuckoo hashing in order to probe andmap the hash
values to gids in input order [34]. Mapping unique hashes to gids
does not guarantee correctness due to collisions, even if collisions
are rare after partitioning. To address collisions in joins, we re-
evaluated the predicates, including the equalities. In aggregation,
we use the rid of the first tuple per group to dereference the group-
by columns and verify that the group-by columns within the same
group match. If not, we create new groups. We scan each payload
column once and compare the latest column value with the column
value of the first tuple of the group. If the values do not match, we
traverse a list of gid–rid pairs denoting distinct groups with the
same hash and compare to other column values accessed via rid. If
we find a match, we update the gid of the latest tuple. Otherwise,
we append a new gid–rid pair to the list of groups with the same
hash. In Figure 3, we show how to fix the collisions from Figure 2.

bkeys	1 a b a b

gids
0 0 1 3 1 12

0
2
5

3
0
0

0
2
5

0
0
0

rids next

3 0

0
2
5

3
4
0

3 0
6 0

0

mkeys	2 m m m o

gids
0 0 1 3 1 42

n

1

ma b

Figure 3: Example of resolving group-by hash collisions

We use type-specific sub-operators to resolve hash collisions of
group by columns. In SIMD code, we load the group-by column and
the gids sequentially. We gather the rids of the first tuple per group
using the gids, and use the rid to gather the group-by column value
determining the group. If the gathered value does not match the
current value, we branch out and create a new group in scalar code.

To process the aggregate functions, we use the gids as direct
mapping indexes. We compute functions across multiple columns
block at a time. For example, for sum(x*y), we compute x*y for the
next block of tuples, store the intermediate result and then use it to
update the partial sums. To avoid conflicts, we replicate the array
of sums, since the sum is commutative, similar to histograms for
partitioning. We show the sub-operator that computes the min()
aggregate for an integer column below. If we have only one group
or there is no group-by, we update the aggregate in registers.
void update_min_int32(const int32_t* data, const int32_t* gids,

size_t tuples, float* min_x16, size_t groups) {
const __m512i m_inc = _mm512_set_epi32(15,14,[...],1,0);
for (size_t i = 0; i != tuples; i += 16) { // 16 SIMD lanes
__m512i val = _mm512_load_si512(&data[i]); // load data from column
__m512i gid = _mm512_loadu_si512(&gids[i]); // load gids from cache
// compute the offset of (replicated) partial aggregates from the gid
__m512i loc = _mm512_or_epi32(_mm512_slli_epi32(gid, 4), m_inc);
__m512i min = _mm512_i32gather_epi32(loc, min_x16, 4); // load the min
__mmask16 k = _mm512_cmplt_epi32_mask(val, min); // store back if smaller
_mm512_mask_i32scatter_epi32(min_x16, k, loc, val, 4); }}

If the input is partitioned, each thread processes distinct parti-
tions. We keep the hash table of hashes to gids, the rids per group,
and the partial aggregates in the cache, until we process all the tu-
ples of the partition. Then, we merge the partial aggregates locally.
If the input is not partitioned, we processes tuples block-at-a-time
per thread and keep the partial aggregates in the cache. Then, we
use a special-purpose hash table to link the partial aggregates across
threads. Finally, we distribute and merge the partial aggregates.

4 EXPERIMENTAL EVALUATION
We perform all experiments on an Intel Xeon Phi 7210 Knights
Landing CPU, based on the latest generation of many-core CPUs
that rely on the most advanced AVX-512 SIMD instructions to
maximize performance per core, allowing for a larger number of
smaller cores per chip compared to mainstream CPUs. Our CPU
has 64 cores running at 1.3 GHz with 4-way SMT and 16 GB of high-
bandwidth on-chip MCDRAM memory with 295 GB/s load, 220
GB/s store, and 170 GB/s copy bandwidth. Our platform also has 192
GB of DDR4 DRAM with 70 GB/s load, 41 GB/s store, and 34 GB/s
copy bandwidth. We compile using ICC 18 with -O3 optimization
on a Linux 3.10 OS. In all experiments, we compare VIP against
query-specific hand-optimized scalar code that emulates the state-
of-the-art. The state-of-the-art achieves register-resident execution
[31] by pipelining operators for one tuple at a time without function
calls. This scalar register-resident row-at-a-time model of code-
generating engines fully contrasts VIP, a SIMD interpreted engine
processing tuples block-at-a-time. Compilation times are ignored,
favoring the baseline, since VIP does not compile code at runtime.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands Orestis Polychroniou and Kenneth A. Ross

30%
2.5%

4%

20%
10%

100%

p_container
=	‘SM_BOX’

p_container
=	‘SM_PACK’

p_container
=	‘SM_CASE’

p_brand	=
‘Brand#12’

p_container
=	‘SM_PKG’

p_container
=‘MED_BAG’

p_brand	=
‘Brand#23’

p_container
=‘MED_BOX’

p_container
=‘MED_PKG’

p_brand	=
‘Brand#34’

p_container
=	‘LG_CASE’

p_container
=	‘LG_PKG’

p_container
=	‘LG_BOX’

p_container
=	‘LG_PACK’

p_size	>=	1

or

and

p_size	<=	10
p_size	<=	15 p_size	<=	5

p_container
=‘MED_PACK’

and

or

or

or

andand

Figure 4: Selective predicate expression evaluation tree for
selection on part table from TPC-H Q19 (0.24% selectivity)

To evaluate complex expressions, we pick the selection from
TPC-H that combines the most predicates, the selection on table
part from Q19. The expression tree in optimal evaluation order,
based on selectivities, is shown in Figure 4 and is neither in CNF
nor in DNF. In Figure 5, we show the selection throughput us-
ing both uncompressed and compressed data. The p_brand and
p_container columns are char(10) with 25 and 40 distinct values
respectively. The p_size column is a 32-bit integer with 50 distinct
values. When compressed, we need 5, 6, and 5 bits respectively, re-
ducing the footprint from 24 bytes to 2 bytes (16 bits) per tuple. The
payload column is p_partkey, which is accessed for the qualifying
0.24% of tuples. We vary the scale factor (SF) of the dataset. For
SF = 10000, the uncompressed data exceed the size of MCDRAM
(HBW). VIP is 2.1–4.5X faster than the baseline and the best speedup
is observed for scanning uncompressed data on MCDRAM. The
large number of predicates highlights the efficiency of our design
in handling complex expressions by handling bitmaps in the cache
instead of compiling query-specific code. Since most Q19 predi-
cates has high selectivity, short-circuiting predicates is crucial to
performance, regardless of whether we process compressed data.

0

5

10

15

20

HBW LBW HBW LBW HBW LBW HBW LBW LBW HBW LBW

Raw Co/ed Raw Co/ed Raw Co/ed

SF	=	100 SF	=	1000 SF	=	10000

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

) Baseline
VIP

Figure 5: Selection on part table from TPC-H Q19

In Figure 6, we join the core tables of TPC-H. These queries,
shown below, are at the core of most TPC-H queries with joins.
The join payloads are the foreign keys used to join the core tables
with the smaller dimension tables. On DRAM (LBW), we use fewer
partitioning passes with larger fanout compared to MCDRAM (HBW).
select l_partkey, l_suppkey, o_custkey from lineitem, orders
where l_orderkey = o_orderkey;
select l_orderkey, l_partkey, l_suppkey from lineitem, partsupp
where l_partkey = ps_partkey and l_suppkey = ps_suppkey;

In the baseline, wematerialize the payloads using a query-specific
layout for the hash table buckets and we stop hash probing on the
first match since the inner keys are unique. VIP supports partition-
ing until the inner table fits in the cache and execute the hash join
in blocks of tuples to remain cache-resident. On fast memory (HBW),
VIP is 1.8–2X faster for the join of table lineitem with orders
and 1.6–1.7X faster for the join of lineitem with partsupp. The
speedup is smaller on the join with partsupp, because in our design
we evaluate each column of the composite key separately using

0

0.4

0.8

1.2

10 30 30 100 300 10 30 30 100 300

HBW LBW HBW LBW

Orders	&	Lineitem Partsupp	 &	Lineitem

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Scale	factor

Baseline
VIP

Figure 6: Hash joins using the largest tables from TPC-H

rids after joining on the hash values. On slow memory (LBW), the
two methods are equivalent. The partitioned approach is memory-
bound due to the number of passes while the baseline is bound by
cache misses. The baseline is noticeably slower for SF = 100 be-
cause the hash table is slightly larger than the L2 cache and causes
excessive cache conflicts. By increasing the hash table size by 4X,
we can achieve the throughput that we show here for SF = 300.

To evaluate group-by aggregation in VIP, we use TPC-H Q1. For
each column, we use the smallest data type that fits the value range.
In the baseline, we process one tuple at a time and update private
hash tables per thread. In VIP, we compute one expression at a
time for the next block of tuples. In contrast to column-at-a-time
execution [27] that materializes intermediate results after each
operator on each column, each VIP operator never materializes
intermediate results out of the cache. VIP can also reuse the results
of common sub-expressions in the aggregate functions of Q1.

sum(l_extendedprice * (1 - l_discount)),
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))

As shown in Figure 7, VIP is 2.7–3.2X faster regardless of memory
type. Estimating the groups is an order of magnitude faster here.
Finally, we execute the same query without the group-by clause.
Both methods now keep the partial aggregates in registers. In VIP,
we compute each expression and aggregate separately for the next
block of tuples. In the baseline, we compute all aggregates for one
tuple a time at once. VIP is 3.6–4.3X faster on both memory types.

0

2

4

6

10 30 100 100 300 10 30 100 100 300

HBW LBW HBW LBW

With	group	by Without	 group	by

Th
ro
ug
hp

ut
	(i
n	
bi
lli
on
s	

of
	tu

pl
es
	p
er
	se
co
nd

)

Scale	factor

Baseline
VIP

Figure 7: Group-by aggregation from TPC-H Q1

5 FUTUREWORK
Many-core CPUs, like the one used in out evaluation of VIP in
this paper, relies on advanced SIMD instructions to achieve high
performance. However, many-core CPUs and co-processors are not
as common as mainstream CPUs and may not remain commercially
viable in the future as a separate platform. We plan to evaluate the
performance of VIP on the latest generation of mainstream CPUs
that also support the AVX-512 SIMD instruction set and investigate
adapting VIP to any additional features of new mainstream CPUs.

Towards Practical Vectorized Analytical Query Engines DaMoN’19, July 1, 2019, Amsterdam, Netherlands

6 CONCLUSION
In this paper, we introduced VIP, a query engine designed and built
bottom-up from pre-compiled data-parallel sub-operators and im-
plemented entirely in SIMD. The VIP design can adapt to modern
hardware features, such as utilizing the high bandwidth on-chip
memory of many-core CPUs to facilitate cache-conscious execution.
In contrast to earlier work that focuses on partial SIMD implemen-
tations of individual database operators such as sorting or hash
joins, and assumes a favorable input setup such as key–rid pairs
with a specific materialization strategy, the VIP engine supports
all fundamental database operators, namely selections, hash joins,
and group-by aggregations, with any number of columns, multiple
data types, compression, and complex predicates or expressions.

Using the latest generation of many-core CPUs with the lat-
est AVX-512 SIMD instructions, we show that VIP outperforms
query-specific hand-optimized code emulating the state-of-the-art
code-generating query engines, without including the runtime com-
pilation overhead of the state-of-the-art that is non-existent in VIP.
Overall, VIP is a step towards realistic query execution designed
on top of advanced SIMD vectorization and taking advantage of
additional advanced hardware features provided by modern CPUs.

REFERENCES
[1] D. Abadi, D. Myers, D. DeWitt, and S. Madden. Materialization strategies in a

column-oriented DBMS. In ICDE, pages 466–475, 2007.
[2] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. Multicore, main-memory

joins: Sort vs. hash revisited. PVLDB, 7(1):85–96, Sept. 2013.
[3] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu. Main-memory hash joins on

multi-core cpus: Tuning to the underlying hardware. In ICDE, pages 362–373,
2013.

[4] S. Blanas, Y. Li, and J. Patel. Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In SIGMOD, pages 37–48, 2011.

[5] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query
execution. In CIDR, 2005.

[6] X. Cheng, B. He, X. Du, and C. T. Lau. A study of main-memory hash joins on
many-core processor: A case with Intel Knights Landing architecture. In CIKM,
pages 657–666, 2017.

[7] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi,
S. Kumar, and P. Dubey. Efficient implementation of sorting on multi-core SIMD
CPU architecture. In VLDB, pages 1313–1324, 2008.

[8] A. Costea, A. Ionescu, B. Răducanu, M. Switakowski, C. Bârca, J. Sompolski,
A. Luszczak, M. Szafrański, G. de Nijs, and P. Boncz. Vectorh: Taking SQL-on-
Hadoop to the next level. In SIGMOD, pages 1105–1117, 2016.

[9] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock, J. Clay-
baugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q. Munir,
S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and P. Unterbrunner. The Snowflake
elastic data warehouse. In SIGMOD, pages 215–226, 2016.

[10] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, Sept. 1985.

[11] G. Fowler, L. C. Noll, K.-P. Vo, and D. Eastlake. The FNV non-cryptographic
hash algorithm. Technical report, 2017. http://www.ietf.org/internet-drafts/draft-
eastlake-fnv-13.txt.

[12] G. Graefe. Volcano: An extensible and parallel query evaluation system. TKDE,
6(1):120–135, Feb. 1994.

[13] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan.
Amazon redshift and the case for simpler data warehouses. In SIGMOD, pages
1917–1923, 2015.

[14] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. AA-sort: A new parallel
sorting algorithm for multi-core SIMD processors. In PACT, pages 189–198, 2007.

[15] H. Inoue, M. Ohara, and K. Taura. Faster set intersection with SIMD instructions
by reducing branch mispredictions. PVLDB, 8(3):293–304, Nov. 2014.

[16] H. Inoue and K. Taura. SIMD- and cache-friendly algorithm for sorting an array
of structures. PVLDB, 8(11):1274–1285, July 2015.

[17] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. Improving main memory
hash joins on Intel Xeon Phi processors: An experimental approach. PVLDB,
8(6):642–653, Feb. 2015.

[18] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. Boncz. Everything
you always wanted to know about compiled and vectorized queries but were
afraid to ask. PVLDB, 11(13):2209–2222, Sept. 2018.

[19] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,
A. Di Blas, and P. Dubey. Sort vs. hash revisited: fast join implementation on
modern multi-core CPUs. PVLDB, 2(2):1378–1389, Aug. 2009.

[20] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query evalua-
tion. In ICDE, pages 613–624, 2010.

[21] H. Lang, A. Kipf, L. Passing, P. Boncz, T. Neumann, and A. Kemper. Make the
most out of your simd investments: Counter control flow divergence in compiled
query pipelines. In DaMoN, 2018.

[22] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and A. Kemper. Data
blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization
and compilation. In SIGMOD, pages 311–326, 2016.

[23] H. Lang, T. Neumann, A. Kemper, and P. Boncz. Performance-optimal filtering:
Bloom overtakes cuckoo at high throughput. PVLDB, 12(5):502–515, Jan. 2019.

[24] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: A
NUMA-aware query evaluation framework for the many-core age. In SIGMOD,
pages 743–754, 2014.

[25] Y. Li and J. M. Patel. BitWeaving: Fast scans for main memory data processing.
In SIGMOD, pages 289–300, 2013.

[26] Y. Li and J. M. Patel. WideTable: An accelerator for analytical data processing.
PVLDB, 7(10):907–918, June 2014.

[27] S. Manegold, P. Boncz, and M. Kersten. Optimizing database architecture for the
new bottleneck: memory access. J. VLDB, 9(3):231–246, 2000.

[28] S. Manegold, P. Boncz, and M. Kersten. What happens during a join? dissecting
CPU and memory optimization effects. In VLDB, pages 339–350, 2000.

[29] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on modern
hardware. TKDE, 14(4):709–730, July 2002.

[30] P. Menon, T. C. Mowry, and A. Pavlo. Relaxed operator fusion for in-memory
databases: Making compilation, vectorization, and prefetching work together at
last. PVLDB, 11(1):1–13, Sept. 2017.

[31] T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9):539–550, June 2011.

[32] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, May
2004.

[33] H. Pirk, O. Moll, M. Zaharia, and S. Madden. Voodoo - a vector algebra for
portable database performance on modern hardware. PVLDB, 9(14):1707–1718,
Oct. 2016.

[34] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD vectorization
for in-memory databases. In SIGMOD, pages 1493–1508, 2015.

[35] O. Polychroniou and K. A. Ross. High throughput heavy hitter aggregation for
modern simd processors. In DaMoN, 2013.

[36] O. Polychroniou and K. A. Ross. A comprehensive study of main-memory
partitioning and its application to large-scale comparison- and radix-sort. In
SIGMOD, pages 755–766, 2014.

[37] O. Polychroniou and K. A. Ross. Vectorized Bloom filters for advanced SIMD
processors. In DaMoN, 2014.

[38] O. Polychroniou and K. A. Ross. Efficient lightweight compression alongside fast
scans. In DaMoN, 2015.

[39] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,
J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis,
B. Schiefer, D. Sharpe, R. Sidle, A. Storm, and L. Zhang. DB2with BLU acceleration:
So much more than just a column store. PVLDB, 6(11):1080–1091, Aug. 2013.

[40] K. A. Ross. Selection conditions in main memory. TODS, 29(1):132–161, Mar.
2004.

[41] K. A. Ross. Efficient hash probes onmodern processors. In ICDE, pages 1297–1301,
2007.

[42] P. Roy, J. Teubner, and G. Alonso. Efficient frequent item counting in multi-core
hardware. In KDD, pages 1451–1459, 2012.

[43] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey.
Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In
SIGMOD, pages 351–362, 2010.

[44] B. Schlegel, T. Karnagel, T. Kiefer, and W. Lehner. Scalable frequent itemset
mining on many-core processors. In DaMoN, 2013.

[45] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison of thirteen
relational equi-joins in main memory. In SIGMOD, pages 1961–1976, 2016.

[46] E. Sitaridi, O. Polychroniou, and K. A. Ross. SIMD-accelerated regular expression
matching. In DaMoN, 2016.

[47] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store:
a column-oriented DBMS. In VLDB, pages 553–564, 2005.

[48] J. Wassenberg and P. Sanders. Engineering a multi core radix sort. In EuroPar,
pages 160–169, 2011.

[49] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner.
SIMD-scan: ultra fast in-memory table scan using on-chip vector processing
units. PVLDB, 2(1):385–394, Aug. 2009.

[50] J. Zhou and K. A. Ross. Implementing database operations using SIMD instruc-
tions. In SIGMOD, pages 145–156, 2002.

	Abstract
	1 Introduction
	2 Related Work
	3 Design & Implementation
	3.1 Selection Scans
	3.2 Compression
	3.3 Hash Join
	3.4 Partitioning
	3.5 Group-by Aggregation

	4 Experimental Evaluation
	5 Future Work
	6 Conclusion
	References

