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ABSTRACT
String processing tasks are common in analytical queries
powering business intelligence. Besides substring matching,
provided in SQL by the like operator, popular DBMSs also
support regular expressions as selective filters. Substring
matching can be optimized by using specialized SIMD in-
structions on mainstream CPUs, reaching the performance
of numeric column scans. However, generic regular expres-
sions are harder to evaluate, being dependent on both the
DFA size and the irregularity of the input. Here, we op-
timize matching string columns against regular expressions
using SIMD-vectorized code. Our approach avoids accessing
the strings in lockstep without branching, to exploit cases
when some strings are accepted or rejected early by look-
ing at the first few characters. On common string lengths,
our implementation is up to 2X faster than scalar code on a
mainstream CPU and up to 5X faster on the Xeon Phi co-
processor, improving regular expression support in DBMSs.

1. INTRODUCTION
Modern hardware advances have made a fundamental im-

pact on the design and implementation of database sys-
tems. The increase in main-memory capacity allows small
to medium-scale databases to fit in RAM, shifting the per-
formance bottleneck from the disk to the RAM bandwidth.

In-memory query execution strives to exploit all kinds
of parallelism provided by modern CPUs in order to satu-
rate the RAM bandwidth, the most fundamental of which is
thread parallelism, driven by the advent of multi-core CPUs.

In the context of databases, scan operators, besides using
multiple threads, also utilize SIMD vector instructions to
maximize efficiency. When the selective predicates are sim-
ple, e.g., salary > 10000, multi-threaded scans using SIMD
instructions process the data faster than it can be fetched
to the CPU, saturating the RAM bandwidth bottleneck [8].
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1.1 Substring Matching
Substring matching is a well-studied problem, the most

popular algorithms being Knuth-Morris-Pratt [5] and Boyer-
Moore [2]. Both methods improve over the worst-case O(n2)
brute-force algorithm, by using pre-computed arrays of off-
sets for mismatches to achieve O(n) worst-case complexity.
The pre-processing step is dependent on the pattern only
and is trivial in databases where a single pattern is matched
against many tuples. The Boyer-Moore code is shown below.
The arrays pat_jmp and sym_jmp are pre-computed once.

bool like(const uint8_t *str, const uint8_t *pat,
size_t str_len, size_t pat_len, [...]) {

size_t i = pat_len - 1;
while (i < str_len) {

uint8_t b = str[i];
size_t j = pat_len - 1;
while (b == pat[j]) {

if (j-- == 0) return true;
b = str[--i]; }

i += max(pat_jmp[j], sym_jmp[b]); }
return false; }

Recent mainstream CPUs offer specialized SIMD instruc-
tions for string processing. With suitable parametrization,
the instructions can be used to implement substring match-
ing. Specifically, the SSE 4.2 128-bit SIMD instruction set
in mainstream CPUs provides the cmpestr and cmpistr in-
structions that can match against patterns that fit in a 128-
bit SIMD register. The algorithm resembles the brute force
approach but runs in worst-case O(n) for patterns up to 16
bytes. We show the implementation below using intrinsics
for SIMD instructions. A guide to SIMD intrinsics is avail-
able online.1 The code loads the input string and, when a
partial match is found, the string is reloaded from the start-
ing position of the partial match to re-test for a full match.

bool like(const uint8_t *string, __m128i pat, [...]) {
size_t i = 0;
while (i + 16 < str_len) {

__m128i str = _mm_loadu_si128(&string[i]);
size_t j = _mm_cmpistri(pat, str, 12);
if (j >= 16) i += 16;
else {

if (j + pat_len <= 16) return true;
i += j; } }

if (i + pat_len <= str_len) {
__m128i str = _mm_loadu_si128(&string[i]);
size_t j = _mm_cmpestri(pat, pat_len,

str, str_len - i, 12);
if (j < 16 && j + pat_len <= 16) return true; }

return false; }

1software.intel.com/sites/landingpage/IntrinsicsGuide/
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Figure 1: Substring matching for TPC-H Q13

Figure 1 shows the performance of different algorithms for
substring matching on TPC-H Q13 (scale factor 300) using
multiple threads on a mainstream 4-core CPU. The query
has a like ’%special%packages%’ operator that matches
patterns special and packages in that order. By nesting
two calls of substring matching that return the match posi-
tion, we can implement a sequence of pattern matches.

Substring matching without using the specialized hard-
ware instruction is far from the RAM bandwidth, due to
branch dependencies for every character of the input string.
Knuth-Morris-Pratt (KMP) is very similar to a determinis-
tic finite automaton (DFA) that matches the same pattern
but uses an ad-hoc jump table for failed matches. The DFA
is implemented using a two-dimensional transition table for
each state × all possible values per string character. The
number of states is equal to the pattern length. As expected,
KMP and the DFA have similar performance since both scan
the entire string if there is no match. Boyer-Moore (BM) is
much faster than KMP due to skipping a large portion of
each input string. Still, we cannot saturate the RAM band-
width using scalar code, even if we use all hardware threads.

1.2 Regular Expression Matching
While a single instruction is enough to cover most queries

with substring matching operators, more advanced predi-
cates such as regular expression matching cannot be opti-
mized as easily. Popular databases offer regular expression
matching predicates such as regexp_like in Oracle DB, or
rlike/regexp in MySQL. For example, this MySQL query
returns the number of employees with valid e-mail addresses:

select count(*) from employees
where email regexp # or "rlike"
’^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+.[A-Za-z]{2,4}$’

To match a string against a regular expression, we typi-
cally construct a DFA. DFAs have a number of states that
transition to other states based on the next character of
the string. Because each character is processed only once,
DFAs take worst-case O(n) time, where n is the input string
length. The DFAs are represented by an s× c transition ta-
ble having s states and c character values. The number of
states s depends on the complexity of the regular expression.

We show a DFA that validates e-mail addresses in Fig-
ure 2. The DFA has 9 states and S is the starting state. The
double-circled states T2, T3, and T4 are accepting states.
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Figure 2: A DFA that validates e-mail addresses
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Figure 3: DFAs for combinations of: she, her

All regular expressions have a DFA that matches them.
A DFA can be constructed automatically from a regular
expression and the number of states can be minimized [4],
which is still a pre-processing step in the context of databases.
Regular expressions cover all logical combinations of sub-
string matching operators. For example, the selection fil-
ter like ’%special%’ or like ’%packages%’ can either use
two calls of substring matching and combine their result or
use a DFA to match both words simultaneously. The DFA
matches strings in linear time regardless of the number of
patterns but its size grows if more words have to be matched.
A well-known algorithm for multi-pattern substring match-
ing is Aho-Corasick [1]. Aho-Corasick places all patterns in
a trie, traversed as a DFA, and keeps a separate transition
table for mismatches, similar to KMP. Still, the extra table
can be encoded in the DFA transitions and Aho-Corasick be-
comes identical to the minimal DFA. However, unlike Aho-
Corasick, DFAs can accept all logical combination of posi-
tive and negative patterns. Figure 3 shows: (i) the trie that
accepts her or she (A states), (ii) a DFA that accepts sub-
strings her and she (B states), and (iii) a DFA that accepts
substring she but rejects substring her (C states).

In Figure 2, there is an implicit extra state that works as
a reject sink. An e-mail is invalid if we encounter an invalid
character and can stop the DFA traversal immediately. In
Figure 3, B5 is an accept sink and C8 is a reject sink. A
DFA can have both. These special states allow us to accept
or reject a string early, which is crucial for performance in
some DFAs, but can also introduce branch mispredictions.

If the DFA has an accept sink state only, such as multi-
pattern matching, high selectivity may favor skipping a large
portion of each input string. DFAs with a reject sink state
are favored by low selectivity. Table 1 shows scenarios of
early failures, including example inputs with the character
where the transition to the reject sink occurs highlighted.

Regex Scenario with possible early failures
e-mail invalid character, e.g., me @mail.com

double @ symbol, e.g., me@@mail.com
specific domain: mail.com, e.g. me@meil.com
specific username: john, e.g. jim@mail.com

URL invalid character, e.g., http://site .com
invalid scheme, e.g., htp://site.com
specific site: site.com, e.g., http://no.com/a/b/c
specific IP: 125.1.*.*, e.g., http://125.2.0.0/a/b/c
specific path depth: 2, e.g., http://site.com/a/b/c

address missing street number before street name
non-numeric symbol in postal code
specific street number in valid address

name invalid symbol, e.g., J0hn Smith
lowercase first letter, e.g., bob Smith
specific surname: Stark, e.g., Peter Parker

Table 1: Early failure scenarios with examples



In this paper, we implement regular expression matching
by traversing both the DFA and the input in a data-parallel
way. Our implementation traverses both the DFA for mul-
tiple strings at a time using non-contiguous loads (gathers)
and also accesses different offsets of the strings without as-
suming lockstep processing, while amortizing the random
access cost by buffering multiple bytes per string access. Fi-
nally, we use branchless vectorized code to store pointers
to matching tuples (rids), replacing old strings that reach a
sink state early, in order to maximize SIMD lane utilization.

Our approach works on both recent mainstream CPUs
(Intel Haswell) and co-processors (Intel Xeon Phi) and is in-
dependent of the SIMD length. Our experimental evaluation
shows that compared with scalar code, our implementation
achieves a 2X improvement on mainstream CPUs and 5X
improvement on Xeon Phi co-processors, providing a crucial
tool for supporting efficient regular expression matching.

In Section 2 we present related work. In Section 3 we de-
scribe our vectorized implementation, including details such
as how to access the input strings, how to traverse the DFA
in parallel, and how to replace early failures. In Section 4
we present our evaluation and we conclude in Section 5.

2. RELATED WORK
Regular expression matching has been studied extensively.

GPUs were used for fast substring matching where inter-
leaving the strings reduces the cache pressure [13]. Earlier
work considered DFA traversal inherently scalar and used
NFA representations that can exploit SIMD instructions on
the Cell processor [6]. Other techniques to accelerate multi-
pattern matching on Cell reduced the alphabet to fit in
SIMD registers [12]. Other work suggested breaking depen-
dencies across iterations by enumerating transitions from all
possible states per input symbol [7]. Another approach in-
volved two steps, first matching network packet headers us-
ing a DFA, and then matching multi-stride pattern segments
for the body matches using SIMD instructions [15]. Parti-
tioning a large DFA into cache-resident pieces was evaluated
in the Xeon Phi co-processor [14]. Nevertheless, regular ex-
pressions used to filter string columns as part of the query,
map to DFAs that normally do not exceed the cache size.

Prior work has claimed that DFA traversal has data de-
pendencies that hinder the use of SIMD and propose com-
pacting the DFA to fit in registers or using NFAs, often re-
stricting the optimizations to multi-pattern matching. Ear-
lier work proposed processing multiple input strings in a
data-parallel way, either using Cell SPEs [11], or via SIMD
gathers in mainstream processors [10], although in the lat-
ter case, the hardware did not yet implement gathers to
evaluate the actual speedups. In lexical analysis where the
leftmost longest match has to be found, the entire string
has to be processed and thus processing multiple strings in
lockstep [10, 11] is sufficient. In databases, however, regular
expressions are used as a boolean filter and the matching
can skip large portions of each input string, making lock-
step processing wasteful. Vectorization using data-parallel
processing of multiple input instances was used to acceler-
ate database operators on CPUs and Xeon Phi co-processors
[8, 9]. Our design not only traverses the DFA for multiple
strings in parallel, but also accesses the strings at arbitrary
offsets rather than in lockstep, buffers multiple bytes per
access, and replaces strings as soon as they are accepted or
rejected by the DFA, in order to fully utilize the SIMD lanes.

3. IMPLEMENTATION
Each regular expression has a single matching DFA with

the minimum number of states. Since the DFA is determinis-
tic, each state has exactly one transition per input character.
Thus, we represent the DFA as an s× c array with s states
and c transitions per state, where c is the size of the alpha-
bet. To cover all possible bytes, we use c = 256. To avoid
storing whether each state is accepting or rejecting the input
string, we place the srej rejecting states in rows [0, srej) and
the remaining sacc accepting states in rows [srej , sacc+srej).
Scalar code for matching a single string is shown below:

bool regexp(const uint8_t *string, size_t str_len,
const ssize_t *dfa, [...]) {

size_t i = 0, s = initial_state;
do {

s = dfa[(s << 8) | string[i]];
} while (0 <= (ssize_t) s && ++i != str_len);
return s + 1 > reject_states; }

The two-dimensional array of the DFA is accessed as a
one-dimensional array using arithmetic. The transition off-
set is computed using the current state and the next byte
of the input string. We stop when we reach the end of the
string, unless we transition to one of the two sink states.
The snippet shown above is inlined in a loop that scans over
the string column and stores the rids of accepted strings.

We simplify the branch tests by setting the transitions to
the negative and the positive sink to -1 and -2 respectively.
The 0<=(ssize_t)s signed integer comparison tests whether
the state is a sink or not. The s+1>reject_states unsigned
integer comparison tests whether the state is in the range
[−1, srej), thus the string should be rejected. By minimiz-
ing the branches and using simple arithmetic to access the
transition table, we make the scalar code as fast as possible.
When storing the rids of matching strings, we can elimi-
nate the branch, using the result of the s+1>reject_states

comparison to increment the index to the array of rids.
If the number of DFA states is small, we can store the

transition table as a byte array (if s < 255) and shrink its
memory footprint to 1/4. In databases where the regular
expression is specified in the query, the DFA is typically
small enough to fit in the L1 cache. For instance, to validate
URLs we need a sophisticated regular expression with ≈100
states, which translates to a 23 KB DFA that still fits in
the L1 cache. Writing queries with regular expressions with
DFAs that exceed the L1 cache capacity is quite impractical.

When the DFA fits in the cache, the matching throughput
is determined by the computation, the read latency when ac-
cessing the next DFA state from the cache, and the number
of branch mispredictions if strings are determined by the
DFA early. Branch mispredictions occur when the strings
reach a sink state before reaching the end of the string, ex-
iting the inner loop and skipping the remaining bytes of the
string. If the DFA rarely transitions to sink states and the
string length is fixed, the inner loop executes a specific num-
ber of times and branch mispredictions become negligible.

To facilitate vectorization of the scalar code shown above,
we assume that the strings have fixed lengths. String columns
of fixed length are often used by main-memory databases
to allow fast random access to string values using pointers
(rids). If we have a wide range of lengths, we can relax this
constraint by re-organizing the column to group strings of
similar length together. Thus, we can largely maintain fast
random access while avoiding space-inefficient padding.



If we process a different string per vector lane but access
the input in lockstep [10, 11], we load W characters from
W strings in W vectors, loading data from a single string in
each vector. We have an inner loop that (i) packs the first
lane from these W vectors into one vector, (ii) computes the
transition offset, (iii) gathers the next state per string from
the DFA, and (iv) shifts the W vectors by one lane to move
the next character to the first lane. Since each string can be
larger than a vector, we have an outer loop that is repeated
dL÷W e times. The algorithm is shown below. Afterwards,
we show a second algorithm and then describe the notation.

Algorithm 1 Lockstep regex matching

~r ← {0, 1, . . . ,W − 1} . rids of strings (being processed)
j ← 0 . output index for array of accepted string rids)
for i← 0 to N step W do . N : # of tuples

~s← sinitial . set to initial state
for o← 0 to L step W do . L: string length

~d1 ← strings[i · L + o] . load 1st string
[. . . ] . W − 2 symmetric lines skipped
~dW ← strings[(i + W − 1) · L + o] . load Wth string
for l← 0 to min(W,L− o) do

~d← interleave first lanes(~d1, . . . , ~dW )

~si ← (~s << 8) | ~d . compute offsets in the DFA
m← ~s ≥ 0 . check if not on sink states
~s←m DFA[~si] . gather next states from the DFA
~d1 ← shift lanes right(~d1, 1)
[. . . ] . W − 2 symmetric lines skipped
~dW ← shift lanes right(~dW , 1)

end for
end for
m← ~s + 1 > sreject . find which strings are accepted
rids[j]←m ~r . store rids of accepted strings
j ← j + |m| . update output index by counting set bits
~r ← ~r + W . update rids to process next W strings

end for

Reusing vector lanes dynamically has been shown to work
very well on vectorized implementations of other database
operations [8, 9]. Here, the input strings can be accessed
out-of-order in arbitrary offsets by having old strings replace
old strings as soon as they are determined by the DFA. This
approach contrasts DFA traversal using multiple consecutive
strings in lockstep, which is similar to unrolling the scalar
code. A simplified version of the algorithm is outlined below.

Algorithm 2 Short-circuit regex matching (simplified)

~r0, ~r ← {0, 1, . . . ,W − 1} . rids of strings (being processed)
~s← sinitial . offset in each string (being processed)
~o← 0 . state in the DFA of strings (being processed)
i←W . input index used to implicitly generate rids
j ← 0 . output index for array of accepted string rids
while i ≤ N do . N : # of tuples, L: string length

~di ← ~r · L + ~o . compute (global) offsets in strings
~d← strings[~di] . gather bytes of strings from input

~si ← (~s << 8) | ~d . compute offsets in the DFA table
~s← DFA[~si] . gather next states from the DFA
m← (~s + 1 > sreject) & (~o = L) . check if accepted
rids[j]←m ~r . store rids (if accepted)
j ← j + |m| . update output index
m← (~s < 0) | (~o = L) . check if finished
temp[0]← ~r0 + i . use input index & lane offsets ...
~r ←m temp[0] . ... to replace rids (if finished)
i← i + |m| . update input index
~s← m ? sinitial : ~s . reset DFA state (if finished)
~o← m ? 0 : (~o + 1) . reset in-string offset (if finished)

end while

The notation used in Algorithms 1 and 2 is based on earlier
work [8] and is briefly summarized here for clarity. ~x← A[~y]
is a gather using ~y for the indexes. ~x ←m A[i] is a selec-
tive load where only the lanes specified in bitmap m are
replaced with data loaded sequentially from memory loca-
tion A. A[i]← ~x is a selective store where the lanes specified
in m are stored sequentially to A. ~x← m ? ~y : ~z picks the
value of each lane in x from either y or z based on bitmap m.
m ← ~x < ~y generates a bitmap with the boolean result of
each comparison. |m| denotes the number of set bits in m.
Scalar values in vector operations are implicitly broadcast
to all lanes. For example, ~x← ~x+ c adds c to all lanes of ~x.

Since the string column is scanned in order, we implicitly
generate rids from 1 to N , where N is the number of tuples.
Figure 4 illustrates this functionality. The lanes with rids 14
and 37 refer to accepted strings, while the lanes with rids 16,
32, and 38 refer to rejected strings. The remaining lanes are
yet undetermined. We selectively store the rids of accepted
strings to an output array and then replace both accepted
and rejected strings with new implicitly generated rids by
incrementing the input offset. For each string we process,
we hold the rid, the current offset in the string, and the
current state in the DFA. In the vector lanes with accepted
or rejected strings, besides replacing the rids, we also reset
the states to the initial state and the string offset to zero.

14 30 16 32 36 37 38 39 vector	of	rids
output	rids
(memory)

5 10 14 37 ……

40 30 41 42 36 43 44 39

40
input
index 45

6
output
index8

Figure 4: Selective loads & stores of rid vectors

The difference of Algorithm 2 with the baseline scalar code
is that it converts all conditional control flow into branchless
data flow. However, since the input is no longer accessed in
order, we have to use vector gathers to load the bytes from
the strings non-contiguously, while the scalar code processes
a single string and accesses the string bytes contiguously.

Non-contiguous loads are more expensive than contiguous
loads but are necessary if we process multiple strings in par-
allel. However, executing a new gather to load 1 byte per
string instead of a 4-byte word, is wasteful. Also, in prac-
tice, we expect to process a non-trivial portion per string
to determine if it matches the regular expression. Thus, we
buffer more than one byte each time we load data from the
strings. Instead of issuing one cache access for each byte of
each string, we load multiple consecutive bytes of each string
and buffer them in the vector. CPU caches are equally fast
whether we access 1 byte, or 8 bytes (aligned). Even aligned
32-byte vector accesses can be equally fast in some CPUs.

When gathering bytes from arbitrary offsets in the strings,
the accesses may not be aligned on 4-byte boundaries. For
example, if the string length is 15, the second string will
start from the 16th byte. Even if scalar loads are allowed to
be unaligned, vector gathers may still require aligned point-
ers. Mainstream CPUs support unaligned gathers in SIMD
(AVX 2), thus, we can load 8 bytes per string using a single
64-bit gather. The Xeon Phi, on the other hand, enforces
w-byte vector gathers to be aligned to w-byte boundaries,
thus unaligned gathers have to be implemented in software.
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Figure 5: Unaligned vector gathers in Xeon Phi

To implement unaligned vector gathers in software, we use
aligned word gathers and variable-stride shifts. First, we
align the byte-aligned pointer to a 4-byte-aligned pointer,
then we issue two 4-byte gathers to consecutive locations
loading 8 consecutive bytes per string, and then we align
each vector lane using variable-stride shifts. The process is
illustrated in Figure 5. If we issue two 4-byte gathers, which
is the minimum possible, the number of usable bytes varies
depending on the possible alignments of the strings in the
input column. If the (fixed) string length is a multiple of 4,
then all strings will be aligned on 4-byte word boundaries
and all 8 bytes are valid unless we exceed the string length.
If the string length is a multiple of 2, then all strings are
aligned on 2-byte boundaries and at least 6 out of 8 bytes are
valid. Otherwise, at least 5 are valid. The Xeon Phi code for
gathering string bytes from arbitrary offsets is shown below.

// compute index: rid * length + offset
__m512i p = _mm512_fmadd_epi32(rid, len, off);
// align the byte offset to 4-byte boundaries
__m512i p4 = _mm512_srli_epi32(p, 2);
// gather 8 bytes per string
__m512i w1 = _mm512_i32gather_epi32(p4, &str[0], 4);
__m512i w2 = _mm512_i32gather_epi32(p4, &str[4], 4);
// compute right shift strides: s = (p & 3) << 3
__m512i shr = _mm512_and_epi32(p, m3);
shr = _mm512_slli_epi32(shr, 3);
// align 1st word: w1 = (w1 >> s) | (w2 << (32 - s))
__m512i shl = _mm512_sub_epi32(m32, shr)
w1 = _mm512_or_epi32(_mm512_srlv_epi32(w1, shr),

_mm512_sllv_epi32(w2, shl));
// align 2nd word: w2 >>= shr
w2 = _mm512_srlv_epi32(w2, shr);

To traverse the DFA using all bytes gathered per string,
we keep each word of bytes in separate vectors and perform
an inner loop for each vector. The loop repeats are only de-
pendent on the string length and are computed once. While
we skip the tests to replace finished rids or store accepted
rids, we still check for each string if the next loaded byte is
valid, i.e., we have not reached a sink state or the end of the
string. Xeon Phi code to traverse the DFA is shown below.

// isolate next byte per string
__m512i b = _mm512_and_epi32(w1, mFF);
// compute index in transition table
__m512i p = _mm512_slli_epi32(s, 8);
p = _mm512_or_epi32(p, b);
// gather new states (assuming 8-bit DFA array)
s = _mm512_mask_i32extgather_epi32(s, k, p, dfa,

_MM_UPCONV_EPI32_SINT8, 1, 0);
// increment offset for valid lanes using a -1 mask
off = _mm512_mask_sub_epi32(off, k, off, m1);
// shift word to get next string byte
w1 = _mm256_srli_epi32(w1, 8);
// update valid lanes: check for sink state (s > -1)
k = _mm512_mask_cmpgt_epi32_mask(k, cur, m1);
// update valid lanes: check for end of string
k = _mm512_mask_cmpgt_epi32_mask(k, len, off);

In some extreme cases with very short strings or DFAs
that reach a sink state very early, we can test whether all
vector lanes are invalid on each inner loop iteration and exit.
Also, because we perform 5–8 iterations before we reload
new strings, some vector lanes remain unutilized during the
last inner loop iterations. On average, however, we expect
the strings to be larger than 5–8 bytes, and the overhead of
a few redundant loops per string after it finishes the DFA
traversal, is lower than the overhead of issuing a new gather
for each byte per string and check which accepted vector
lanes to store and which finished vector lanes to replace.

Finally, we note that the gathers to the DFA transition
table cannot be buffered in the same way that gather to the
strings were buffered. Even if the DFA is a table of bytes,
there is no use for the nearby bytes that would fit in the
same processor word. An interesting observation is that if
the hardware does not support single byte gathers, the cost
of converting (4-byte) int gathers to bytes using shifting is
expensive and adds significant overhead to the critical path.
Xeon Phi supports this functionality but the latest CPUs
(AVX 2) do not. On the CPU, we found that storing the
transition table of small DFAs using 4-byte words rather
than bytes makes traversal faster, even if the size is quadru-
pled. Making the DFA resident on the L2 cache rather than
the L1 by increasing its footprint, will not affect performance
in mainstream CPUs if SIMD gathers are equally fast [3].

Loop unrolling hides latencies among instructions by re-
peating instructions without data dependencies and boosts
performance even in aggressively out-of-order CPUs. Here,
we apply 2-way loop unrolling by generating rids from 1 to
N and N to 1 until the two rid offsets meet in the middle.
The number of variables that hold the state of the two in-
stances is doubled and thus we must ensure that the number
of registers suffices to completely avoid register spilling.

4. EXPERIMENTAL EVALUATION
Our evaluation was done on two platforms. The first plat-

form has an Intel Xeon E3-1275v3 CPU with 4 Intel Haswell
cores and 2-way SMT running at 3.5 GHz that supports 256-
bit SIMD instructions (AVX 2). The platform has 32 GB
DDR3 ECC RAM at 1600 MHz with a peak load bandwidth
of 21.8 GB/s and runs Linux 4.4. We compile using GCC 6
with -O3. The second platform is an Intel Xeon Phi 7120P
co-processor with 61 modified P54C cores and 4-way SMT
running at 1.238 GHz that supports 512-bit SIMD instruc-
tions. The co-processor has 16 GB GDDR5 on-chip RAM
with a peak load bandwidth of 212 GB/s and runs embed-
ded Linux 2.6. We compile using ICC 17 with -O3. We also
tested ICC on the CPU, but GCC was marginally faster.

All figures show the performance of scalar code (Scalar),
vector code (Vector (x1)), which extends Algorithm 2 with
an inner loop to process multiple bytes per gather, and vec-
tor code with 2-way loop unrolling (Vector (x2)). On the
CPU platform, we also implement Algoritm 1 that accesses
the inlint in lockstep [10, 11] (Vector (ls)). The data are
synthetically generated for each regular expression to meet
specific criteria per experiment. We scan over a fixed-length
string column and store the rids of accepted strings. The
DFAs are stored as byte arrays if the states are few, except
for the vector methods on the CPU where we measured that
using 32-bit gathers to access a 4X larger DFA to be faster
than emulating 8-bit gathers via 32-bit gathers (AVX 2).
Unless otherwise specified, we use all hardware threads.
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Figure 6: Varying string lengths (URL validation)

Figure 6 shows the throughput of regular expression match-
ing by varying the string length. The gigabytes per second
metric measures the total string length, even if some bytes of
the string are skipped. The DFA checks whether the string
is a valid URL using the regular expression shown below.

scheme, username, hostname (or IP), port, path, query, fragment
^(ht|f)tp(s)?://([!$&’()*+,;=A-Za-z0-9:-]+@)?
(((([_~!$&’()*+,;=A-Za-z0-9-]|(%[0-9A-F]{2}))+.)+[a-zA-Z]{2,4})
|((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5]).){3}
([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5]))(:[0-9]*)?
(/([._~!$&’()*+,;=A-Za-z0-9:@-]|(%[0-9A-F]{2}))+)*
(?([?._~!$&’()*+,;=A-Za-z0-9:@/-]|(%[0-9A-F]{2}))*)?
(#([?._~!$&’()*+,;=A-Za-z0-9:@/-]|(%[0-9A-F]{2}))*)?$

The DFA has 90 states and its footprint is 23 KB if stored
as a byte array. The selectivity is set to 1% and we process
half of the bytes per string on average before we reach the
reject sink state. The speedup is 1.67–1.95X and the aver-
age bandwidth usage is increased from 28% to 50%. Loop
unrolling boosts the vector code up to 14%. The lockstep
method is slower due to processing all the bytes per string.
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Figure 7: Varying string lengths (URL validation)

Figure 7 shows the throughput on the co-processor. The
vectorized code is 2.6–3.7X faster and increases the band-
width usage from 7% to 26%. Loop unrolling is slower as
4-way SMT already hides instruction latencies effectively.
Performance exhibits small spikes due to unaligned gathers.

In Figure 8, we fix the string length to 32 and vary the
average failure point. The failure point represents the num-
ber of bytes processed per string, or the average number of
transitions in the DFA until we reach the reject sink state.
The vectorization speedup on the CPU is 1.66–1.92X and
2.57–3.34X on the Xeon Phi by using strings with length
equal to 32 and by averaging across all failure points. On
the CPU, loop unrolling boosts performance up to 13%. The
bandwidth usage is increased from 26% to 47% on average.
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Figure 8: Varying the failure point (URL validation)
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Figure 9: Traversing 0% and 10% of the string and
varying the string length (URL validation)

Figures 9 and 10 show the throughput on the Haswell
CPU, by varying the string length and by setting the fail-
ure point at 0%, 10%, 50%, and 100% of the string length.
The selectivity is set to 1%. These results highlight the
impact of accessing the input strings in lockstep when the
strings are rejected early by the DFA. If 0% or 10% of the
string is traversed, the vectorized method that processes the
strings in lockstep is slower than even the scalar method,
unless the strings are very short. The speedup over the lock-
step method is reaching 3X for 1024-byte strings. When the
string length exceeds 128 bytes, the performance drops, due
to not loading from consecutive cache lines when accessing
the input strings. When all strings fail at the first character,
the vectorization speedup is 1.3–1.8X and the improvement
over the lockstep method is 1.4–2.9X on 1024-byte strings.
When the strings fail at the 10% of their length on aver-
age, the vectorization speedup is 1.5–1.9X and the improve-
ment over the lockstep method is 2.5X on 1024-byte strings.
When half or the whole string is processed, the vectorization
speedup is 1.4–1.9X. When the entire string is processed, the
lockstep method is only 3–7% faster than our approach.
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Figure 10: Traversing 50% and 100% of the string
and varying the string length (URL validation)

In Figure 11, we set the string length to 1024 bytes and
vary the failure point using a logarithmic scale. The selectiv-
ity is set to 1%. The performance remains stable regardless
of whether we process 1 or 64 characters for each string, sat-
urating the memory bandwidth. Note that even if we access
1 byte for every 16 cache lines and skip 1023 bytes, we are
still as fast as fetching from RAM all 1024 bytes per string
even if only the first few are used to traversed the DFA.
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Figure 11: Varying the failure point (log scale) in
1024-byte strings (URL validation)
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Figure 12: Varying the selectivity (URL validation)

In Figure 12, we set the string length to 32 and we vary the
selectivity rate. For rejected strings, we process half their
bytes on average until they are rejected. On the CPU, we get
1.8–1.9X vectorization speedup and increase the bandwidth
usage from 24% to 45% for low selectivity. The throughput
drops by 32% at 100% selectivity and the lockstep method
becomes equally fast as the entire string has to be processed.
With 1% selectivity, we use up to 45% of the bandwidth.
In the co-processor, the vectorization speedup is 3.5–4.7X
faster and is maximized at 100% selectivity. Since we are
compute-bound, unless the strings are too short, materializ-
ing the rids of accepted strings does not affect performance.
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Figure 13: Varying the DFA size (multi-pattern
matching using random English dictionary words)

Figure 13 varies the DFA size using multi-pattern sub-
string matching. We vary the number of words in the DFA,
creating 10k states and exceeding the cache size. The se-
lectivity is 1% but the inputs are generated by appending
randomly picked dictionary words, to ensure that we tra-
verse long paths in the DFA. On the mainstream CPU, the
speedup is 1.72–2.73X and is maximized when the DFA is
large. This implies that out-of-cache access latencies are ex-
acerbated when tied with control flow dependencies, which
is also supported by the fact that loop unrolling improves
performance up to 45% on larger DFAs. In the co-processor,
the speedup is 1.05–3.7X and is maximized when the DFA is
small enough to be in the L1 cache. Eliminating control flow
dependencies is not useful on the in-order cores that expose
the latency of cache loads. Processing the input in lockstep
is ≈10% faster here because 99% of strings are rejected and
we have to process the entire string to search for matches.
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Figure 14: Scalability (multi-pattern matching with
positive and negative examples of dictionary words)

Figure 14 shows the scalability using a cache-resident DFA
for multi-pattern matching with both positive and negative
patterns (see Figure 3 for an example), emphasizing that our
approach is more general than disjunctive substring match-
ing. Performance scales linearly with the number of threads.
On the Xeon Phi co-processor, we achieve linear speedup,
even by using SMT threads, because SMT hides the high
latency of vector instructions. On the mainstream CPU, us-
ing SMT with loop unrolling gives marginal improvement,
thus, our code saturates the performance capacity per core.

5. CONCLUSION
We presented the design and implementation of SIMD-

vectorized regular expression matching for filtering string
columns. Our approach processes multiple input strings in
a data-parallel way without accessing the input in lockstep
and achieves up to 2X speedup on a mainstream CPU and
5X speedup on the Xeon Phi co-processor using common
string lengths. If a string can be accepted or rejected with-
out looking at all its characters, our approach can achieve
significant speedups compared to the previous vectorized ap-
proaches that access the strings in lockstep. Our results
highlight the impact of vectorization on optimizing compute-
bound but minimal scalar code dominated by cache accesses.
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