
Vectorized Bloom Filters for Advanced SIMD Processors

Orestis Polychroniou
Columbia University

orestis@cs.columbia.edu

Kenneth A. Ross∗

Columbia University
kar@cs.columbia.edu

ABSTRACT
Analytics are at the core of many business intelligence tasks.
Efficient query execution is facilitated by advanced hard-
ware features, such as multi-core parallelism, shared-nothing
low-latency caches, and SIMD vector instructions. Only re-
cently, the SIMD capabilities of mainstream hardware have
been augmented with wider vectors and non-contiguous loads
termed gathers. While analytical DBMSs minimize the use
of indexes in favor of scans based on sequential memory
accesses, some data structures remain crucial. The Bloom
filter, one such example, is the most efficient structure for
filtering tuples based on their existence in a set and its per-
formance is critical when joining tables with vastly different
cardinalities. We introduce a vectorized implementation for
probing Bloom filters based on gathers that eliminates con-
ditional control flow and is independent of the SIMD length.
Our techniques are generic and can be reused for accelerat-
ing other database operations. Our evaluation indicates a
significant performance improvement over scalar code that
can exceed 3X when the Bloom filter is cache-resident.

1. INTRODUCTION
Advances in computer hardware have had a tremendous

impact in the way software is written. The most profound is
the inherent parallelism of the multi-core CPUs that forces
all efficient applications to be re-written as parallel appli-
cations. In fact, thread parallelism is only the tip of the
iceberg. Other hardware features that potentially influence
performance are multi-level caches, both private and shared
across the cores, cache consistency protocols augmented with
hardware transactional memory support, and wide CPU reg-
isters supported by comprehensive SIMD instruction sets.

Due to the large main memory capacity of recent hard-
ware, many workloads can be kept in RAM. Thus, DBMSs
focus on in-memory execution of queries [18] in order to per-
form real-time analytics. Indexes have become less impor-
tant as most queries access a large percentage of the data.

∗Supported by NSF grant 0915956 and an Oracle Corp gift.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DaMoN’14, June 22 - 27 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2971-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2619228.2619234.

Common approaches on mainstream architectures include
the use of SIMD instructions for scans [12, 19] and the use
of partitioning for creating cache-resident sub-problems to
avoid random memory accesses [13]. Data compression is
also important [18, 19], as it allows us to process more tu-
ples with the same number of instructions using the same
registers. Besides scans, other database operations, such as
sorting [5, 16], are also made faster using SIMD. However,
these operations have the common property of sequential in-
put access. The question whether SIMD is helpful remains
open for operations that require random access patterns.
To bridge the gap, mainstream hardware now offers non-
contiguous SIMD load instructions, termed gathers, that al-
low random memory accesses through entirely SIMD code.

A problem that stands in the middle ground between ran-
dom accesses and sequential scans is Bloom filter probing.
A Bloom filter is a probabilistic data structure for testing
whether an item belongs to a set. Bloom filters are crucial
to analytical databases for performing joins between tables
that have vastly different cardinalities. The keys of the small
table are used to build the Bloom filter and the keys of the
large table are probed through the filter to discard (most
of) those that do not match. In distributed query execution,
Bloom filters are used to filter tuples before sending them
over the network. The process of filtering across tables, ap-
proximately or not, is termed semi-join. The items used
to build the filter are relatively few compared to the items
probed through the filter to test set membership. Thus,
Bloom filter performance is typically dominated by probing.

Bloom filters are built using a pre-determined number k
of hash functions. To test whether an item belongs to the
set, we need to test k bits in different locations of the filter.
The locations are determined by the k hash functions and
do not need to be distinct. If any bit (out of k) is not set,
the key is certainly not part of the qualifying set. A Bloom
filter should be small to be cache-resident if possible. In-
creasing the number hash functions is not always helpful. If
the Bloom filter size is m bits and is built using n distinct
items, we can estimate the false positive error probability
using the formula: p = (1 − e−kn/m)k, which has a single
(global) minimum for a small integer k. On the other hand,
using more hash functions can be slower than using more
bits. Overall, the DBMS should pick the fastest configu-
ration. Each configuration includes a range of sizes and a
number of functions and we can profile all cases for the un-
derlying hardware off-line. Then, the optimizer can use the
set cardinality and the desired error rate to decide the most
suitable one to use for the target point of the query plan.

In this paper, we present an efficient implementation of
Bloom filter probing using SIMD instructions. On top of
using gather instructions, we show how conditional control-
flow can be transformed to data-flow using sophisticated
techniques, which are generalizable for transforming other
database operations into SIMD code. We chose the Bloom
filter algorithm as it combines three properties: it (i) relies
on non-contiguous accesses in the filter, so gathers become
crucial; (ii) relies on branching logic to early abort keys that
failed a function; (iii) is likely to remain cache-resident due
to its optimized size and scope of use, so is less likely to be
bound by the bottleneck of random memory accesses.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 describes the implementa-
tion of Bloom filters and the process of transforming control-
flow scalar code into data-flow SIMD code. Section 4 is our
experimental evaluation and we conclude in Section 5.

2. RELATED WORK
Bloom filters [3] have been widely studied. Fan et.al.

[9] proposed counting Bloom filters that can delete certain
items without re-creating the entire filter. Cohen et.al. [6]
proposed spectral Bloom filters that can filter items whose
multiplicity is less than a certain threshold. Chazelle et.al.
[4] proposed Bloomier filters that allow the evaluation of
functions beyond the set membership. Pagh et.al. [14] pro-
posed an optimal replacement for Bloom filters that has bet-
ter complexity and requires ≈ 30% less space. Deng et.al. [7]
proposed stable Bloom filters that are used for approximate
duplicate elimination in data streams. Almeida et.al. [1]
proposed scalable Bloom filters that can adapt dynamically
to the number of elements stored. Beyer et.al. [2] proposed
partitioning into cache-line sized Bloom filters and Putze
et.al. [17] proposed faster and more accurate configurations.
Our vectorized implementation can be applied to several of
these techniques. In this paper, we use the original Bloom
filter algorithm [3] as it is sufficient for analytical databases.

Zhou et.al. [20] showed that SIMD instructions can ac-
celerate several database operations. Wassenberg et.al. [19]
used SIMD to efficiently decompress n-bit-wide tuples that
are dictionary compressed. Lemire et.al. [12] discussed a
comprehensive menu of techniques for integer compression
using SIMD. Inoue et.al. [10] proposed an algorithm that
uses SIMD comb-sort in cache and merges using SIMD out
of cache. Chhugani et.al. [5] accelerated merge-sort by us-
ing bitonic networks to sort on SIMD registers. Kim et.al.
[11] improved main-memory indexes by designing multi-way
trees accessed through SIMD. Polychroniou et.al. [15] pro-
posed updating the aggregates of heavy hitters using SIMD
and in recent work [16] designed a SIMD-based range index
to accelerate range partitioning and comparison sorting.

3. IMPLEMENTATION
First, we present a brief overview of the Bloom filter algo-

rithm and show an optimized scalar implementation. Then,
we proceed step by step to implement a vectorized version
of the code that converts control flow into data flow.

The hash functions we use are based on multiplicative
hashing. Multiplicative hashing has been proved universal
[8] and is among the fastest known universal hash functions.
Assuming that the Bloom filter has 2n bits, we compute the
hash function using one multiplication and one shift. We

ensure that the hash functions are pairwise independent by
picking multiplicative factors whose differences are not divis-
ible by high powers of two. More expensive hash functions
slow down the Bloom filter without offering any benefits.

In the scalar implementation of Bloom filters, we load one
key at a time and check hash functions iteratively. If a bit is
not set, we discard the key and proceed to the next. To test
a specific bit in the bitmap, we use the x86 instruction bt

and avoid doing shift and bitwise-and to separate the word
index and the bit offset. The bt instruction is not accessible
directly in C/C++; thus, we use (GCC) inline assembly.

for (o = i = 0 ; i != size ; ++i) {
// load key and check one function at a time
key = keys[i];
fun = 0; // the hash function index
do {

hash = key * factors[fun];
hash >>= shift;
// jump to failure label if bit "hash" is not set
asm goto ("btl %1, (%0)\n\t" // test target bit

"jnc %l[failure]" // jump if not set
:: "r"(filter), // the bitmap address

"r"(hash) // the bit index
: "cc" : failure); // the jump label

} while (++fun != functions);
// tuple qualifies since all bits are set
pays_out[o] = pays[i];
keys_out[o++] = key;
failure:; }

To avoid the second branch associated with testing the
number of hash functions, we can remove the inner loop
and put k branches that test the different hash functions.
This approach increases the code size but has two benefits.
First, all multiplicative factors are kept in registers and are
not loaded from the L1 cache. Second, each function uses a
separate branch instruction for which the hardware keeps a
separate branch prediction state. We expect the n-th func-
tion to fail more often than the (n + 1)-th function and the
prediction rate increases as a key passes more functions.

for (o = i = 0 ; i != size ; ++i) {
// load key and check one function at a time
key = keys[i];
hash = key * factor_1; // 1st function
hash >>= shift;
// 1st function branch (1st prediction state)
asm goto ("btl %1, (%0)\n\t"

"jnc %l[failure]"
:: "r"(filter), "r"(hash) : "cc" : failure);
hash = key * factor_2; // 2nd function
hash >>= shift;
// 2nd function branch (2nd prediction state)
asm goto ("btl %1, (%0)\n\t"

"jnc %l[failure]"
:: "r"(filter), "r"(hash) : "cc" : failure);
[...] // hard-code more functions if applicable
// tuples qualifies since all bits are set
pays_out[o] = pays[i];
keys_out[o++] = key;
failure:; }

Bloom filter probing is based on random accesses in the
filter. The fundamental mismatch with existing SIMD ap-
proaches is that in the Bloom filter we need only one bit
per access, while a sequential SIMD load would give us a
large vector of bits. Instead, to perform random accesses we
use SIMD gather instructions, shown in Figure 1, that allow
loading data from non-contiguous memory locations.

i j k l m n o p

a[i] a[j] a[k] a[l] a[m] a[n] a[o] a[p]

a

Figure 1: SIMD gather instruction illustration

To perform a bit-test with SIMD code, we gather the min-
imum number of bytes possible per access and we create a
bit offset vector to test only one bit per loaded item. For
instance, if each access is a 32-bit load, we first divide the lo-
cation by 32 and use the address to load 32-bit words. Also,
we create a vector where every 32-bit word has only a single
set bit, based on the location modulo 32. We bitwise-and
the two vectors to isolate the target bit and compare the
resulting 32-bit masks with zero. The comparison generates
a mask that determines which items are to be aborted.

To re-write Bloom filters using SIMD code, we need to
transform the control flow logic into data flow logic. Test-
ing all hash functions per key, before deciding whether the
tuple qualifies or not, is a wasteful approach; it precludes
early aborting tuples that failed a bit test. To maintain this
property, we must never vectorize accesses for the same key.

To vectorize accesses across keys, every gather instruction
should check one hash function for W different keys, given
that our SIMD vectors hold W keys, but not necessarily
the same function across the keys. Since some keys will fail
earlier than others and some keys will not fail at all, we
do not distinguish cases using control-flow based code. We
cannot assume a specific pattern of failures, as the flow is
dependent on both the input data and the configuration.

Multiplicative hashing, on top of being fast, is also con-
venient due to its simplicity for computing arbitrary hash
functions on each SIMD lane. By changing the multiplica-
tive factor we change the hash function. Having different
multiplicative factors across the W SIMD lanes, allows us to
compute different hash functions. In order to choose which
hash function to use per key, we keep a function index vec-
tor. If k ≤ W , we create the multiplicative factor mask
using a SIMD permutation instead of a gather.

To operate on W different keys, we fill the key vector with
new keys if some keys failed in the previous loop. The basic
SIMD instruction we need is the ability to shuffle a register
using lane indexes from another register. This instruction is
provided, either directly or indirectly, by all SIMD instruc-
tion sets. After we shuffle the key register, the left part of
the register will contain all qualifying tuples, and the right
part of the register will contain non-qualifying tuples that
will be overwritten with new tuples from the input.

For example, if our vector is [A,B,C,D,E,F,G,H], and the
condition result (boolean) vector is ,[T,F,T,F,T,F,F,F], we
re-order the input vector to [B,D,F,G,H,A,C,E]. Note that
T represents the keys that fail the filter, not the intuitive
opposite. For this operation, we need the permutation mask
[1,3,5,6,7,0,2,4]. This case is also shown in Figure 2.
The permutation mask is loaded from a lookup table using
the boolean vector bit-mask as the index. If the SIMD vector
holds W items, the lookup table must have 2W entries and
remains L1 cache-resident for small SIMD lengths (W ≤ 8).

A B C D E F G H

✓ X ✓ X ✓ X X X

1 3 5 6 7 0 2 4

B D F G A C EH

13567024

01356724

03567124

23567014

35670124

 permutation
 lookup table

00010101

Figure 2: SIMD permutation process illustration

The keys that fail are shuffled to the right end of the SIMD
register and are overwritten with new keys read from the
input in the next loop. The same permutation is applied
for payloads, the boolean vector of aborts, and the hash
function indexes. The hash function index of the new keys
is reset. The vectorized (Intel AVX 2) code is shown below,
assuming a 32-bit key column and a 32-bit payload column:

inv = _mm256_cmpeq_epi32(inv, inv);
for (o = i = 0 ; i + 8 <= size ;) {
// load new items (right side has new items)
new_key = _mm256_maskload_epi32(&keys[i], inv);
new_pay = _mm256_maskload_epi32(&pays[i], inv);
// invalidate aborted keys and reset functions
key = _mm256_andnot_si256(inv, key);
pay = _mm256_andnot_si256(inv, pay);
fun = _mm256_andnot_si256(inv, fun);
// mix new tuples with old tuples
key = _mm256_or_si256(key, new_key);
pay = _mm256_or_si256(pay, new_pay);
// hash each key with its current hash function
fact = _mm256_permutevar8x32_epi32(factors, fun);
hash = _mm256_mullo_epi32(key, fact);
hash = _mm256_srl_epi32(hash, shift);
// increment hash function index and check if done
fun = _mm256_add_epi32(fun, mask_1);
last_fun = _mm256_cmpeq_epi32(fun, functions);
// access bitmap and determine which keys fail
div_32 = _mm256_srli_epi32(hash, 5);
div_32 = _mm256_i32gather_epi32(filter, div_32, 4);
mod_32 = _mm256_and_si256(hash, mask_31);
mod_32 = _mm256_sllv_epi32(mask_1, mod_32);
res = _mm256_and_si256(div_32, mod_32);
inv = _mm256_cmpeq_epi32(res, mask_0);
// branch to output qualifying tuples (rare branch)
if (!_mm256_testz_si256(res, last_fun)) { [...] }
inv = _mm256_or_si256(inv, last_fun);
// load permutation mask
m = _mm256_movemask_ps(_mm256_castsi256_ps(inv));
perm_comp = _mm_loadl_epi64(&perm_table[m]);
perm = _mm256_cvtepi8_epi32(perm_comp);
// permute keys, payloads, aborts, and functions
inv = _mm256_permutevar8x32_epi32(inv, perm);
fun = _mm256_permutevar8x32_epi32(fun, perm);
key = _mm256_permutevar8x32_epi32(key, perm);
pay = _mm256_permutevar8x32_epi32(pay, perm);
// update the input index (the only scalar part)
i += _mm_popcnt_u64(m); }

We give a brief description of relevant SIMD instructions
for convenience. _mm256_mask{load,store}_epi32 condi-
tionally loads and stores up to 8 32-bit integers. Bit opera-
tions are done by _mm256_{andnot,and,or}_si256. Fixed-
stride right shifts are done by _mm256_{srl,srli}_epi32

and _mm256_sllv_epi32 performs variable-stride left shift.
mm256{add,mullo,cmpeq}_epi32 perform 32-bit addition,
multiplication, and equality check. _mm256_movemask_ps ex-
tracts the bit-mask, _mm_loadl_epi64 loads a 64-bit mask,

1 2 5 0 3 4 6 701253467

12503467

02513467

permutation
lookup table

✓ X

1 1 1 1 1 1 1 1

101 110 010 …..

d.f(A) d.f(B) d.f(C) d.f(D) d.f(E) d.f(F) d.f(G) d.f(H) m.f(A) m.f(B) m.f(C) m.f(D) m.f(E) m.f(F) m.f(G) m.f(H) ✓ X ✓✓ X ✓✓X

bloom filter word – hash div word size target bit offset – hash mod word size

✓✓✓✓✓

B C F A D E G H

keys (final)

aborted keys (final)

 hash function index (final)

permutation mask

X XX

A H

aborted keys (initial)

new keys

keys (initial)

✓ ✓

f(A) f(B) f(C) f(D) f(E) f(F) f(G) f(H)

! & % + $ @

g h ...f f f f f f f f

^

f

0 0 0 0 0 0 0

A B C D E F G H I J K L M ...

input keys

@ $ + & ! % ^

B C D E F G

✓✓✓✓✓✓

A B C D E F G H

0

bloom filter

hash function index (initial)

hash functions

Figure 3: 1st loop of vectorized Bloom filter probing (32-bit key, no payload) without the output code

extended by_mm256_cvtepi8_epi32 to a 256-bit mask, and
_mm256_permutevar8x32_epi32 performs the SIMD permu-
tation. _mm256_testz_si256 tests if all bits are zero, and
_mm_popcnt_u64 is a scalar instruction that counts set bits.
More extensive descriptions of the instructions can be found
in the corresponding instruction reference manuals.1

Vector key holds the probed keys and pay holds their pay-
loads. inv is the boolean vector of aborts, and fun stores
the hash function indexes. All other variables are either con-
stant (mask_{0,1,31}, functions, factors) or temporary.

Figures 3 and 5 show a possible first and second loop of
our approach. The example omits payloads and the output
generation for simplicity. In both the code and the example,
each 256-bit register holds eight 32-bit keys (W = 8). The
tick and X marks represent boolean results. The permutation
masks are stored in a hard-coded array with 256 entries of
64-bit numbers holding one permutation index per byte.

Since we expect the number of output tuples to be signif-
icantly smaller than the input, executing the output gener-
ation code in every loop is wasteful. A branch that is rarely
taken should not be eliminated. Since each tuple must go
through all hash functions before it can pass the filter, we
expect the branch to be taken in (f + e) ·W/k loops, where
f is the rate of qualifying tuples and e is the false positive
rate. The code that generates the output (filling [...] in
the code segment from the previous page) is shown below:

// who checked the last function and succeeded it
ok = _mm256_andnot_si256(inv, last_fun);
// load permutation mask using the inverse
m = _mm256_movemask_ps(_mm256_castsi256_ps(ok));
perm_comp = _mm_loadl_epi64(&perm_table[m ^ 255]);
perm = _mm256_cvtepi8_epi32(perm_comp);
// permute mask, keys, and payloads
ok = _mm256_permutevar8x32_epi32(ok, perm);
key_out = _mm256_permutevar8x32_epi32(key, perm);
pay_out = _mm256_permutevar8x32_epi32(pay, perm);
// write qualifying items to output
_mm256_maskstore_epi32(&keys_out[o], ok, key_out);
_mm256_maskstore_epi32(&pays_out[o], ok, pay_out);
o += _mm_popcnt_u64(m);

1http://software.intel.com/sites/landingpage/
IntrinsicsGuide/

The loop stops when the remaining keys are not enough
to fill the lanes of the input SIMD register. Some tuples
may have not finished checking all hash functions, but these
tuples are few (≤ W) and we can use scalar code for them.

Note that the SIMD code is still stable, which can be use-
ful for not disturbing the order if the input is sorted. The
qualifying tuples have the same order as in the input because
our permutation masks always perform stable permutations.

The order of the SIMD instructions is important to min-
imize latencies as much as possible. While the order of in-
structions should be irrelevant for a sophisticated compiler
that has access to instruction latencies, sometimes instruc-
tion re-ordering can affect performance by a small margin.
Our code descriptions use the simplest, not the fastest order.

In some cases, even using the optimal instruction order-
ing and a CPU that supports out-of-order execution, we
still cannot fully utilize the pipeline. In these cases, we can
increase the instructions-per-cycle (IPC) by manually un-
rolling the loop. The SIMD code we presented has a number
of data dependencies that forbid a simple unrolling of the
loop. The best approach is to read the input from both the
start and the end, as shown in Figure 4. This way, we are
able to issue two instances of each instruction, one for the
low-to-high data and one for the high-to-low data. The loop
stops when the two input vectors overlap to avoid reading
the same item twice. The number of items that we handle
with scalar code is still small (≤ 2W). The overall operator
is no longer stable, but can generate two stable output parts.

Loop unrolling allows us to issue multiple instances of each
instruction in an interleaved fashion, minimizing latencies
and increasing the IPC. On the other hand, we need to have
enough CPU registers available to hold the multiple states
before the compiler starts spilling registers.

{

{

first loop load first loop load

second loop load second loop load

start end{

{

...
input keys

Figure 4: Processing the input from both directions

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://software.intel.com/sites/landingpage/IntrinsicsGuide/

M

2 5

permutation
lookup table

aborted keys (initial)

new keys

keys (initial)

✓

✓ ✓

X

g(B) g(C) g(F) f(I) f(J) f(K) f(L) f(M)

1 1 1 1 1 1 1

hash function index (initial)

g h ...

hash functions

g g g f f f f f

2 1 1 1 2 2 1 1

101 110 010 …..

d.f(A) d.f(B) d.f(C) d.f(D) d.f(E) d.f(F) d.f(G) d.f(H) m.f(A) m.f(B) m.f(C) m.f(D) m.f(E) m.f(F) m.f(G) m.f(H) ✓
bloom filter word – hash div word size target bit offset – hash mod word size

X ✓✓✓✓

F K

keys (final)

aborted keys (final)

1

f

1 1 0 0 0 0 0

A B C D E F G H I J K L M ...

input keys

permutation mask

X XX

B C F A D E G H

02467135

24670135

01467235

I J K L

4 6 7 0 1 3

J L M B C I

✓ ✓ X ✓ X XX

✓✓✓X XX

B C F

B C F I J K L M

1

bloom filter

 hash function index (final)

Figure 5: 2nd loop of vectorized Bloom filter probing (32-bit key, no payload) without the output code

4. EXPERIMENTAL EVALUATION
All experiments were executed on the same platform with

one Intel Xeon E3-1275 v3 CPU at 3.5 GHz based on the
Haswell micro-architecture with 32 GB dual-channel DDR3
ECC RAM at 1600 MHz. The CPU has 4 physical cores and
supports 2-way simultaneous multi-threading (SMT). Each
core has private access to a 32 KB L1 data cache and a 256
KB L2 cache. The L3 cache is 8 MB and is shared across
the chip. We compile with GCC 4.8 using -O3 optimization
and the OS is Linux 3.11. All data used in experiments are
synthetically generated and follow the uniform distribution,
which represents an average (not especially favorable) case.
The source code used for all experiments is available online.2

Figure 6 shows the throughput of Bloom filter probing
when the Bloom filter is cache-resident. The figure is split
in three parts and shows results for L1, L2, and L3 cache-
resident filters separately and the filter is 16 KB, 128 KB
and 2 MB respectively. The number of items in the filter is
1/10 of the filter bits. The percentage of tuples that qualify
is 5% without including the false positives, representing a
medium case between very small and large selectivities. The
output is materialized to memory and is small compared to
the input. The false positive rate depends on the number of

2http://www.cs.columbia.edu/~orestis/vbf.c

bits per item and the number of hash functions. The false
positive rates for 1–6 hash functions with 10 bits per item are
9.52%, 3.29%, 1.74%, 1.18%, 0.94%, and 0.84% respectively.

The scalar versions shown either loop over the hash func-
tions (soft) or hard-code them (hard), as shown in Section 3.
The SIMD versions either read the input from one direction
(single) or from both directions (double) to unroll the loop.
The bandwidth line shows the time required to read the
input and materialize the same output (with errors) with-
out probing and thus represents an upper bound on perfor-
mance. We use all available hardware threads of the CPU.

The SIMD code is up to 3.3X faster than the scalar code
when the Bloom filter is resident in either the L1 or the L2
cache. The L1-resident filter is up to 13% faster than the L2-
resident filter. In all cases, we assume that the filter is half
the capacity of the cache, because the probed tuples pollute
the cache when read. The L3-resident filter is less than half
as fast as the L2-resident filter, but the vectorized version
remains up to 2.1X faster than the scalar version. Unrolling
the loop by reading the input from both the start and the
end helps by up to 30%. The speedup of SIMD over scalar
code increases with the number of hash functions, when the
filter becomes more accurate. For the vectorized filter, the
performance decrease from using 6 functions instead of 1 is
less than 30%, while the false positive rate can be prohibitive

0

500

1000

1500

2000

2500

3000

k = 1 2 3 4 5 6 k = 1 2 3 4 5 6 k = 1 2 3 4 5 6

m
ill

io
n

 t
u

p
le

s
/

se
co

n
d

 bandwidth SIMD (double) SIMD (single) scalar (hard) scalar (soft)

16 KB Bloom filter - L1 cache 128 KB Bloom filter - L2 cache 2 MB Bloom filter - L3 cache

Figure 6: Probing throughput by varying the number of hash functions (and error rate) with cache-resident
Bloom filter across the cache levels (32-bit keys, 32-bit payloads, 10 bits per item, 5% of tuples qualify)

http://www.cs.columbia.edu/~orestis/vbf.c

0

500

1000

1500

2000

2500

3000

8

 K
B

 1
6

 K
B

 3
2

 K
B

 6
4

 K
B

 1
2

8
 K

B

 2
5

6
 K

B

 5
1

2
 K

B

1

 M
B

2

 M
B

4

 M
B

8

 M
B

 1
6

 M
B

 3
2

 M
B

 6
4

 M
B

 1
2

8
 M

B

 2
5

6
 M

B

m
ill

io
n

 t
u

p
le

s
/

se
co

n
d

Bloom filter size

 bandwidth

 SIMD (double)

 SIMD (single)

 scalar (hard)

 scalar (soft)

Figure 7: Probing throughput by varying the Bloom
filter size (32-bit keys, 32-bit payloads, 10 bits per
item, 5 hash functions, 5% of tuples qualify)

when the rate of qualifying tuples is small (e.g., 5% of tuples
qualify and 9.52% errors for k = 1). The bandwidth bottle-
neck improves with k because we write fewer false positives.

Figure 7 shows the throughput for Bloom filters of vari-
ous sizes. The performance first drops when the filter ex-
ceeds the capacity of the private caches (L1 and L2). At the
L3 cache, performance gradually decreases when the Bloom
filter exceeds 2 MB. The filter is accessed read-only dur-
ing probing, thus, can be shared across threads (and SMT
threads) without cache invalidations. The SIMD code is 39%
faster compared to scalar code when operating off-cache.

We focus more on cache-resident Bloom filters because
probing large Bloom filters can be solved by partitioning the
filter [2, 17] into small parts that are cache resident or have
the size of a cache line. Adding a partitioning phase incurs
known costs [16] and is orthogonal to our approach. An
observation that stems from our work is that Bloom filters
can be fast when resident in the private caches, so, we can
avoid partitioning to filters of one cache line. We also note
that when the small size of Bloom filters is unimportant, a
large hash table can perform the same task with no false
positives and roughly the same cost of one cache line access,
given that the load factor is small and collisions are rare.

Figure 8 shows the probing throughput across selectivity
rates using an L2 cache-resident Bloom filter. The scalar
versions are marginally affected as they are latency-bound.
Vectorized Bloom filter probing at a low selectivity runs
close to the memory bandwidth and is faster than copying
everything to output, as shown by the bandwidth case.

0

500

1000

1500

2000

2500

3000

1 2 5 10 20 50 100

m
ill

io
n

 t
u

p
le

s
/

se
co

n
d

tuples that qualify (%)

 bandwidth

 SIMD (double)

 SIMD (single)

 scalar (hard)

 scalar (soft)

Figure 8: Probing throughput by varying qualifying
tuples rate (32-bit keys, 32-bit payloads, 128 KB
Bloom filter, 10 bits per item, 5 hash functions)

5. CONCLUSION
We presented vectorized Bloom filters, implemented using

the latest SIMD instructions that support non-contiguous
loads termed gathers. We transform the conditional control
flow into data flow without discarding the branching logic
of early aborting items that failed the Bloom filter. Our
evaluation shows that vectorized Bloom filter probing has
1.4X to 3.3X better performance and the improvement is
maximized when the Bloom filter is cache-resident. Our
techniques are generic and can be adjusted for optimizing
other in-memory database operations that require random
accesses. Finally, vectorized code performance will improve
every time the SIMD length is increased in future hardware.

6. REFERENCES
[1] P. S. Almeida et al. Scalable Bloom filters. Information

Processing Letters, 101(6):255–261, Mar. 2007.

[2] K. S. Beyer and S. Rajagopalan. System and method for
generating a cache-aware Bloom filter, Oct. 2011. US
Patent 8,032,732 B2 (Filed: June 5, 2008).

[3] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, July 1970.

[4] B. Chazelle et al. The Bloomier filter: An efficient data
structure for static support lookup tables. In SODA, pages
30–39, 2004.

[5] J. Chhugani et al. Efficient implementation of sorting on
multi-core SIMD CPU architecture. In VLDB, pages
1313–1324, 2008.

[6] S. Cohen and Y. Matias. Spectral Bloom filters. In
SIGMOD, pages 241–252, 2003.

[7] F. Deng and D. Rafiei. Approximately detecting duplicates
for streaming data using stable Bloom filters. In SIGMOD,
pages 25–36, 2006.

[8] M. Dietzfelbinger et al. A reliable randomized algorithm for
the closest-pair problem. J. Algorithms, 25(1), 1997.

[9] L. Fan et al. Summary cache: A scalable wide-area web
cache sharing protocol. Technical report, University of
Wisconsin-Madison, 1998.

[10] H. Inoue et al. AA-sort: A new parallel sorting algorithm
for multi-core SIMD processors. In PACT, pages 189–198,
2007.

[11] C. Kim et al. Fast: fast architecture sensitive tree search on
modern CPUs and GPUs. In SIGMOD, pages 339–350,
2010.

[12] D. Lemire and L. Boytsov. Decoding billions of integers per
second through vectorization. Software: Practice and
Experience, May 2013.

[13] S. Manegold et al. What happens during a join? dissecting
cpu and memory optimization effects. In VLDB, pages
339–350, 2000.

[14] A. Pagh et al. An optimal Bloom filter replacement. In
SODA, pages 823–829, 2005.

[15] O. Polychroniou et al. High throughput heavy hitter
aggregation for modern SIMD processors. In DaMoN, 2013.

[16] O. Polychroniou and K. A. Ross. A comprehensive study of
main-memory partitioning and its application to large-scale
comparison- and radix-sort. In SIGMOD, 2014.

[17] F. Putze et al. Cache-, hash-, and space-efficient Bloom
filters. J. Experimental Algorithmics, 14:4.4–18, Jan. 2010.

[18] V. Raman et al. DB2 with BLU acceleration: So much
more than just a column store. PVLDB, 6(11):1080–1091,
Aug. 2013.

[19] T. Willhalm et al. SIMD-scan: ultra fast in-memory table
scan using on-chip vector processing units. PVLDB,
2(1):385–394, Aug. 2009.

[20] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In SIGMOD, pages 145–156, 2002.

	Introduction
	Related Work
	Implementation
	Experimental Evaluation
	Conclusion
	References

