
Orestis Polychroniou

Kenneth A. Ross

Columbia University

 In a Glimpse

 Our Motivation

 Problem Definition

 Algorithmic Design

 Implementation & SIMD

 Experimental Results

 Closing Remarks

Manager: “I want a plot of our sales per product.”

Employee: “All products ?”

Manager: “Yes all products.”

Employee: “But most of our income comes from X, Y, Z products.”

Manager: “Well tell me about the top products then.”

Employee: “Ok wait…”

…………..

Manager: “Not ready yet ?”

Employee: “Well the system does most work for all products.”

Manager: “Is this necessary ?”

Employee: “Well maybe… Could it do better ?”

 What do you do ?

 Best effort aggregation for heavy hitters

 What is so special about it ?

 We do it only for heavy hitters and it is fast

 Why do you do it ?

 People see and use top results

 Hardware is faster on smaller working sets

 Analytics & Business Intelligence

 Big data are available everywhere

 Results used for human decisions

 Common Properties

 Very large input handled by machine

 Small output handled by humans

 Observation # 1

No matter how big the data, a small

part of the output will be considered

by the human factor (analysts, …).

 Common Analytics

 Select – Project – Join: large intermediate results

 Aggregate – Sort (Rank): use top results

 Aggregation Step

 May produce few results / groups

 If not, top results will be seen anyway

 Observation # 2

The DBMS will aggregate before returning

any results. It will work for 1,000,000,000

groups, even if you use 100 groups.

 Caches are fast

 Faster than RAM by 1-2 orders of magnitude
 Can still fit thousands of groups

 Private caches allow shared nothing parallelism

 Caches levels have variable speeds
`

 L1 is 2-4 cycles, L3 is 25-40 cycles

 Tradeoff between speed & capacity

 Observation # 3

The smaller the working (result) set,

the faster the scan/probe phase.

But there are many tradeoffs.

 Skewed data are common

 Zipf distribution is important

 Skewed distributions for synthetic data

 Strategic real data exhibit skew

 Importance of items by rank (frequency)

 Sampling can estimate result
\

 Top-K items will be in a sample
 A verification step is required

 Avoid going over the data multiple times

 Heavy hitter groups

 Aggregate top K groups by tuple cardinality

 Defined by higher input frequency
 Hopefully important groups for analysis

 Example query

select product_id, count(*)

from sales

group by product_id

order by count(*) desc

limit 1000;

 Identify possible heavy hitters

 Sample input randomly

 Extract heavy hitter candidates
 Configure & build a hash table

 Scan over input data & probe

 Update candidates found in the table

 Increment non-candidate counts

 Verify heavy hitter groups

 Max non-candidate is threshold
 Like an 1D count sketch

 Candidate Aggregates

 Non-Candidate Counts

 Verified Aggregates

counts sum(X) max(Y)

 Candidate aggregates

 Store the whole incomplete aggregate

 If smaller then higher in cache & faster

 If larger more candidates & more accurate

 Non-candidate counts

 Store only a count
 Less counts make it faster
 More counts more accurate

 Goal

 Choose fastest configuration

 Accurate enough to verify top K

 Conventional Aggregation

 Small group-by cardinality

 Optimization Step

 Loop over configurations

 Estimate configurations using sample

 Choose best configuration

 Early failure detection

 Verified < K

 On failure roll back to conventional

 Fast enough to retry other configuration

 Correct top K are not among the candidates

 Sample size was small and inaccurate

 Cannot distinguish top groups by sampling

 Cannot verify K candidates

 Not enough non-candidate counts

 High verification threshold

 Wrong table configuration

 Not enough candidate aggregates

 Not enough non-candidate counts

 Multiplicative hashing

 Fast computation

 Random multiplier

 Perfect hashing

 No branching and branch mispredictions

 Fast reply for “ is key X in the table ? ”

 Birthday paradox explains small load factor

 Bucketized hashing

 Load factor of perfect hashing increases

 Fast branch free probe through SIMD

 Cuckoo hashing

 Two choice probe without branching

 2X perfect hashing with larger load factor

 Combine with bucketized hashing

 Hash configurations

 Cuckoo or perfect ?

 Bucket size ?

 Cache level ?

 # of non-candidate counts ?

 More choices more tradeoffs

 Branch free update

 Updates nullified if keys do not match

 Non candidate counts updated offline

 Why SIMD ?

 Scalar code uses slower control flags

 Transform to data dependencies

 SIMD where ?

 To batch compare keys

 To update & nullify faster

 Perfect

hashing

 2-wide

bucket

select count(*),
sum(value)

from table
group by key
order by count(*)

desc
limit …

 Perfect
hashing

select count(*), sum(X),
max(X), min(X), sum(X*X)

from table group by key
order by count(*) desc …

 4-wide
bucket

 Single pass

 Large hash table
for aggregates with
random hits on RAM

 PLAT method used
for cross-core cache
invalidations due
to heavy hitters
[Ye, DaMoN11]

 Multiple passes

 Bound by RAM

throughput
 Hash tables

on cache

• 2 CPUs @

2.4 GHz

• Intel Nehalem
Appeared 2008

• 4 physical

cores / CPU

• 2 hardware

threads / core

• 32 KB L1 cache

private / core

• 256 KB L2 cache

private / core

• Version SIMD
SSE 4.2

 Wikipedia

 Hourly Wikipedia visits for January 2012

 Group by URL & get average visit hour

 Skew

 3,463,321,585 visits

 102,216,378 distinct URLs

 Top-3 URLs are 1.6 % of total

 Top-100 URLs are 6.65 % of total

 Top-10,000 URLs are 25.3 % of total

 # verified top groups

 min (Kth item) frequency (x 10-4)

 execution time (seconds)

select count(*) as visits,
avg(hour) as mean_visit_hour

from wikipedia
group by URL
order by count(*) desc;

 Usefulness

 Applied on specific queries

 Requires skew in data

 Best effort approach

 Useful for data exploration

 Quality

 5-20x faster than conventional aggregation

 Get top 250 results out of > 25 GB in time < 5 sec

 Smallest forms 0.006 % of total

