HIGH THROUGHPUT
HEAVY HITTER
FOR SIMD PROCESSORS

Orestis Polychroniou
Kenneth A. Ross

Columbia University

w OVERVIEW

- Ina Glimpse

- Oour Motivation

- Problem Definition

= Algorithmic Desig n

= Implementation & SIMD
- Experimental Results

= Closing Remarks

RDAPTED

Manager:

Employee:

Manager:

Employee:

Manager:

Employee:

Manager:

Employee:

Manager:

Employee:

“I want a p] Ot of our sales per product.”

“All products ?”
“Yes all products.”

“But MOST of our income comes from X,Y, Z products.”
“Well tell me about the tOp products then.”

“Ok wait...”

“Not readyyet 7

“Well the system does most WOXK for all products.”
“Is this necessary ?»”

“Well maybe... Could it do better ?”

®

w1 GLIMPSE

- Whatdo you do ?
. Best effort aggregation for hea.VY hitters

= What is so special about it ?

« We do it OII].Y for heavy hitters and it is fast

- Why do youdoit?
= People see and use tOp results

. Hardware is faStET on smaller working sets

HUMAN worvarion

= Analytics & Business Intelligence

. Big’ data are available everywhere
= Results used for human decisions

= Common Properties

= Very larg € input handled by machine
= Small output handled by humans

= Observation # 1

No matter how big the data, a small
part of the output will be considered
by the human factor (analysts, ...).

®

= Common Analytics

- Select - Project - Join: large intermediate results
- Aggregate - Sort (Rank): use top results

= Aggregation Step

= May produce few results / groups
= If not, tOP results will be S€€N anyway

= Observation # 2

The DBMS will aggregate before returning
any results. It will work for 1,000,000,000
groups, even if you use 100 groups.

[ARE wmomvamion
= Caches are fast

- Faster than RAM by 1-2 orders of magnitude
= Can still fit thousands of groups
= Private caches allow shared nothing parallelism

= Caches levels have variable speeds

- Ll is 2-4 cycles, L3 is 25-40 cycles
- Tradeoff between speed & capacity

= Observation # 3

The smaller the working (result) set,
the faster the scan/probe phase.
But there are many tradeoffs.

DATA wmorrvarion

» Skewed data are common

. Zipf distribution is important

- Skewed distributions for synthetic data
- Strategic Yeal data exhibit skew

- Importance of items by rank (frequency)

= Sampling can estimate result

- Top-K items will be ina sample
- A verification step is required
= Avoid going over the data multiple times

rropien DEFINITION

= Heavy hitter groups

= Aggregate tOp K groups by tuple cardinality
= Defined by higher input frequency
- Hopefully important groups for analysis

= Example query

select product_id, count(*)
from sales

group by product_id
order by count(*) desc
limit 1000;

o SOLUTION

= Identify possible heavy hitters

. Sample input randomly
« Extract heavy hitter candidates
= Configure & build a hash table

= Scan over input data & probe
« Update candidates found in the table
= Increment non-candidate counts

= Verify heavy hitter groups

= IMaxXx non-candidate is threshold
= Like an 1D count sketch

VERIFICATION visvauze

Bie ol B Bam B Bow B o . gigoe Aggregates

nll_alislis Bl ol = ol B o Bell = = :
(. Non-Candidate Counts

T N B & Taw Bl 0

- Verified Aggregates

E counts B sum(X) Emax(Y)

TRADEOFF gspcrs

= Candidate aggregates

= Store the whole incomplete aggregate

= If smaller then higher in cache & faster
= If larger INOYEe candidates & more accurate

= Non-candidate counts

= Store only a count
= Less counts make it faster
= More counts more accurate

= Goal

- Choose fastest configuration
= Accurate €noug h to verify top K

®

WHERE o HOW 0 us

= Conventional Aggregation

- Small group-by cardinality

= Optimization Step

- Loop over configurations

- Estimate configurations using sample
- Choose best configuration

- Early failure detection

= Verified <K

= On failure Y0ll back to conventional
= Fast enough to Yetry other configuration

FAILUR

B casts

= Correct top K are not among the candidates

- Sample size was small and Inaccurate
- Cannot distinguish top groups by sampling

= Cannot verify K candidates

- Not enough non-candidate counts
- High verification threshold

= Wrong table configuration

- Not enough candidate aggregates

- Not enough non-candidate counts

HASH tasiz

= Multiplicative hashing

- Fast computation
- Random multiplier

= Perfect hashing

= No branching and branch mispredictions
= Fast reply for “ 1S key X 1N the table ? ”
= Birthday paradox explains Small load factor

= Bucketized hashing

= Load factor of perfect hashing increases
= Fast branch free probe through SIMD

®

mase Tapie CONFIGURATIONS

= Cuckoo hashing

= Two choice probe without branching
- 2X perfect hashing with larger load factor
- Combine with bucketized hashing

= Hash configurations

- Cuckoo or perfect?
Bucket size ?

Cache level ?

of NOIl-candidate counts ?
More choices more tradeoffs

mast Tasie UPDATES

= Branch free update

= Updates nullified it keys do not match
= Non candidate counts updated offline

« Why SIMD ?

= Scalar code uses slower control ﬂag S
- Transform to data dependencies

= SIMD where ?

= To batch compare keys
- To update & nullify faster

SCREENSHOT or x conrreurarmon

Key | Cnt | Key | Cnt
= Perfect Koy — Key] 0 | 0 | O e R
Key| 0 |Key| O ;--’(Sgttl)bt)—., 11]2]2
= 2-wide 5. Equality ~ " ™ Sum1 | Sum2
\(32-bits) /
bucket Value ; 2-DIts)/
| 110 110
Value 0 | 0 | O 0 0
select count(*), e KD T (K2)
sum(value) * *
from table A ogicai™ Add N
order by count(*) | | ~_And - OIS
o desc v Ay
mit ...
Value |0 | Value |0
(K1) ‘ (K2) ‘ Sum 1 ‘ Sum 2

€

amore COMPLICATED query

Key MU“iPl}’_“H“} > Value”2 | Value
Value (32 to 64-bit) TN
—~——— L g/ Logical \q—— *
Y r'g EAAN Cer)
T NOT o “Logical ™\
Key—Key 0 | 0 | O Value| p, | Value| 0 | 1 0 Ly Val| Val|Val| Val i A 11| -1 W’"\!}ﬂd'f\'?f@fﬂ
+ I — / \ S Min N Valuer2 |0] Value | 0
-1j0[-110[-1[0[-1[0 /Togical\ /Logical™ 0-1/0[-1/0J-1|0J-1 | Value & | (Kln.) | (Kin.)
Kev | Key | Key | Key —»=Equality g - g/ Logical \ / Logical g g Value &
YISV RV TY obits)) LKD) (K2) (K3)| (K4) Coand o Wor T LKD[(K2) [(K3) (Ke) \ndex / /" Add A&
/ - A\ —— / I Index (84PN
Key | Key | Key | Key Cnt| Cnt | Cnt| Cnt _.__;f’ Sut_n (Ma?‘ + Max | Max | Max | Max Mi"_' -l— Min | Min | Min [Min| 1] 4 Sum”2 In.| Sum In.
1123 4 11234 \(32-bits) /) \(32-bits)/ 12| 3| 4 | \(32bits)/ 1] 2|3 |4] /
Koy | Key|Key Key| | ent)Cat] Cat cnt | Max Max Max Max] | Min W0 VDI MIN T sumn2 1| sum 1 |Sumt22| Sum2 |Sumi23| Sum3 |Sumr24| Sum4
= Perfect = 4-wide select count(*), sum(X),
. ; *
hashing bucket max(X), min(X), sum(X*X)

from table group by key
order by count(*) desc ...

CONVENTIONAL necrecarron

= Single pass 1200 e
U
- La.rg € hash table rcp%gtgd ;urf;sr =
for aggregates with - 1000 | elfsin
random hits on RAM S | moving cluster —@—
= PLAT method used 2 w00 | q
for cross-core cache =2
invalidations due -
to heavy hitters E
[Ye, DaMoN11] g 0007
E
= Multiple passes 2 400 |
[=Ti]
=
= Bound by RAM g
throughput = 200 |
= Hash tables 100 | S .
on cache . | | | | | | SR
I 10 100 1000 10000 100000 le+06 le+07 1e+08

Group by Cardinality

@

[ANCE treprorr

g (:JI-PUS @ 3 4 ! |
.4 GHz D
o 35T X SMT on 2-wide Regular
0 + SMT off !
Q 3L 1-w!ge (R:’egt:lar -
w -
Intel Nehalem T 25 wide Cuckoo
Appeared 2008 & ol |
-
9 15| X * -
4 physical % 1 b X+ + i
cores /CPU a 05 - _
L
gj 0 I | | |
D hardware g 0 1000 2000 3000 4000 5000

threads / core capacity (# keys)

€

QUALITY

- 32KB Ll cache
private / core

- 286 KB L2 cache
private / core

e Version SIMD
SSE 4.2

TRADEQFT

3000

2500 -

1000

correct keys

500

N

-

o

o
|

1500 -

I | I

1-wide Regular
2-wide Regular
4-wide Regular
1-wide Cuckoo
2-wide Cuckoo
4-wide Cuckoo

18 16 14 1.2 1
theta

08 06 04 0.2

0

@

throughput (billion records per sec)

correct keys

COMBINED resuirs

count - L1/L2

count, sum(value) - L1/L2

4 I I I 4 I I I
3.5 §§M¥ g?f 2-wide Regular 351 §§M¥ gpf 2-wide Regular
3L 4-wide Regular 3 4-wide Regular
1-wide Cuckoo 1-wide Cuckoo
25 4 25 .
2w X . 2 - -
X4
1.5 - x 4 15 ¥ " .
1k + . 1+ x-l- -+ _
0.5 - 4 05 f
0 | | | | 0 | | | |
0 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000
capacity (# keys) capacity (# keys)
L1-resident hybrid table (L1 split 1:1) L2-resident hybrid table (L2 split 1:1)
3000 T | \ T T T T
700 | | | | I1-widé Regu‘lar] 1-wide Regular
600 2-wide Regular | 2500 - 2-wide Regular .
4-wide Regular 4-wide Regular
500 1-wide Cuckoo - 2000 1-wide Cuckoo .
2-wide Cuckoo 2-wide Cuckoo
400 4-wide Cuckoo 1500 |- 4-wide Cuckoo .
300 .
1000 _
200 -
100 | 500 _
0 | | | | 1 | | | 0 | | | | | | | S |
18 16 14 12 1 08 06 04 02 O 2 18 16 14 12 1 08 06 04 02 O

theta

theta

count, min(value), max(value), sum(value), sum(value*value) - L1/L2

T T T T
3.5 1 §§M$ g?f 2-wide Regular
3L 4-wide Regular
1-wide Cuckoo
25 - -
2 - _
15 |- _
1 K% 2
+
05 - X + N
O | | | |
0 1000 2000 3000 4000 5000
capacity (# keys)
L2-resident hybrid table (L2 split 1:3)
3000 T I T T I T T !
1-wide Regular
2500 2-wide Regular .
4-wide Regular
2000 1-wide Cuckoo .
2-wide Cuckoo
1500 - 4-wide Cuckoo -
1000 |
500 —
0 | | 1 | | | | | — 1
2 18 16 14 12 1 08 06 04 02 O
theta

REALISTIC expermvent

= Wikipedia

- Hourly Wikipedia V1S1tS for January 2012
= Group by URL & get average visit hour

= Skew

- 3,463,321,585 Visits

102,216,378 distinct URLs

Top-3 URLs are 1.6 % of total
Top-100 URLs are 6.65 % of total
Top-10,000 URLs are 25.3 % of total

WIKIPEDIR oaraser

. 1-wide 2-wide 4-wide
Candidates | Non-Cand. | Scheme | mm T o Time [B, | Freq. | Time | I | Froq.
Regular 2.32 9 362 3.07 10 | 362 | 3.47 10 | 3.62
L1 x1/2 L1 x1/2 Cuckoo 3.41 12| 362| 3.93 12| 339 | 4.78 12 | 3.45
Regular 215 14| 339 255 14| 2.05| 3.28 16 | 2.72
L1 x1/4 L1 x3/4 Cuckoo 3.47 15| 278 | 3.73 16 | 278 | 4.59 16 | 2.70
Regular 3.59 92 | 1.00 | 3.67| 145 | 075 | 411 | 187 | 0.69
L2 x1/2 L2 x1/2 Cuckoo 449 | 217| 063| 467| 20| 061| 572| 273| 057
Regular 9771 103 | 0095 | 208 | 146 | 078 | 3.68| 187 | 067
L2 x1/4 L2 x3/4 Cuckoo 392 215| 062 428 260| 059| 538| 28| 057
0 L2 x3/4 Regular 259 81| 089 | 283 | 121 | 083 | 355| 141 0.0
Cuckoo 374 | 162 073 411 19| o072| 524 179 o071

- # verified top groups

= min (Kth item) frequency (x 10-4)

- execution tIme (seconds)

select count(*) as visits,
avg(hour) as mean_visit_hour
from wikipedia
group by URL

order by count(*) desc;

®

miar REM

= Usefulness

= Applied on specific queries
= Requires skew in data

- Best effort approach

- Useful for data exXploration

= Quality

- 5-20x faster than conventional aggregation
= Get top 250 results out of > 25 GB in time < 5 sec
= Smallest forms 0.006 % of total

my QUESTIONS

