
GamePod: Persistent Gaming Sessions on Pocketable Storage Devices

Shaya Potter Ricardo Baratto Oren Laadan Jason Nieh
Computer Science Department

Columbia University
{spotter, ricardo, orenl, nieh}@cs.columbia.edu

Abstract
We present GamePod, a portable system that enables mo-
bile users to use the same persistent, gaming environment
on any available computer. No matter what computer is
being used, GamePod provides a consistent gaming en-
vironment, maintaining all of a user’s games, including
active game state. This is achieved by leveraging rapid
improvements in capacity, cost, and size of portable stor-
age devices. GamePod provides a middleware layer that
enables virtualization and checkpoint/restart functional-
ity that decouples the gaming environment from a host
machine. This enables gaming sessions to be suspended
to portable storage, carried around, and resumed from the
storage device on another computer. GamePod’s middle-
ware layer also isolates gaming sessions from the host,
protecting the host by preventing malicious executable
content from damaging the host. We have implemented a
Linux GamePod prototype and demonstrate its ability to
quickly suspend and resume gaming sessions, enabling
a seamless gaming experience for mobile users as they
move among computers.

1 Introduction

Commodity computers are increasingly a part of daily
life for many people. Users make use of computers at
home, school, work, and on the road. While comput-
ers are being used for many purposes, one of the pri-
mary uses for many people is playing computer games.
The ubiquity of commodity computers have spawned a
new era of ubiquitous computer game playing. Com-
puter games have such broad appeal that many pervasive
devices, such as mobile phones and PDAs, now offer a
wide variety of games that were once limited to regular
desktop computers or specialized gaming consoles.

A key problem encountered by mobile users is the
inconvenience of using and managing multiple environ-
ments as they move around. For example, the computer
at the office is configured differently from the computer

at home, which is different from the computer at the li-
brary. These locations typically have different sets of
software installed. Games that are installed at one loca-
tion are often not available at another. As a result, today’s
mobile gamers are forced to adapt in one of two ways.
One way is by carrying around bulky laptop computers
for all their gaming and other computing needs, which
can be cumbersome especially for air travelers given in-
creased airport security measures. The other way is by
carrying around a more convenient and smaller form fac-
tor device such as a mobile phone, PDA, or portable
gaming console, which reduces the gaming experience
to small screens and poor sound quality.

To address these problems, we introduce GamePod, a
portable system that enables mobile users to obtain the
same persistent, personalized gaming experience on any
computer. GamePod leverages the ubiquity of commod-
ity PCs and the rise of commodity storage devices that
can easily fit in a user’s pocket yet store large amounts of
data. Such pocketable storage devices range from flash
memory sticks that can hold 1 GB of data, to Apple iPods
that can hold 60 GB of data. GamePod decouples a user’s
gaming session from their computer so that it can be sus-
pended to a portable storage device, carried around eas-
ily, and simply resumed from the storage device on a
completely different computer. GamePod provides this
functionality by introducing a thin middleware environ-
ment that operates without modifying, recompiling or re-
linking any gaming applications or the operating system
kernel, and with only a negligible performance impact.

GamePod operates by encapsulating a user’s gaming
session in a virtualized execution environment and stor-
ing all state associated with the session on the portable
storage device. GamePod virtualization decouples gam-
ing sessions from the operating system environment
by introducing a private virtual namespace that pro-
vides consistent, host-independent naming of system re-
sources. GamePod also virtualizes the display and sound
devices so that a gaming session can be scaled to dif-

2009 Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

978-0-7695-3834-1/09 $26.00 © 2009 IEEE

DOI 10.1109/UBICOMM.2009.61

269

ferent display resolutions and play with different sound
hardware that may be available as a user moves from one
computer to another. This enables a gaming session to
run in the same way on any host despite differences that
may exist among different host operating system envi-
ronments, display hardware, and sound hardware. Fur-
thermore, GamePod virtualization protects the underly-
ing host from untrusted software that a user may run as
part of a gaming session. GamePod virtualization also
prevents other applications from outside of the gaming
session that may be running on the host from accessing
any of the session’s data, protecting the privacy of the
user. GamePod virtualization is combined with a check-
point/restart mechanism. This enables a user to suspend
the entire gaming session to the portable storage device
so that it can be migrated between physical computers
by simply moving the storage device to a new computer
and resuming the session there. GamePod ensures that
file system state as well as process execution state as-
sociated with the gaming session are preserved on the
portable storage device. The result is that GamePod en-
ables users to maintain a common gaming environment,
no matter what computer they are using. Users can eas-
ily carry their gaming sessions with them without lug-
ging around a bulky laptop or being restricted to a more
portable device without sufficient display size or sound
quality. Since GamePod does not rely on any of the ap-
plication resources of the underlying host machine, any
gaming helper applications and utilities that games ex-
pect to be available will always be available using Game-
Pod. Also, because GamePod provides a fast check-
point/restart mechanism, users can quickly save their en-
tire gaming environment when they have to change loca-
tions without needing to manually save all the individual
elements of their state. Mobile users can simply unplug
the device from the computer, move onto a new computer
and plug in, and restart their session from the device to
pick up where they left off.

We have implemented a GamePod prototype for use
with commodity PCs running Linux and measured its
performance. Our experimental results with real game
applications demonstrate that GamePod has very low vir-
tualization overhead and can migrate gaming sessions
with sub-second checkpoint and restart times. We show
that GamePod can reconstitute a user’s gaming session
an order of magnitude faster than if a user had to restart
the same games without GamePod. Our results also show
that a complete GamePod gaming session including file
system state requires less than 512 MB of storage. Game-
Pod’s modest storage requirements enable it to be used
with small form factor USB drives available on the mar-
ket today, which are smaller than a person’s thumb and
can be conveniently carried on a keychain or in a user’s
pocket.

2 GamePod Usage Model

GamePod is architected as a simple end user device that
users can carry in their pockets. A GamePod session
can be easily populated with the complete set of files
needed by a game a user wants to play so that environ-
ment is available on any computer. To the user, a Game-
Pod session appears no different than private computer
even though it runs on a host that may be running other
applications. Those applications running outside of the
GamePod session are not visible to a user within a Game-
Pod session.

A user starts a GamePod game by simply plugging in
a GamePod portable storage device into the computer.
The computer detects the device and automatically tries
to restart the GamePod session and attaches a GamePod
viewer to the session to make the associated game avail-
able and visible to the user. Applications running in a
GamePod session appear to the underlying operating sys-
tem just like other applications that may be running on
the host machine, and they make use of the host’s net-
work interface in the same manner.

Once GamePod is started, a user can easily commence
playing the game. When the user wants to leave the com-
puter, the user simply closes the GamePod viewer. This
causes the GamePod session to be quickly checkpointed
to the GamePod storage device, which can then be un-
plugged and carried around by the user. When another
computer is ready to be used, the user simply plugs in the
GamePod device and the session is restarted right where
it left off. With GamePod, there is no need for a user
to manually launch the game and load a saved game.
GamePod’s checkpoint/restart functionality maintains a
user’s gaming session persistently as a user moves from
one computer to another.

GamePod is simpler than a traditional computer in that
it only provides a single game application environment,
not an entire operating system environment. There is
no operating system installed on the GamePod device.
GamePod instead makes use of the operating system en-
vironment available on the host computer into which it
is plugged in. This provides two important benefits for
GamePod users in terms of startup speed and manage-
ment complexity. Since there is no operating system on
the GamePod device, there is no need to boot a new oper-
ating system environment to use GamePod or attempt to
configure an operating system to operate on the particu-
lar host machine that is being used. Since only GamePod
applications need to be restarted, this minimizes startup
costs for using GamePod and ensures that GamePod can
be used on any machine on which a compatible operating
system is running. Furthermore, since GamePod does not
provide an operating system there is no need for Game-
Pod users to maintain and manage an operating system

270

environment, reducing management complexity.
GamePod protects gaming sessions by isolating each

session in its own private execution environment. Other
user-level applications running on the same machine are
not able to access any state associated with a GamePod
session.

3 GamePod Virtualization

To provide a private and mobile execution environment
for gaming sessions, GamePod virtualizes the underly-
ing host operating system and display. GamePod virtual-
ization is necessary to enable GamePod gaming sessions
to be decoupled from the underlying host on which it is
being executed. This is essential to allow GamePod ap-
plications to be isolated from the underlying system and
other applications, to be checkpointed on one machine
and restarted on another, and to be displayed on hosts
with different display hardware and display resolution.
Given the large existing base of games and commodity
operating systems, GamePod virtualization is designed
to be completely transparent to work with existing un-
modified games and operating system kernels.

3.1 Operating System Virtualization
To understand the need for operating system virtualiza-
tion, we briefly discuss how applications execute in the
context of commodity operating systems. When an appli-
cation runs, the operating system associates a process or
set or processes with it. Operating system resource iden-
tifiers, such as process IDs (PIDs), must remain constant
throughout the life of a process to ensure its correct oper-
ation. Games commonly manipulate these operating sys-
tem resource identifiers as they execute. However, these
identifiers are only local unique to a particular operating
system instance. When an application is moved from one
computer to another, there is no guarantee that the desti-
nation operating system can provide the same identifiers
to the migrated application’s processes. Those identifiers
may already be in use by other processes running on the
destination system, preventing the migrated process from
executing correctly.

GamePod virtualizes the underlying host operating
system by encapsulating gaming sessions within a host
independent, virtualized view of the operating system.
This virtualization approach builds upon our previous
work on MobiDesk [1] and the previous work of one of
the authors on Zap [7].

GamePod virtualization provides each gaming session
with its own virtual private namespace. The namespace
namespace is private in that only processes within the
namespace can see the namespace and that it masks out
resources that are not contained within it. It is virtual

in that all kernel resources are accessed through virtual
identifiers within the namespace that are distinct from
the identifiers used by the kernel itself. For example,
a GamePod session contains its own host independent
view of operating system resources, such as PID/GID,
IPC, memory, file system, and devices. The namespace
is the only means for the processes associated with run-
ning GamePod application instances to access the under-
lying operating system. GamePod introduces this names-
pace to decouple processes associated with applications
running in GamePod sessions from the underlying host
operating system.

GamePod virtualizes the operating system instance by
using mechanisms that translate between the session’s
virtual resource identifiers and the operating system re-
source identifiers. For every resource accessed by a pro-
cess in a session, the virtualization layer associates a vir-
tual name to an appropriate operating system physical
name. When an operating system resource is created
for a process in a session, the physical name returned by
the system is caught, and a corresponding private virtual
name created and returned to the process. Similarly, any
time a process passes a virtual name to the operating sys-
tem, the virtualization layer catches and replaces it with
the corresponding physical name. The key virtualization
mechanisms used are a system call interposition mech-
anism and the chroot utility with file system stacking
for file system resources.

GamePod virtualization uses system call interposi-
tion to virtualize operating system resources, including
process identifiers, keys and identifiers for IPC mecha-
nisms such as semaphores, shared memory, and message
queues, and network addresses. System call interposi-
tion wraps existing system calls to check and replace ar-
guments that take virtual names with the corresponding
physical names, before calling the original system call.
Similarly, wrappers are used to capture physical name
identifiers that the original system calls return, and re-
turn corresponding virtual names to the calling process
running inside the session. Session virtual names are
maintained consistently as a session migrates from one
machine to another and are remapped appropriately to
underlying physical names that may change as a result of
migration. Session system call interposition also masks
out processes inside of a session from processes outside
of the session to prevent any interprocess host dependen-
cies across the session boundary.

3.2 Display Virtualization

GamePod virtualizes the display associated with a gam-
ing session so that it can be viewed on different hosts
that may have different display systems available. This
display virtualization approach builds upon our previous

271

work on MobiDesk [1] and the previous work of one of
the authors on THINC [2].

GamePod virtualization provides each gaming session
with its own virtual display server and virtual device
driver to decouple the display of the gaming session from
the display subsystem of the host. The virtual display
server provides a GamePod session with its own win-
dow system separate from the window system on the
host, thereby separating GamePod application display
state from other applications running on the host outside
of the GamePod session. The display server is consid-
ered a part of the GamePod session and is checkpointed
when the GamePod session is suspended and restarted
when the GamePod session is resumed. Our GamePod
prototype implementation uses an XFree86 4.3 server as
its own display server.

Instead of rendering display commands to a real de-
vice driver associated with a physical display device on
the host, the virtual display server directs its commands
to a virtual device driver representing a virtual display
device associated with the GamePod session. The virtual
display device processes display commands and directs
their output to memory instead of a framebuffer. This
approach abstracts away the specific implementation of
video card features into a high level view that is applica-
ble to all video cards. Since the device state is not in the
physical device but in the virtualized GamePod session,
this simplifies display state management during check-
pointing and restarting a GamePod session. As a result,
checkpointing the GamePod’s display state can be done
by simply saving the associated memory instead of ex-
tracting display state from the host-specific framebuffer.

Rather than sending display commands to local dis-
play hardware, the GamePod virtual video driver pack-
ages up display commands associated with a user’s com-
puting session, writes them to memory, and enables them
to be viewed using a GamePod viewer application that
runs in the context of the window system on the host.
The viewer is completely decoupled though from the rest
of the GamePod display system. All it does it read the
persistent display state managed by the GamePod display
system. The viewer can be disconnected and reconnected
to the GamePod session at any time without loss of dis-
play information since it does not maintain any persistent
display state.

3.3 Sound Virtualization

To understand the need for audio virtualization, we
briefly discuss how applications typically interact with
the audio subsystem of a machine. Audio players, such
as a video or mp3 player, initialize the sound device by
configuring it to accept a specific type of audio stream.
This audio stream is defined by its bitwise encoding rep-

resentation, how many channels of output are contained
within the stream as well as the sampling rate of the
stream, which defines the quality of the stream. Once an
application has configured the device, it simply writes out
packets of data, samples, to the device that correspond to
this configuration. The sound card then outputs the audio
stream, doing an appropriate demultiplexing of the sound
channels to the appropriate speakers as well as a digital
to analog conversion if appropriate.

As opposed to the video subsystem, modern multime-
dia applications use sound devices in a fairly stateless
manner. These applications just care about writing a con-
tinuous stream of sample data to the card and each sam-
ple is independent from those that came before it. How-
ever, when a multimedia application is moved from one
computer to another, it is important that all of the con-
figuration state of the sound device be captured, such as
what type of sample data is being streamed to the card.
This enables GamePod to configure the sound device on
the new host computer exactly as it was configured be-
fore, and enables the application to continue sending its
samples to the sound device and have them play as ex-
pected. One can simply capture this configuration state
because modern operating systems provide a consistent
kernel based API for its sound subsystem. Applications
use this API to configure the sound devices and write
samples to them. Therefore, applications are not tied to
any particular physical sound device.

GamePod provides two ways types of sound support.
First, GamePod has the ability to restrict the configura-
tion settings that an application can set on the GamePod’s
sound device. For example, GamePod can restrict the
settings that are allowed to the subset that are available
on almost all sound cards in use today, such as 44 and
48khz sound, 16bit audio and stereo channels. This en-
ables users to migrate a GamePod session between com-
puters without being concerned about underlying hard-
ware support on their target machines. Second, GamePod
can enable full access to the capabilities of the underly-
ing host sound card. For example, to play a DVD in full
5.1 surround sound. However, users who migrate their
GamePods to machines that don’t have support for such a
feature, will not be able to restart their GamePod session
and will have to re-launch that DVD player application.

4 GamePod Checkpoint/Restart

GamePod virtualization and checkpoint-restart mecha-
nisms enable a session instance to continue execution
across many disparate computers that are separately man-
aged. Checkpoint-restart provides the glue that permits
a GamePod device to be checkpointed, transported and
restarted across distinct computers with distinct hardware
and operating system kernels. Migration is limited be-

272

tween machines with a common CPU architecture, and
that run “compatible” operating systems.

Compatibility is determined by the extent to which
they differ in their API and their internal semantics. Mi-
nor versions are normally limited to maintenance and se-
curity patches, without affecting the kernel’s API. Ma-
jor versions carry significant changes that may break ap-
plication compatibility. In particular, they may modify
the application’s execution semantics, or introduce new
functionality, nevertheless they usually maintain back-
ward compatibility. For instance the Linux kernel has
two major versions, 2.4 and 2.6, each with over 30 mi-
nor versions respectively. Linux 2.6 significantly dif-
fers in how threads behave, and also introduces various
new system calls. This implies that migration across mi-
nor versions in general is not restricted, while migration
between major versions is only feasible from older to
newer.

GamePod’s checkpoint-restart mechanism relies on an
intermediate abstract format to represent the state that
needs to be saved. While the low-level details as main-
tained by the operating system may change radically be-
tween different kernels, the high-level properties are un-
likely to change since they reflect the actual semantics
upon which the application rely. GamePod describes the
state of a process in terms of this higher-level semantic
information rather than the kernel specific data. To il-
lustrate this, let us consider the data that describes inter-
process relationships, e.g. parent, child, siblings, threads
etc. The operating system normally optimize for speed
by keeping multiple data structures to reflect these rela-
tionships. However this format is of limited portability
across different kernels, and in Linux the exact technique
indeed changed between 2.4 and 2.6. Instead, GamePod
captures a high-level representation of the relationships
that mirrors its semantics. In particular, it simply keeps
a tree structure to describe these relationships. The same
holds for other resources, e.g. communication sockets,
pipes, open files, system timers etc: GamePod extracts
the relevant state the way it is encapsulated in the operat-
ing system’s API, rather than the details of its implemen-
tation. Doing so maximizes portability across kernel ver-
sions by adopting properties that are considered highly
stable.

To accommodate for differences in semantics that in-
evitably do occur occasionally between kernel versions,
GamePod uses specialized conversion filters. The check-
pointed state data is saved and restored as a stream. The
conversion filters operate on this stream and manipulate
its contents. Although typically they are designed to
translate between different representations, they can be
used to perform other operations such as compression,
encryption etc. Their main advantages are their extreme
flexibility, and the fact that they are executed like regu-

lar helper applications. Building on the example above,
since the thread model changes between Linux 2.4 and
2.6, a filter can easily be designed to upgrade the former
abstract data to adhere to the new semantics. Additional
filters can be built should semantics changes occur in the
future. The outcome is a very robust and powerful solu-
tion.

GamePod leverages high-level native kernel services
in order to transform the intermediate representation of
the checkpointed image into the complete internal state
required by the target kernel during restart. Continuing
with the previous example, GamePod restores the struc-
ture of the process tree by exploiting the native fork
system call. In accordance to the abstract process tree
data, a determined sequence of fork calls is issued to
replicate the original relationships. The main benefit is
voiding the need to deal with any internal kernel details.
Furthermore, high level primitives of this sort remain vir-
tually unchanged across kernel changes (minor or major).
Finally, these services are available for use by loadable
kernel modules, enabling GamePod to perform cross-
kernel migration without requiring modifications to the
kernel.

Finally, we must ensure that changes in the system call
interfaces are properly handled. GamePod has a virtu-
alization layer that employs system call interposition to
maintain namespace consistency. It follows that a change
in the semantics for any system call that is intercepted
could raise an issue in migrating across such differences.
Fortunately such changes are rare, and when they occur,
they are hidden by standard libraries from the applica-
tion level lest they break the applications. Consequently,
GamePod is protected the same way legacy applications
are protected. On the other hand, the addition of new sys-
tem calls to the kernel requires that the encapsulation be
extended to support them. Moreover, it restricts the pos-
sibility of migration back to older versions. For instance,
an application that invokes the new waitid system call
in Linux 2.6 cannot be migrated back to 2.4, unless an
emulation layer exists there.

5 Experimental Results

We implemented GamePod as three components, a sim-
ple viewer application for accessing a GamePod session,
an unmodified XFree86 4.3 display server with a Game-
Pod virtual display device driver, and a loadable kernel
module that provides the GamePod middleware layer in
Linux that requires no changes to the Linux kernel. We
present some experimental results using our Linux pro-
totype to quantify the overhead of using the GamePod
environment on various applications.

Experiments were conducted on an IBM T42p
Thinkpad with a 1.8GHz Pentium-M CPU with 1 GB

273

RAM and a 60 GB 7200 RPM hard disk. The machine
had a ATI FireGL Mobility T2 video card with 128 MB
of Ram and an Intel Gigabit Ethernet controller con-
nected to a 100 Mbps network. The host laptop ran the
Ubuntu 5.04 Linux distribution, while the GamePod it-
self was based on a plain Debian unstable distribution.

We used a 512 MB SanDisk Cruzer USB memory key
as the GamePod portable storage device, though larger or
smaller devices could be used as well depending on the
file system requirements of the specific GamePod device.
The GamePod device we created contained a full X11
system, as well as a large collection of games including
Quake 2, XChess, Solitaire, Tetris, Blackjack, Mahjong
and many others. This GamePod system required a file
system of only 283 MB. We built the unoptimized Game-
Pod file system by bootstrapping a Debian GNU/Linux
installation onto the 512 MB USB memory key and in-
stalling a simple XFree86 4.3 environment as well as the
Black-Box 1.4.5 window manager. We also remove the
extra packages needed to boot a full Linux system as
GamePod is just a lightweight gaming environment, not a
full operating system. Depending on the game one wants
to carry, the extra overhead can be minimal in regards to
smaller games such as Chess, to multiple gigabytes for
games such as Unreal Tournament 2004. Our base un-
optimized GamePod file system could be even smaller if
the file system was built from scratch instead by just in-
stalling the exact programs and libraries that are needed
for each individual game.

In order to test the overhead the GamePod system im-
poses on real games, we benchmarked the performance
of Quake 2 using two time demos. Quake 2’s timedemo
feature enables the Quake 2 engine to play a prerecorded
game demo at the highest possible speed while recording
the average frames per second (FPS) the engine was able
to sustain. We tested against the default demo built into
the game. We tested this demo under the GamePod en-
vironment and compared the results to a plain Linux sys-
tem. For the built in demo, GamePod achieves an average
of 36 FPS, while plain Linux was able to average 42 FPS,
resulting in GamePod having an overhead of 17%.

To measure the cost of checkpointing and restarting
GamePod sessions as well as demonstrating GamePod’s
ability to improve the way a user plays games, we mi-
grated multiple game sessions containing different games
between the two machines described above. Figure 1
shows how long it takes to checkpoint and restart Game-
Pod sessions containing the different games. We com-
pare this against how long it would take to automatically
open the same games manually. We compared the per-
formance against the time it takes to simply restart the
game.

Figure 1 shows that it is significantly faster to check-
point and restart a GamePod gaming session than it is

Figure 1: GamePod Checkpoint/Restart vs. Scripted
Startup Latency

Quake 2 Tetris Solitare
Checkpoint 44 MB 22 MB 50 MB
File System 283 MB 283 MB 283 MB
Total 327 MB 305 MB 383 MB

Table 1: GamePod Storage Requirements

to have to start the same kind of gaming session from
scratch. Checkpointing and restarting a GamePod even
with a complex application like Quake 2 takes well under
a second. This enables a GamePod user to very quickly
disconnect from a machine after a gaming session has
been completed and plug-in to another machine and im-
mediately start playing games again. In contrast, Figure 1
shows that starting a game the traditional way is much
slower, even though it’s installed on a 7200 RPM hard
disk as opposed to a slow USB memory key.

Table 1 shows the amount of storage needed to store
the checkpointed gaming sessions using GamePod for
each of three separate GamePod environments. The re-
sults reported show checkpointed image sizes without ap-
plying any compression techniques to reduce the image
size. These results show that the checkpointed state that
needs to be saved is very modest and easy to store on
any portable storage device. Given the modest size of
the checkpointed images, there is no need for any addi-
tional compression which would reduce the minimal stor-
age demands but add additional latency due to the need
to compress and decompress the checkpointed images.
The checkpointed image size in all cases was less than
50 MB. Our results show that total GamePod storage re-
quirement, including both the checkpointed image size
and the file system size, is much less than what can fit in
a small 512 MB USB drive.

274

6 Related Work

This works build on our previous work with WebPod [9]
and DeskPod [10]. It improves on those approaches by
optimizing the display system to enable the high speed
rendering needed by games, as well as introducing sound
virtualization and migration.

The emergence of cheap, portable storage devices has
led to the development of web browsers for USB drives,
including Stealth Surfer [14] and Portable Firefox [8].
These approaches only provide the ability to run a web
browser on a USB drive. Unlike GamePod, they do not
provide a generic environment for running a variety of
applications.

M-Systems and SanDisk have recently proposed the
U3 [15] platform for providing a standard way to allow
USB drives to store data and launch applications. Only
limited information is currently available about U3. No
U3 products currently exist and no U3 prototypes have
been announced to date. However, the platform does
have the potential to provide a more general framework
than web browsers that can run on a USB drive. Un-
like GamePod, U3 focuses on launching applications and
storing user data, but does not address the needs of mo-
bile users in providing persistent application sessions that
can be checkpointed and restarted.

Many portable gaming systems have been used over
the years. Famous one such as the Nintendo Game-
Boy [6] are still popular as their small form factor en-
ables them to be easily carried anywhere. Others, such as
the recent Sony PlayStation Portable [13] include many
advanced features such as 3D graphics support. Unlike
GamePod, these devices enable to you to play a game
wherever you are, as they are an entire self contained
unit. However, unlike GamePod which lets one take ad-
vantage of whatever hardware is available, these devices
limit you to a system with a small screen, limited battery
life and inferior sound.

SoulPad [12] provides a solution similar to GamePod
but based on using Knoppix Linux and VMware [16] on
a USB drive. Knoppix Linux provides a Linux operat-
ing system that can boot from a USB drive for certain
hardware platforms. VMware provides a virtual machine
monitor (VMM) that enables an entire operating system
environment and its applications to be suspended and re-
sumed from disk. SoulPad is designed to take over the
host computer it is plugged into by booting its own op-
erating system. SoulPad then launches a VMware VM
that runs the migratable operating system environment.
Unlike GamePod, SoulPad does not rely on any software
installed on the host. However, it requires minutes to start
up given the need to boot and configure an entire operat-
ing system for the specific host being used. GamePod is
designed specifically for playing games, which enables

it to be much more lightweight. GamePod requires less
storage so that it can operate on smaller USB drives and
does not require rebooting the host into another operating
system so that it starts up much faster.

Providing virtualization, checkpoint, and restart capa-
bilities using a VMM such as VMware represents an in-
teresting alternative to the GamePod operating system
virtualization approach. VMMs virtualize the underlying
machine hardware while GamePod virtualizes the oper-
ating system. VMMs can checkpoint and restart an entire
operating system environment. However, unlike Game-
Pod, VMMs cannot checkpoint and restart games with-
out also checkpointing and restarting the operating sys-
tem. GamePod virtualization operates at a finer granu-
larity than virtual machine approaches by virtualizing in-
dividual sessions instead of complete operating system
environments. Using VMMs can be more space and time
intensive due to the need to include the operating system
on the portable storage device.

A number of other approaches have explored the idea
of virtualizing the operating system environment to pro-
vide application isolation. FreeBSD’s Jail mode [4] pro-
vides a chroot like environment that processes can not
break out of. More recently, Linux Vserver [5] and So-
laris Zones [11] offer a similar virtual machine abstrac-
tion to the GamePod session. Unlike GamePod, all of
these approaches require substantial in-kernel modifica-
tions to support the abstraction, and none of them pro-
vide the checkpoint/restart functionality available using
GamePod.

Some Enterprise Java Bean application servers, such
as BEA’s WebLogic Server [3], enable programmers to
create StateFull Session Beans (SFSB) that can support
the failover property. This enables the application server
to migrate the SFSB to another server in case of failure.
However, unlike GamePod, this requires the program-
mer to explicitly write a SFSB eliminating the use of any
legacy code and does not provide an environment that is
conducive for game development.

7 Conclusions and Future Work

We have introduced GamePod, a portable system that en-
hances user’s gaming experience by providing them with
a persistent gaming session wherever they are located and
on whatever computer they are using. GamePod allows
an entire gaming session to be stored on a small portable
storage device that can be easily carried on a key chain
or in a user’s pocket.

GamePod provides its functionality by virtualizing op-
erating system and display resources, decoupling a gam-
ing session from the host on which it is currently running.
GamePod virtualization works together with a check-
point/restart mechanism to enable GamePod users to sus-

275

pend their gaming sessions, move around, and resume
their respective sessions at a later time on any computer
right where they left off. GamePod’s ability to migrate
gaming sessions between differently configured and ad-
ministered computers provides improved end user mobil-
ity.

GamePod opens up new possibilities for publishers of
video games. By using the GamePod middleware layer to
decouple the game’s execution from the underlying hard-
ware, game publishers can ensure that their games run in
a consistent environment on all machines that they are
executed on. While our GamePod prototype is usable by
a user who builds it himself, the GamePod concept can
be extended to support generic users who can buy it in
a store and simply plug it into their computer and start
playing immediately. Similarly, GamePod can be inte-
grated with a Digital Rights Management interface to en-
able users to share and copy GamePod’s bought in a store
in a controlled manner.

We have implemented and evaluated the performance
of a GamePod prototype in Linux. Our implementa-
tion demonstrates that GamePod supports regular games
without any changes to the applications or the underlying
host operating systems kernels. Our experimental results
with real games shows that GamePod has low virtualiza-
tion overhead and can migrate gaming sessions with very
fast checkpoint/restart times. GamePod is unique in it’s
ability to provide a complete, persistent, and consistent
gaming environment that is not limited to a single ma-
chine.

8 Acknowledgments

This work was supported in part by NSF grants CNS-
0426623, CNS-0717544, and CNS-0914845.

References

[1] R. Baratto, S. Potter, G. Su, and J. Nieh. MobiDesk:
Mobile Virtual Desktop Computing. In Proceed-
ings of the Tenth Annual ACM International Con-
ference on Mobile Computing and Networking (Mo-
biCom 2004), Philadelphia, PA, Sept. 2004.

[2] R. A. Baratto, L. N. Kim, and J. Nieh. THINC: A
Virtual Display Architecture for Thin-Client Com-
puting. In Proceedings of the 20th ACM Sympo-
sium on Operating Systems Principles (SOSP), Oct.
2005.

[3] BEA Systems. http://dev2dev.bea.com/
products/wlplatform81/index.jsp.

[4] P.-H. Kamp and R. N. M. Watson. Jails: Confining
the Omnipotent Root. In 2nd International SANE

Conference, MECC, Maastricht, The Netherlands,
May 2000.

[5] Linux VServer Project. http://www.
linux-vserver.org/.

[6] Nintendo of America. http://www.gameboy.
com/.

[7] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. In Proceed-
ings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston,
MA, Dec. 2002.

[8] Portable Firefox. http://johnhaller.com/
jh/mozilla/portable_firefox/.

[9] S. Potter and J. Nieh. WebPod: Persistent Web
Browsing Sessions with Pocketable Storage De-
vices. In Proceedings of the 14th International
World Wide Web Conference (WWW 2005), Chiba,
Japan, May 2005.

[10] S. Potter and J. Nieh. Highly Reliable Mobile Desk-
top Computing in Your Pocket. In Proceedings of
the IEEE Computer Society Signature Conference
on Software Technology and Applications (COMP-
SAC), Sept. 2006.

[11] D. Price and A. Tucker. Solaris Zones: Operat-
ing System Support for Consolidating Commercial
Workloads. In 18th Large Installation System Ad-
ministration Conference (LISA 2004), Nov. 2004.

[12] M. Raghunath, C. Narayanaswami, C. Caster, and
R. Caceres. Reincarnating PCs with Portable Soul-
Pads. Technical Report RC23418 (W0411-057),
IBM Research Division Thomas J. Watson Re-
search Center, Nov. 2004.

[13] Sony Computer Entertainment America Inc.
http://www.us.playstation.com/psp.
aspx.

[14] Stealth Surfer. http://www.
stealthsurfer.biz/.

[15] U3 Platform. http://www.u3.com.

[16] VMware, Inc. http://www.vmware.com.

276

