
Cells: A Virtual Mobile Smartphone Architecture

Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason Nieh
{jeremya, cdall, alexvh, orenl, nieh}@cs.columbia.edu

Department of Computer Science
Columbia University

ABSTRACT
Smartphones are increasingly ubiquitous, and many users
carry multiple phones to accommodate work, personal, and
geographic mobility needs. We present Cells, a virtualiza-
tion architecture for enabling multiple virtual smartphones
to run simultaneously on the same physical cellphone in an
isolated, secure manner. Cells introduces a usage model
of having one foreground virtual phone and multiple back-
ground virtual phones. This model enables a new device
namespace mechanism and novel device proxies that inte-
grate with lightweight operating system virtualization to
multiplex phone hardware across multiple virtual phones
while providing native hardware device performance. Cells
virtual phone features include fully accelerated 3D graphics,
complete power management features, and full telephony
functionality with separately assignable telephone numbers
and caller ID support. We have implemented a prototype
of Cells that supports multiple Android virtual phones on
the same phone. Our performance results demonstrate that
Cells imposes only modest runtime and memory overhead,
works seamlessly across multiple hardware devices including
Google Nexus 1 and Nexus S phones, and transparently runs
Android applications at native speed without any modifica-
tions.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General–
System architectures; D.4.6 [Operating Systems]: Secu-
rity and Protection; D.4.7 [Operating Systems]: Orga-
nization and Design; D.4.8 [Operating Systems]: Per-
formance; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces–User-centered design; I.3.4
[Computer Graphics]: Graphics Utilities–Virtual device
interfaces

General Terms
Design, Experimentation, Measurement, Performance, Se-
curity

Keywords
Android, Smartphones, Virtualization

1. INTRODUCTION
The preferred platform for a user’s everyday computing needs
is shifting from traditional desktop and laptop computers
toward mobile smartphone and tablet devices [4]. Smart-
phones are becoming an increasingly important work tool
for professionals who rely on them for telephone, text mes-
saging, email, Web browsing, contact and calendar manage-
ment, news, and location-specific information. These same
functions as well as the ability to play music, movies, and
games also make smartphones a useful personal tool. In fact,
hundreds of thousands of smartphone applications are avail-
able for users to download and try through various online
application stores. The ease of downloading new software
imposes a risk on users as malicious software can easily ac-
cess sensitive data with the risk of corrupting it or even
leaking it to third parties [35]. For this reason, smartphones
given to employees for work use are often locked down re-
sulting in many users having to carry separate work and per-
sonal phones. Application developers also carry additional
phones for development to avoid having a misbehaving ap-
plication prototype corrupt their primary phone. Parents
sometimes wish they had additional phones when their chil-
dren use the parent’s smartphone for entertainment and end
up with unexpected charges due to accidental phone calls or
unintended in-app purchases.

Virtual machine (VM) mechanisms have been proposed that
enable two separate and isolated instances of a smartphone
software stack to run on the same ARM hardware [2, 5, 13,
22]. These approaches require substantial modifications to
both user and kernel levels of the software stack. Paravir-
tualization is used in all cases since ARM is not virtual-
izable and proposed ARM virtualization extensions are not
yet available in hardware. While VMs are useful for desktop
and server computers, applying these hardware virtualiza-
tion techniques to smartphones has two crucial drawbacks.
First, smartphones are more resource constrained, and run-
ning an entire additional operating system (OS) and user
space environment in a VM imposes high overhead and lim-
its the number of instances that can run. Slow system re-
sponsiveness is less acceptable on a smartphone than on a
desktop computer since smartphones are often used for just
a few minutes or even seconds at a time. Second, smart-
phones incorporate a plethora of devices that applications
expect to be able to use, such as GPS, cameras, and GPUs.

173

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.



Existing approaches provide no effective mechanism to en-
able applications to directly leverage these hardware device
features from within VMs, severely limiting the overall sys-
tem performance and making existing approaches unusable
on a smartphone.

We present Cells, a new, lightweight virtualization architec-
ture for enabling multiple virtual phones (VPs) to run si-
multaneously on the same smartphone hardware with high
performance. Cells does not require running multiple OS
instances. It uses lightweight OS virtualization to provide
virtual namespaces that can run multiple VPs on a single
OS instance. Cells isolates VPs from one another, and en-
sures that buggy or malicious applications running in one
VP cannot adversely impact other VPs. Cells provides a
novel file system layout based on unioning to maximize shar-
ing of common read-only code and data across VPs, mini-
mizing memory consumption and enabling additional VPs
to be instantiated without much overhead.

Cells takes advantage of the small display form factors of
smartphones, which display only a single application at a
time, and introduces a usage model having one foreground
VP that is displayed and multiple background VPs that are
not displayed at any given time. This simple yet powerful
model enables Cells to provide novel kernel-level and user-
level device namespace mechanisms to efficiently multiplex
hardware devices across multiple VPs, including proprietary
or opaque hardware such as the baseband processor, while
maintaining native hardware performance. The foreground
VP is always given direct access to hardware devices. Back-
ground VPs are given shared access to hardware devices
when the foreground VP does not require exclusive access.
Visible applications are always running in the foreground VP
and those applications can take full advantage of any avail-
able hardware feature, such as hardware-accelerated graph-
ics. Since foreground applications have direct access to hard-
ware, they perform as fast as when they are running natively.

Cells uses a VoIP service to provide individual telephone
numbers for each VP without the need for multiple SIM
cards. Incoming and outgoing calls use the cellular network,
not VoIP, and are routed through the VoIP service as needed
to provide both incoming and outgoing caller ID function-
ality for each VP. Cells uses this combination of a VoIP
server and the cellular network to allow users to make and
receive calls using their standard cell phone service, while
maintaining per-VP phone number and caller ID features.

We have implemented a Cells prototype that supports mul-
tiple virtual Android phones on the same mobile device.
Each VP can be configured the same or completely differ-
ent from other VPs. The prototype has been tested to work
with multiple versions of Android, including the most re-
cent open-source version, version 2.3.4. It works seamlessly
across multiple hardware devices, including Google Nexus 1
and Nexus S phones. Our experimental results running real
Android applications in up to five VPs on Nexus 1 and Nexus
S phones demonstrate that Cells imposes almost no runtime
overhead and only modest memory overhead. Cells scales
to support far more phone instances on the same hardware
than VM-based approaches. Cells is the first virtualization
system that fully supports available hardware devices with

native performance including GPUs, sensors, cameras, and
touchscreens, and transparently runs all Android applica-
tions in VPs without any modifications.

We present the design and implementation of Cells. Sec-
tion 2 describes the Cells usage model. Section 3 provides
an overview of the system architecture. Sections 4 and 5
describe graphics and power management virtualization, re-
spectively, using kernel device namespaces. Sections 6 and
7 describe telephony and wireless network virtualization, re-
spectively, using user-level device namespaces. Section 8
presents experimental results. Section 9 discusses related
work. Finally, we present some concluding remarks.

2. USAGE MODEL
Cells runs multiple VPs on a single hardware phone. Each
VP runs a standard Android environment capable of making
phone calls, running unmodified Android applications, using
data connections, interacting through the touch screen, uti-
lizing the accelerometer, and everything else that a user can
normally do on the hardware. Each VP is completely iso-
lated from other VPs and cannot inspect, tamper with, or
otherwise access any other VP.

Given the limited size of smartphone screens and the ways
in which smartphones are used, Cells only allows a single
VP, the foreground VP, to be displayed at any time. We
refer to all other VPs that are running but not displayed as,
background VPs. Background VPs are still running on the
system in the background and are capable of receiving sys-
tem events and performing tasks, but do not render content
on the screen. A user can easily switch among VPs by se-
lecting one of the background VPs to become the foreground
one. This can be done using a custom key-combination to
cycle through the set of running VPs, or by swiping up and
down on the home screen of a VP. Each VP also has an
application that can be launched to see a list of available
VPs, and to switch any of these to the foreground. The
system can force a new VP to become the foreground VP
as a result of an event, such as an incoming call or text
message. For security and convenience reasons, a no-auto-
switch can be set to prevent background VPs from being
switched to the foreground without explicit user action, pre-
venting background VPs from stealing input focus or device
data. An auto-lock can be enabled forcing a user to unlock
a VP using a passcode or gesture when it transitions from
background to foreground. Section 3 discusses how the fore-
ground-background usage model is fundamental to the Cells
virtualization architecture.

VPs are created and configured on a PC and downloaded to
a phone via USB. A VP can be deleted by the user, but its
configuration is password protected and can only be changed
from a PC given the appropriate credentials. For example, a
user can create a VP and can decide to later change various
options regarding how the VP is run and what devices it
can access. On the other hand, IT administrators can also
create VPs that users can download or remove from their
phones, but cannot be reconfigured by users. This is useful
for companies that may want to distribute locked down VPs.

Each VP can be configured to have different access rights for
different devices. For each device, a VP can be configured to

174



have no access, shared access, or exclusive access. Some set-
tings may not be available on certain devices; shared access
is, for example, not available for the framebuffer since only a
single VP is displayed at any time. These per device access
settings provide a highly flexible security model that can be
used to accommodate a wide range of security policies.

No access means that applications running in the VP cannot
access the given device at any time. For example, VPs with
no access to the GPS sensor would never be able to track
location despite any user acceptances of application requests
to allow location tracking. Users often acquiesce to such pri-
vacy invasions because an application will not work without
such consent even if the application has no need for such
information. By using the no access option Cells enables IT
administrators to create VPs that allow users to install and
run such applications without compromising privacy.

Shared access means that when a given VP is running in the
foreground, other background VPs can access the device at
the same time. For example, a foreground VP with shared
access to the audio device would allow a background VP
with shared access to play music.

Exclusive access means that when a given VP is running
in the foreground, other background VPs are not allowed to
access the device. For example, a foreground VP with exclu-
sive access to the microphone would not allow background
VPs to access the microphone, preventing applications run-
ning in background VPs from eavesdropping on conversa-
tions or leaking information. This kind of functionality is
essential for supporting secure VPs. Exclusive access may
be used in conjunction with the no-auto-switch to ensure
that events cannot cause a background VP to move to the
foreground and gain access to devices as a means to circum-
vent the exclusive access rights of another VP.

In addition to device access rights, Cells leverages exist-
ing OS virtualization technology to prevent privilege escala-
tion attacks in one VP from compromising the entire device.
Both user credentials and process IDs are isolated between
VPs; the root user in one VP has no relation to the root
user in any other VP.

3. SYSTEM ARCHITECTURE
Figure 1 provides an overview of the Cells system archi-
tecture. We describe Cells using Android since our proto-
type is based on it. Each VP runs a stock Android user
space environment. Cells leverages lightweight OS virtual-
ization [3,23] to isolate VPs from one another. Cells uses a
single OS kernel across all VPs that virtualizes identifiers,
kernel interfaces, and hardware resources such that several
execution environments can exist side-by-side in virtual OS
sandboxes. Each VP has its own private virtual namespace
so that VPs can run concurrently and use the same OS re-
source names inside their respective namespaces, yet be iso-
lated from and not conflict with each other. This is done by
transparently remapping OS resource identifiers to virtual
ones that are used by processes within each VP. File system
paths, process identifiers (PIDs), IPC identifiers, network
interface names, and user names (UIDs) must all be virtual-
ized to prevent conflicts and ensure that processes running

L
in

u
x

 K
e

rn
e

l

Root 
Namespace

Virtual Phone 
1

Full Android 
user space

Virtual Phone 
2

Full Android 
user space

G
PU

Po
w

er

Fr
am

eb
uf

fe
r

Vi
rtu

al
 N

IC

Bi
nd

er

W
iF

i

R
ad

io

IPC

CellD RIL*

WiFi controls

NAT

*RIL: Vendor Radio Interface Layer library is loaded by CellD

In
pu

t

Se
ns

or
s

...

Device Namespace

Figure 1: Overview of Cells architecture

in one VP cannot see processes in other VPs. The Linux
kernel, including the version used by Android, provides vir-
tualization for these identifiers through namespaces [3]. For
example: the file system (FS) is virtualized using mount
namespaces that allow different independent views of the
FS and provide isolated private FS jails for VPs [16].

However, basic OS virtualization is insufficient to run a com-
plete smartphone user space environment. Virtualization
mechanisms have primarily been used in headless server en-
vironments with relatively few devices, such as networking
and storage, which can already be virtualized in commod-
ity OSes such as Linux. Smartphone applications, however,
expect to be able to interact with a plethora of hardware de-
vices, many of which are physically not designed to be multi-
plexed. OS device virtualization support is non-existent for
these devices. For Android, at least the devices listed in Ta-
ble 1 must be fully supported, which include both hardware
devices and pseudo devices unique to the Android environ-
ment. Three requirements for supporting devices must be
met: (1) support exclusive or shared access across VPs, (2)
never leak sensitive information between VPs, and (3) pre-
vent malicious applications in a VP from interfering with
device usage by other VPs.

Cells meets all three requirements in the tightly integrated,
and often proprietary, smartphone ecosystem. It does so by
integrating novel kernel-level and user-level device virtual-
ization methods to present a complete virtual smartphone
OS environment. Kernel-level mechanisms provide trans-
parency and performance. User-level mechanisms provide
portability and transparency when the user space environ-
ment provides interfaces that can be leveraged for virtu-
alization. For proprietary devices with completely closed
software stacks, user-level virtualization is necessary.

3.1 Kernel-Level Device Virtualization
Cells introduces a new kernel-level mechanism, device name-
spaces, that provides isolation and efficient hardware re-
source multiplexing in a manner that is completely trans-
parent to applications. Figure 1 shows how device names-

175



Device Description
Alarm* RTC-based alarms
Audio Audio I/O (speakers, microphone)
Binder* IPC framework
Bluetooth Short range communication
Camera Video and still-frame input
Framebuffer Display output
GPU Graphics processing unit
Input Touchscreen and input buttons
LEDs Backlight and indicator LEDs
Logger* Lightweight RAM log driver
LMK* Low memory killer
Network Wi-Fi and Cellular data
Pmem* Contiguous physical memory
Power* Power management framework
Radio Cellular phone (GSM, CDMA)
Sensors Accelerometer, GPS

Table 1: Android devices
*custom Google drivers

paces are implemented within the overall Cells architecture.
Unlike PID or UID namespaces in the Linux kernel, which
virtualize process identifiers, a device namespace does not
virtualize identifiers. It is designed to be used by individual
device drivers or kernel subsystems to tag data structures
and to register callback functions. Callback functions are
called when a device namespace changes state. Each VP
uses a unique device namespace for device interaction. Cells
leverages its foreground-background VP usage model to reg-
ister callback functions that are called when the VP changes
between foreground and background state. This enables de-
vices to be aware of the VP state and change how they re-
spond to a VP depending on whether it is visible to the user
and therefore the foreground VP, or not visible to the user
and therefore one of potentially multiple background VPs.
The usage model is crucial for enabling Cells to virtualize
devices efficiently and cleanly.

Cells virtualizes existing kernel interfaces based on three
methods of implementing device namespace functionality.
The first method is to create a device driver wrapper using
a new device driver for a virtual device. The wrapper device
then multiplexes access and communicates on behalf of ap-
plications to the real device driver. The wrapper typically
passes through all requests from the foreground VP, and up-
dates device state and access to the device when a new VP
becomes the foreground VP. For example, Cells use a device
driver wrapper to virtualize the framebuffer as described in
Section 4.1.

The second method is to modify a device subsystem to be
aware of device namespaces. For example, the input de-
vice subsystem in Linux handles various devices such as
the touchscreen, navigation wheel, compass, GPS, proximity
sensor, light sensor, headset input controls, and input but-
tons. The input subsystem consists of the input core, device
drivers, and event handlers, the latter being responsible for
passing input events to user space. By default in Linux, in-
put events are sent to any process that is listening for them,
but this does not provide the isolation needed for supporting
VPs. To enable the input subsystem to use device names-
paces, Cells only has to modify the event handlers so that,
for each process listening for input events, event handlers

first check if the corresponding device namespace is in the
foreground. If it is not, the event is not raised to that spe-
cific process. The implementation is simple, and no changes
are required to device drivers or the input core. As another
example, virtualization of the power management subsystem
is described in Section 5.

The third method is to modify a device driver to be aware of
device namespaces. For example, Android includes a num-
ber of custom pseudo drivers which are not part of an exist-
ing kernel subsystem, such as the Binder IPC mechanism.
To provide isolation among VPs, Cells needs to ensure that
under no circumstances can a process in one VP gain access
to Binder instances in another VP. This is done by modify-
ing the Binder driver so that instead of allowing Binder data
structures to reference a single global list of all processes,
they reference device namespace isolated lists and only allow
communication between processes associated with the same
device namespace. A Binder device namespace context is
only initialized when the Binder device file is first opened,
resulting in almost no overhead for future accesses. While
the device driver itself needs to be modified, pseudo device
drivers are not hardware-specific and thus changes only need
to be made once for all hardware platforms. In some cases,
however, it may be necessary to modify a hardware-specific
device driver to make it aware of device namespaces. For
most devices, this is straightforward and involves duplicat-
ing necessary driver state upon device namespace creation
and tagging the data describing that state with the device
namespace. Even this can be avoided if the device driver
provides some basic capabilities as described in Section 4.2,
which discusses GPU virtualization.

3.2 User-Level Device Virtualization
In addition to kernel-level device namespace mechanisms,
Cells introduces a user-level device namespace proxy mech-
anism that offers similar functionality for devices, such as
the baseband processor, that are proprietary and entirely
closed source. Cells also uses this mechanism to virtualize
device configuration, such as Wi-Fi, which occurs in user
space. Sections 6 and 7 describe how this user-level proxy
approach is used to virtualize telephony and wireless net-
work configuration.

Figure 1 shows the relationship between VPs, kernel-level
device namespaces, and user-level device namespace prox-
ies which are contained in a root namespace. Cells works
by booting a minimal init environment in a root namespace
which is not visible to any VP and is used to manage indi-
vidual VPs. The root namespace is considered part of the
trusted computing base and processes in the root names-
pace have full access to the entire file system. The init en-
vironment starts a custom process, CellD, which manages
the starting and switching of VPs between operating in the
background or foreground. Kernel device namespaces ex-
port an interface to the root namespace through the /proc

filesystem that is used to switch the foreground VP and set
access permissions for devices. CellD also coordinates user
space virtualization mechanisms such as the configuration of
telephony and wireless networking.

To start a new VP, CellD mounts the VP filesystem, clones
itself into a new process with separate namespaces, and

176



starts the VP’s init process to boot up the user space envi-
ronment. CellD also sets up the limited set of IPC sockets
accessible to processes in the VP for communicating with the
root namespace. These IPC sockets are the only ones that
can be used for communicating with the root namespace; all
other IPC sockets are internal to the respective VP. Cells
also leverages existing Linux kernel frameworks for resource
control to prevent resource starvation from a single VP [15].

3.3 Scalability and Security
Cells uses three scalability techniques to enable multiple
VPs running the same Android environment to share code
and reduce memory usage. First, the same base file system
is shared read-only among VPs. To provide a read-write
file system view for a VP, file system unioning [32] is used
to join the read-only base file system with a writable file
system layer by stacking the latter on top of the former.
This creates a unioned view of the two: file system objects,
namely files and directories, from the writable layer are al-
ways visible, while objects from the read-only layer are only
visible if no corresponding object exists in the other layer.
Second, when a new VP is started, Cells enables Linux Ker-
nel Samepage Merging (KSM) for a short time to further
reduce memory usage by finding anonymous memory pages
used by the user space environment that have the same con-
tents, then arranging for one copy to be shared among the
various VPs [30]. Third, Cells leverages the Android low
memory killer to increase the total number of VPs it is possi-
ble to run on a device without sacrificing functionality. The
Android low memory killer kills background and inactive
processes consuming large amounts of RAM. Android starts
these processes purely as an optimization to reduce appli-
cation startup-time, so these processes can be killed and
restarted without any loss of functionality. Critical system
processes are never chosen to be killed, and if the user re-
quires the services of a background process which was killed,
the process is simply restarted.

Cells uses four techniques to isolate all VPs from the root
namespace and from one another, thereby securing both sys-
tem and individual VP data from malicious reads or writes.
First, user credentials, virtualized through UID namespaces,
isolate the root user in one VP from the root user in the
root namespace or any other VP. Second, kernel-level de-
vice namespaces isolate device access and associated data;
no data or device state may be accessed outside a VP’s de-
vice namespace. Third, mount namespaces provide a unique
and separate FS view for each VP; no files belonging to one
VP may be accessed by another VP. Fourth, CellD removes
the capability to create device nodes inside a VP, prevent-
ing processes from gaining direct access to Linux devices or
outside their environment, e.g., by re-mounting block de-
vices. These isolation techniques secure Cells system data
from each VP, and individual VP data from other VPs. For
example, a privilege escalation or root attack compromising
one VP has no access to the root namespace or any other
VP, and cannot use device node creation or super-user ac-
cess to read or write data in any other VP.

4. GRAPHICS
The display and its graphics hardware is one of the most im-
portant devices in smartphones. Applications expect to take
full advantage of any hardware display acceleration or GPU

available on the smartphone. Android relies on a standard
Linux framebuffer (FB) which provides an abstraction to
a physical display, including screen memory, memory dedi-
cated to and controlled exclusively by the display device. For
performance reasons, screen memory is mapped and written
to directly both by processes and GPU hardware. The direct
memory mapping and the performance requirements of the
graphics subsystem present new challenges for virtualizing
mobile devices.

4.1 Framebuffer
To virtualize FB access in multiple VPs, Cells leverages
the kernel-level device namespace and its foreground-back-
ground usage model in a new multiplexing FB device driver,
mux_fb. The mux_fb driver registers as a standard FB de-
vice and multiplexes access to a single physical device. The
foreground VP is given exclusive access to the screen mem-
ory and display hardware while each background VP main-
tains virtual hardware state and renders any output to a
virtual screen memory buffer in system RAM, referred to
as the backing buffer. VP access to the mux_fb driver is
isolated through its device namespace, such that a unique
virtual device state and backing buffer is associated with
each VP. mux_fb currently supports multiplexing a single
physical frame buffer device, but more complicated multi-
plexing schemes involving multiple physical devices could
be accomplished in a similar manner.

In Linux, the basic FB usage pattern involves three types
of accesses: mmaps, standard control ioctls, and custom
ioctls. When a process mmaps an open FB device file, the
driver is expected to map its associated screen memory into
the process’ address space allowing the process to render
directly on the display. A process controls and configures
the FB hardware state through a set of standard control
ioctls defined by the Linux framebuffer interface which can,
for example, change the pixel format. Each FB device may
also define custom ioctls which can be used to perform
accelerated drawing or rendering operations.

Cells passes all accesses to the mux_fb device from the fore-
ground VP directly to the hardware. This includes control
ioctls as well as custom ioctls, allowing applications to
take full advantage of any custom ioctls implemented by
the physical device driver used, for example, to accelerate
rendering. When an application running in the foreground
VP mmaps an open mux_fb device, the mux_fb driver simply
maps the physical screen memory provided by the hardware
back end. This creates the same zero-overhead pass-through
to the screen memory as on native systems.

Cells does not pass any accesses to the mux_fb driver from
background VPs to the hardware back end, ensuring that
the foreground VP has exclusive hardware access. Standard
control ioctls are applied to virtual hardware state main-
tained in RAM. Custom ioctls, by definition, perform non-
standard functions such as graphics acceleration or memory
allocation, and therefore accesses to these functions from
background VPs must be at least partially handled by the
same kernel driver which defined them. Instead of passing
the ioctl to the hardware driver, Cells uses a new notifi-
cation API that allows the original driver to appropriately
virtualize the access. If the driver does not register for this

177



new notification, Cells either returns an error code, or blocks
the calling process when the custom ioctl is called from a
background VP. Returning an error code was sufficient for
both the Nexus 1 and Nexus S systems. When an appli-
cation running in a background VP mmaps the framebuffer
device, the mux_fb driver will map its backing buffer into
the process’ virtual address space.

Switching the display from a foreground VP to a background
VP is accomplished in four steps, all of which must occur
before any additional FB operations are performed: (1)
screen memory remapping, (2) screen memory deep copy,
(3) hardware state synchronization, and (4) GPU coordina-
tion. Screen memory remapping is done by altering the page
table entries for each process which has mapped FB screen
memory to redirect virtual addresses in each process to new
physical locations. Processes running in the VP which is to
be moved into the background have their virtual addresses
remapped to backing memory in system RAM, and processes
running in the VP which is to become the foreground have
their virtual addresses remapped to physical screen mem-
ory. The screen memory deep copy is done by copying the
contents of the screen memory into the previous foreground
VP’s backing buffer and copying the contents of the new
foreground VP’s backing buffer into screen memory. This
copy is not strictly necessary if the new foreground VP com-
pletely redraws the screen. Hardware state synchronization
is done by saving the current hardware state into the virtual
state of the previous foreground VP and then setting the
current hardware state to the new foreground VP’s virtual
hardware state. Because the display device only uses the
current hardware state to output the screen memory, there
is no need to correlate particular drawing updates with in-
dividual standard control ioctls; only the accumulated vir-
tual hardware state is needed. GPU coordination, discussed
in section 4.2, involves notifying the GPU of the memory
address switch so that it can update any internal graphics
memory mappings.

To better scale the Cells FB virtualization, the backing
buffer in system RAM could be reduced to a single memory
page which is mapped into the entire screen memory address
region of background VPs. This optimization not only saves
memory, but also eliminates the need for the screen mem-
ory deep copy. However, it does require the VP’s user space
environment to redraw the entire screen when it becomes
the foreground VP. Redraw overhead is minimal, and An-
droid conveniently provides this functionality through the
fbearlysuspend driver discussed in Section 5.1.

4.2 GPU
Cells virtualizes the GPU by leveraging the GPU’s indepen-
dent graphics contexts together with the FB virtualization
of screen memory described in Section 4.1. Each VP is given
direct pass-through access to the GPU device. Because each
process which uses the GPU executes graphics commands
in its own context, processes are already isolated from each
other and there is no need for further VP GPU isolation.
The key challenge is that each VP requires FB screen mem-
ory on which to compose the final scene to be displayed, and
in general the GPU driver can request and use this memory
from within the OS kernel.

Cells solves this problem by leveraging its foreground-back-
ground usage model to provide a virtualization solution sim-
ilar to FB screen memory remapping. The foreground VP
will use the GPU to render directly into screen memory,
but background VPs, which use the GPU, will render into
their respective backing buffers. When the foreground VP
changes, the GPU driver locates all GPU addresses which
are mapped to the physical screen memory as well as the
background VP’s backing buffer in system RAM. It must
then remap those GPU addresses to point to the new backing
buffer and to the physical screen memory, respectively. To
accomplish this remapping, Cells provides a callback inter-
face from the mux_fb driver which provides source and des-
tination physical addresses on each foreground VP switch.

While this technique necessitates a certain level of access
to the GPU driver, it does not preclude the possibility of
using a proprietary driver so long as it exposes three basic
capabilities. First, it should provide the ability to remap
GPU linear addresses to specified physical addresses as re-
quired by the virtualization mechanism. Second, it should
provide the ability to safely reinitialize the GPU device or
ignore re-initialization attempts as each VP running a stock
user space configuration will attempt to initialize the GPU
on startup. Third, it should provide the ability to ignore
device power management and other non-graphics related
hardware state updates, making it possible to ignore such
events from a user space instance running in a background
VP. Some of these capabilities were already available on the
Adreno GPU driver, used in the Nexus 1, but not all. We
added a small number of lines of code to the Adreno GPU
driver and PowerVR GPU driver, used in the Nexus S, to
implement these three capabilities.

While most modern GPUs include an MMU, there are some
devices which require memory used by the GPU to be phys-
ically contiguous. For example, the Adreno GPU can selec-
tively disable the use of the MMU. For Cells GPU virtual-
ization to work under these conditions, the backing memory
in system RAM must be physically contiguous. This can be
done by allocating the backing memory either with kmal-

loc, or using an alternate physical memory allocator such
as Google’s pmem driver or Samsung’s s3c_mem driver.

5. POWER MANAGEMENT
To provide Cells users the same power management experi-
ence as non-virtualized phones, we apply two simple virtu-
alization principles: (1) background VPs should not be able
to put the device into a low power mode, and (2) back-
ground VPs should not prevent the foreground VP from
putting the device into a low power mode. We apply these
principles to Android’s custom power management, which is
based on the premise that a mobile phone’s preferred state
should be suspended. Android introduces three interfaces
which attempt to extend the battery life of mobile devices
through extremely aggressive power management: early sus-
pend, fbearlysuspend, and wake locks, also known as suspend
blockers [33].

The early suspend subsystem is an ordered callback interface
allowing drivers to receive notifications just before a device
is suspended and after it resumes. Cells virtualizes this sub-
system by disallowing background VPs from initiating sus-

178



pend operations. The remaining two Android-specific power
management interfaces present unique challenges and offer
insights into aggressive power management virtualization.

5.1 Frame Buffer Early Suspend
The fbearlysuspend driver exports display device suspend
and resume state into user space. This allows user space
to block all processes using the display while the display
is powered off, and redraw the screen after the display is
powered on. Power is saved since the overall device workload
is lower and devices such as the GPU may be powered down
or made quiescent. Android implements this functionality
with two sysfs files, wait_for_fb_sleep and wait_for_-

fb_wake. When a user process opens and reads from one
of these files, the read blocks until the framebuffer device is
either asleep or awake, respectively.

Cells virtualizes fbearlysuspend by making it namespace
aware, leveraging the kernel-level device namespace and fore-
ground-background usage model. In the foreground VP,
reads function exactly as a non-virtualized system. Reads
from a background VP always report the device as sleeping.
When the foreground VP switches, all processes in all VPs
blocked on either of the two files are unblocked, and the re-
turn values from the read calls are based on the new state of
the VP in which the process is running. Processes in the new
foreground VP see the display as awake, processes in the for-
merly foreground VP see the display as asleep, and processes
running in background VPs that remain in the background
continue to see the display as asleep. This forces background
VPs to pause drawing or rendering which reduces overall sys-
tem load by reducing the number of processes using hard-
ware drawing resources, and increases graphics throughput
in the foreground VP by ensuring that its processes have
exclusive access to the hardware.

5.2 Wake Locks
Wake locks are a special kind of OS kernel reference counter
with two states: active and inactive. When a wake lock is
“locked”, its state is changed to active; when “unlocked,” its
state is changed to inactive. A wake lock can be locked mul-
tiple times, but only requires a single unlock to put it into
the inactive state. The Android system will not enter sus-
pend, or low power mode, until all wake locks are inactive.
When all locks are inactive, a suspend timer is started. If
it completes without an intervening lock then the device is
powered down.

Wake locks in a background VP interfering with the fore-
ground VP’s ability to suspend the device coupled with their
distributed use and initialization make wake locks a chal-
lenging virtualization problem. Wake locks can be created
statically at compile time or dynamically by kernel drivers
or user space. They can also be locked and unlocked from
user context, kernel context (work queues), and interrupt
context (IRQ handlers) independently, making determina-
tion of the VP to which a wake lock belongs a non-trivial
task.

Cells leverages the kernel-level device namespace and fore-
ground-background usage model to maintain both kernel
and user space wake lock interfaces while adhering to the
two virtualization principles specified above. The solution

is predicated on three assumptions. First, all lock and un-
lock coordination in the trusted root namespace was correct
and appropriate before virtualization. Second, we trust the
kernel and its drivers; when lock or unlock is called from
interrupt context, we perform the operation uncondition-
ally. Third, the foreground VP maintains full control of the
hardware.

Under these assumptions, Cells virtualizes Android wake
locks by allowing multiple device namespaces to indepen-
dently lock and unlock the same wake lock. Power man-
agement operations are initiated based on the state of the
set of locks associated with the foreground VP. The solution
comprises the following set of rules:

1. When a wake lock is locked, a namespace “token” is as-
sociated with the lock indicating the context in which
the lock was taken. A wake lock token may contain ref-
erences to multiple namespaces if the lock was taken
from those namespaces.

2. When a wake lock is unlocked from user context, re-
move the associated namespace token.

3. When a wake lock is unlocked from interrupt context
or the root namespace, remove all lock tokens. This
follows from the second assumption.

4. After a user context lock or unlock, adjust any sus-
pend timeout value based only on locks acquired in
the current device namespace.

5. After a root namespace lock or unlock, adjust the sus-
pend timeout based on the foreground VP’s device
namespace.

6. When the foreground VP changes, reset the suspend
timeout based on locks acquired in the newly active
namespace. This requires per-namespace bookkeeping
of suspend timeout values.

One additional mechanism was necessary to implement the
Cells wake lock virtualization. The set of rules given above
implicitly assumes that, aside from interrupt context, the
lock and unlock functions are aware of the device names-
pace in which the operation is being performed. While this
is true for operations started from user context, it is not the
case for operations performed from kernel work queues. To
address this issue, we introduced a mechanism which exe-
cutes a kernel work queue in a specific device namespace.

6. TELEPHONY
Cells provides each VP with separate telephony functional-
ity enabling per-VP call logs, and independent phone num-
bers. We first describe how Cells virtualizes the radio stack
to provide telephony isolation among VPs, then we discuss
how multiple phone numbers can be provided on a single
physical phone using the standard carrier voice network and
a single SIM.

6.1 RIL Proxy
The Android telephony subsystem is designed to be easily
ported by phone vendors to different hardware devices. The
Android phone application uses a set of Java libraries and
services that handle the telephony state and settings such as
displaying current radio strength in the status bar, and se-
lection of different roaming options. The phone application,
the libraries and the services all communicate via Binder

179



Android Java
Java Phone / 
RIL services

VP Libraries
RilD

Cells RIL

Kernel
Drivers / PPP

Baseband

GSM / CDMA

Root namespace
CellD

Vendor RIL

Android Java
Java Phone / 
RIL services

Libraries
RilD

Vendor RIL

Kernel
Drivers / PPP

Baseband
GSM / CDMA

Android
Radio Interface Layer

Cells
Radio Interface Layer

Figure 2: Cells Radio Interface Layer

IPC with the Radio Interface Layer (RIL) Daemon (RilD).
RilD dynamically links with a library provided by the phone
hardware vendor which in turn communicates with kernel
drivers and the radio baseband system. The left side of Fig-
ure 2 shows the standard Android telephony system.

The entire radio baseband system is proprietary and closed
source, starting from the user-level RIL vendor library down
to the physically separate hardware baseband processor. De-
tails of the vendor library implementation and its commu-
nication with the baseband are well-guarded secrets. Each
hardware phone vendor provides its own proprietary radio
stack. Since the stack is a complete black box, it would be
difficult if not impossible to intercept, replicate, or virtual-
ize any aspect of this system in the kernel without direct
hardware vendor support. Furthermore, the vendor library
is designed to be used by only a single RilD and the radio
stack as a whole is not designed to be multiplexed.

As a result of these constraints, Cells virtualizes telephony
using our user-level device namespace proxy in a solution de-
signed to work transparently with the black box radio stack.
Each VP has the standard Android telephony Java libraries
and services and its own stock RilD, but rather than having
RilD communicate directly with the hardware vendor pro-
vided RIL library, Cells provides its own proxy RIL library
in each VP. The proxy RIL library is loaded by RilD in
each VP and connects to CellD running in the root names-
pace. CellD then communicates with the hardware vendor
library to use the proprietary radio stack. Since there can
be only one radio stack, CellD loads the vendor RIL library
on system startup and multiplexes access to it. We refer
to the proxy RIL library together with CellD as the RIL
proxy. The right side of Figure 2 shows the Cells Android
telephony system, which has three key features. First, no
hardware vendor support is required since it treats the ra-
dio stack as a black box. Second, it works with a stock An-
droid environment since Android does not provide its own
RIL library but instead relies on it being supplied by the
system on which it will be used. Third, it operates at a
well-defined interface, making it possible to understand ex-
actly how communication is done between RilD and the RIL
library it uses.

Call Class Category
Dial Request Solicited

ForegroundSet Screen State Solicited
Set Radio State Solicited
SIM I/O Solicited Initialization
Signal Strength Unsolicited Radio Info
Call State Changed Unsolicited

Phone CallsCall Ring Unsolicited
Get Current Calls Solicited

Table 2: Filtered RIL commands

Cells leverages its foreground-background model to enable
the necessary multiplexing of the radio stack. Since the user
can only make calls from the foreground VP, because only its
user interface is displayed, CellD allows only the foreground
VP to make calls. All other forms of multiplexing are done in
response to incoming requests from the radio stack through
CellD. CellD uses the vendor RIL library in the same man-
ner as Android’s RilD, and can therefore provide all of the
standard call multiplexing available in Android for handling
incoming calls. For example, to place the current call in the
foreground VP on hold while answering an incoming call to a
background VP, CellD issues the same set of standard GSM
commands RilD would have used.

The RIL proxy needs to support the two classes of function
calls defined by the RIL, solicited calls which pass from RilD
to the RIL library, and unsolicited calls which pass from the
RIL library to RilD. The interface is relatively simple, as
there are only four defined solicited function calls and two
defined unsolicited function calls, though there are a num-
ber of possible arguments. Both the solicited requests and
the responses carry structured data in their arguments. The
structured data can contain pointers to nested data struc-
tures and arrays of pointers. The main complexity in imple-
menting the RIL proxy is dealing with the implementation
assumption in Android that the RIL vendor library is nor-
mally loaded in the RilD process so that pointers can be
passed between the RIL library and RilD. In Cells, the RIL
vendor library is loaded in the CellD process instead of the
RilD process and the RIL proxy passes the arguments over a
standard Unix Domain socket so all data must be thoroughly
packed and unpacked on either side.

The basic functionality of the RIL proxy is to pass requests
sent from within a VP unmodified to the vendor RIL li-
brary and to forward unsolicited calls from the vendor RIL
library to RilD inside a VP. CellD filters requests as needed
to disable telephony functionality for VPs that are config-
ured not to have telephony access. However, even in the
absence of such VP configurations, some solicited requests
must be filtered from background VPs and some calls re-
quire special handling to properly support our foreground-
background model and provide working isolated telephony.
The commands that require filtering or special handling are
shown in Table 2 and can be categorized as those involv-
ing the foreground VP, initialization, radio info, and phone
calls.

Foreground commands are allowed only from the foreground
VP. The Dial Request command represents outgoing calls,
Set Screen State is used to suppress certain notifications like
signal strength, and Set Radio State is used to turn the radio

180



on or off. Set Screen State is filtered from background VPs
by only changing a per-VP variable in CellD that suppresses
notifications to the issuing background VP accordingly. Dial
Request and Set Radio State are filtered from all background
VPs by returning an error code to the calling background
VP. This ensures that background VPs do not interfere with
the foreground VP’s exclusive ability to place calls.

Initialization commands are run once on behalf of the first
foreground VP to call them. The SIM I/O command is used
to communicate directly with the SIM card, and is called
during radio initialization (when turning on the device or
turning off airplane mode), and when querying SIM infor-
mation such as the IMSI. The first time a VP performs a SIM
I/O command, CellD records an ordered log of commands,
associated data, and corresponding responses. This log is
used to replay responses from the vendor RIL library when
other VPs attempt SIM I/O commands. When the radio is
turned off, the log is cleared, and the first foreground VP
to turn on the radio will be allowed to do so, causing CellD
to start recording a new log. CellD also records the radio
state between each SIM I/O command to properly replay
the state transitions.

Radio Info commands are innocuous and are broadcast to
all VPs. Signal Strength is an unsolicited notification about
the current signal strength generated by the vendor library.
CellD re-broadcasts this information to all VPs with one
exception. During initialization, a VP cannot be notified
of the signal strength since that would indicate an already
initialized radio and generate errors in the initializing VP.

The Phone Call commands, Call State Changed, Call Ring,
and Get Current Calls, notify a VP of incoming calls and
call state changes. When an incoming call occurs, a Call
State Changed notification is sent, followed by a number of
Call Ring notifications for as long as the call is pending.
CellD inspects each notification and determines the VP to
which it should forward the notification. However, this is
somewhat complicated since neither notification is associ-
ated with a phone number. Therefore, CellD queues these
notifications and issues a Get Current Calls command, mir-
roring the functionality of RilD, to receive a list of all incom-
ing and active calls. Using tagging information encoded in
the caller ID as discussed in Section 6.2, CellD determines
the target VP and passes the queued notifications into the
appropriate VP. When a VP issues a Get Current Calls re-
quest, CellD intercepts the data returned from the vendor
library and only returns data from calls directed to, or ini-
tiated from the requesting VP.

CellD’s architecture supports a highly configurable imple-
mentation, and there are many valid security configuration
scenarios. For example, if the user switches the foreground
VP during a call, CellD can either drop the call and switch to
the new VP, keep the call alive and switch to a new VP (han-
dling the active call in a background VP, or, deny switching
to a new VP until the call is ended by the user. Under all
configurations, Cells provides strict isolation between every
VP by not allowing any information pertaining to a specific
VP to be revealed to another VP including incoming and
outgoing call information and the phone call voice data.

6.2 Multiple Phone Numbers
While some smartphones support multiple SIM cards, which
makes supporting multiple phone numbers straightforward,
most phones do not provide this feature. Since mobile net-
work operators do not generally offer multiple phone num-
bers per SIM card or CDMA phone, we offer an alternative
system to provide a distinct phone number for each VP on
existing unmodified single SIM card phones, which dominate
the market. Our approach is based on pairing Cells with a
VoIP service that enables telephony with the standard cel-
lular voice network and standard Android applications, but
with separate phone numbers.

The Cells VoIP service consists of a VoIP server which reg-
isters a pool of subscriber numbers and pairs each of them
with the carrier provided number associated with a user’s
SIM. The VoIP server receives incoming calls, forwards them
to a user’s actual phone number using the standard cellu-
lar voice network, and passes the incoming caller ID to the
user’s phone appending a digit denoting the VP to which
the call should be delivered. When CellD receives the in-
coming call list, it checks the last digit of the caller ID and
chooses a VP based on that digit. Cells allows users to con-
figure which VP should handle which digit through the VoIP
service interface. CellD strips the appended digit before for-
warding call information to the receiving VP resulting in
correctly displayed caller IDs within the VP. If the VP is
not available, the VoIP service will direct the incoming call
to a server-provided voice mail. We currently use a single
digit scheme supporting a maximum of ten selectable VPs,
which should be more than sufficient for any user. While it
is certainly possible to spoof caller ID, in the worst case, this
would simply appear to be a case of dialing the wrong phone
number. Our VoIP service is currently implemented using
an Asterisk [1] server as it provides unique functionality
not available through other commercial voice services. For
example, although Google Voice can forward multiple phone
numbers to the same land line, it does not provide this ca-
pability for mobile phone numbers, and does not provide
arbitrary control over outgoing caller ID [10].

The caller ID of outgoing calls should also be replaced with
the phone number of the VP that actually makes the outgo-
ing call instead of the mobile phone’s actual mobile phone
number. Unfortunately, the GSM standard does not have
any facility to change the caller ID, only to either enable or
disable showing the caller ID. Therefore, if the VP is config-
ured to display outgoing caller IDs, Cells ensures that they
are correctly sent by routing those calls through the VoIP
server. CellD intercepts the Dial Request, dials the VoIP
service subscriber number associated with the dialing VP,
and passes the actual number to be dialed via DTMF tones.
The VoIP server interprets the tones, dials the requested
number, and connects the call.

7. NETWORKING
Mobile devices are most commonly equipped with an IEEE
802.11 wireless LAN (WLAN) adapter and cellular data con-
nectivity through either a GSM or CDMA network. Each
VP that has network access must be able to use either
WLAN or cellular data depending on what is available to
the user at any given location. At the same time, each VP
must be completely isolated from other VPs. Cells inte-

181



grates both kernel and user-level virtualization to provide
necessary isolation and functionality, including core network
resource virtualization and a unique wireless configuration
management virtualization.

Cells leverages previous kernel-level work [27,28] that virtu-
alizes core network resources such as IP addresses, network
adapters, routing tables, and port numbers. This function-
ality has been largely built in to recent versions of the Linux
kernel in the form of network namespaces [3]. Virtual iden-
tifiers are provided in VPs for all network resources, which
are then translated into physical identifiers. Real network
devices representing the WLAN or cellular data connection
are not visible within a VP. Instead, a virtual Ethernet pair
is setup from the root namespace where one end is present
inside a VP and the other end is in the root namespace.
The kernel is then configured to perform Network Address
Translation (NAT) between the active public interface (ei-
ther WLAN or cellular data) and the VP-end of an Ethernet
pair. Each VP is then free to bind to any socket address and
port without conflicting with other VPs. Cells uses NAT as
opposed to bridged networking since bridging is not sup-
ported on cellular data connections and is also not guaran-
teed to work on WLAN connections. Note that since each
VP has its own virtualized network resources, network se-
curity mechanisms are isolated among VPs. For example,
VPN access to a corporate network from one VP cannot be
used by another VP.

However, WLAN and cellular data connections use device-
specific, user-level configuration which requires support out-
side the scope of existing core network virtualization. There
exists little if any support for virtualizing WLAN or cellu-
lar data configuration. Current best practice is embodied
in desktop virtualization products such as VMware Work-
station [29] which create a virtual wired Ethernet adapter
inside a virtual machine but leave the configuration on the
host system. This model does not work on a mobile de-
vice where no such host system is available and a VP is
the primary system used by the user. VPs rely heavily on
network status notifications reflecting a network configura-
tion that can frequently change, making it essential for wire-
less configuration and status notifications to be virtualized
and made available to each VP. A user-level library called
wpa_supplicant with support for a large number of devices
is typically used to issue various ioctls and netlink socket
options that are unique to each device. Unlike virtualizing
core network resources which are general and well-defined,
virtualizing wireless configuration in the kernel would in-
volve emulating the device-specific understanding of config-
uration management which is error-prone, complicated, and
difficult to maintain.

To address this problem, Cells leverages the user-level device
namespace proxy and the foreground-background model to
decouple wireless configuration from the actual network in-
terfaces. A configuration proxy is introduced to replace the
user-level WLAN configuration library and RIL libraries in-
side each VP. The proxy communicates with CellD running
in the root namespace, which communicates with the user-
level library for configuring WLAN or cellular data connec-
tions. In the default case where all VPs are allowed net-
work access, CellD forwards all configuration requests from

the foreground VP proxy to the user-level library, and ig-
nores configuration requests from background VP proxies
that would adversely affect the foreground VP’s network ac-
cess. This approach is minimally intrusive since user space
phone environments, such as Android, are already designed
to run on multiple hardware platforms and therefore cleanly
interface with user space configuration libraries.

To virtualize Wi-Fi configuration management, Cells re-
places wpa_supplicant inside each VP with a thin Wi-Fi
proxy. The well-defined socket interface used by wpa_sup-

plicant is simple to virtualize. The Wi-Fi proxy commu-
nicates with CellD running in the root namespace, which
in turn starts and communicates with wpa_supplicant as
needed on behalf of individual VPs. The protocol used by
the Wi-Fi proxy and CellD is quite simple, as the standard
interface to wpa_supplicant consists of only eight function
calls each with text-based arguments. The protocol sends
the function number, a length of the following message, and
the message data itself. Replies are similar, but also contain
an integer return value in addition to data. CellD ensures
that background VPs cannot interfere with the operation
of the foreground VP. For instance, if the foreground VP
is connected to a Wi-Fi network and a background VP re-
quests to disable the Wi-Fi access, the request is ignored.
At the same time, inquiries sent from background VPs that
do not change state or divulge sensitive information, such as
requesting the current signal strength, are processed since
applications such as email clients inside background VPs
may use this information when checking for new email.

For virtualizing cellular data connection management, Cells
replaces the RIL vendor library as described in Section 6,
which is also responsible for establishing cellular data con-
nections. As with Wi-Fi, CellD ensures that background
VPs cannot interfere with the operation of the foreground
VP. For instance, a background VP cannot change the data
roaming options causing the foreground VP to either lose
data connectivity or inadvertently use the data connection.
Cellular data is configured independently from the Wi-Fi
connection and VPs can also be configured to completely
disallow data connections. Innocuous inquiries from back-
ground VPs with network access, such as the status of the
data connection (Edge, 3G, HSPDA, etc.) or signal strength,
are processed and reported back to the VPs.

8. EXPERIMENTAL RESULTS
We have implemented a Cells prototype using Android and
demonstrated its complete functionality across different An-
droid devices, including the Google Nexus 1 [8] and Nexus
S [9] phones. The prototype has been tested to work with
multiple versions of Android, including the most recent open-
source version, version 2.3.4. In UI testing while running
multiple VPs on a phone, there is no user noticeable per-
formance difference between running in a VP and running
natively on the phone. For example, while running 4 VPs on
Nexus 1 device, we simultaneously played the popular game
Angry Birds [26] in one VP, raced around a dirt track in the
Reckless Racing [24] game on a second VP, crunched some
numbers in a spreadsheet using the Office Suite Pro [19] ap-
plication in a third VP, and listened to some music using
the Android music player in the fourth VP. Using Cells we
were able to deliver native 3D acceleration to both game in-

182



stances while seamlessly switching between and interacting
with all four running VPs.

8.1 Methodology
We further quantitatively measured the performance of our
unoptimized prototype running a wide range of applications
in multiple VPs. Our measurements were obtained using
a Nexus 1 (Qualcomm 1 GHz QSD8250, Adreno 200 GPU,
512 MB RAM) and Nexus S (Samsung Hummingbird 1 GHz
Cortex A8, PowerVR GPU, 512 MB RAM) phones. The
Nexus 1 uses an SD card for storage for some of the appli-
cations; we used a Patriot Memory class 10 16 GB SD card.
Due to space constraints on the Nexus 1 flash device, all
Android system files for all Cells configurations were stored
on, and run from, the SD card.

The Cells implementation used for our measurements was
based on the Android Open Source Project (AOSP) ver-
sion 2.3.3, the most recent version available at the time our
measurements were taken. Aufs version 2.1 was used for
file system unioning [21]. A single read-only branch of a
union file system was used as the /system and /data parti-
tions of each VP. This saves megabytes of file system cache
while maintaining isolation between VPs through separate
writable branches. When one VP modified a file in the read-
only branch, the modification is stored in its own private
write branch of the file system. The implementation en-
ables the Linux KSM driver for a period of time when a
VP is booted. To maximize the benefit of KSM, CellD uses
a custom system call which adds all memory pages from
all processes to the set of pages KSM attempts to merge.
While this potentially maximizes shared pages, the process-
ing overhead required to hash and check all memory pages
from all processes quickly outweighs the benefit. Therefore,
CellD monitors the KSM statistics through the procfs inter-
face and disables shared page merging after the merge rate
drops below a pre-determined threshold.

We present measurements along three dimensions of perfor-
mance: runtime overhead, power consumption, and memory
usage. To measure runtime overhead, we compared the per-
formance of various applications running with Cells versus
running the applications on the latest manufacturer stock
image available for the respective mobile devices (Android
2.3.3 build GRI40). We measured the performance of Cells
when running 1 VP (1-VP), 2 VPs (2-VP), 3 VPs (3-VP), 4
VPs (4-VP), and 5 VPs (5-VP), each with a fully booted An-
droid environment running all applications and system ser-
vices available in such an environment. Since AOSP v2.3.3
was used as the system origin in our experiments, we also
measured the performance of a baseline system (Baseline)
created by compiling the AOSP v2.3.3 source and installing
it unmodified.

We measured runtime overhead in two scenarios, one with a
benchmark application designed to stress some aspect of the
system, and the other with the same application running,
but simultaneously with an additional background work-
load. The benchmark application was always run in the
foreground VP and if a background workload was used, it
was run in a single background VP when multiple VPs were
used. For the benchmark application, we ran one of six An-
droid applications designed to measure different aspects of

performance: CPU using Linpack for Android v1.1.7; file
I/O using Quadrant Advanced Edition v1.1.1; 3D graph-
ics using Neocore by Qualcomm; Web browsing using the
popular SunSpider v0.9.1 JavaScript benchmark; and net-
working using the wget module in a cross-compiled version
of BusyBox v1.8.1 to download a single 400 MB file from
a dedicated Samsung nb30 laptop (1.66 GHz Intel Atom
N450, Intel GMA 3150 GPU, 1 GB RAM). The laptop was
running Windows 7, providing a WPA wireless access point
via its Atheros AR9285 chipset and built-in Windows 7 Sof-
tAP [18] functionality, and serving up the file through the
HFS [11] file server v2.2f. To minimize network variability,
a location with minimal external Wi-Fi network interference
was chosen. Each experiment was performed from this same
location with the phone connected to the same laptop ac-
cess point. For the background workload, we played a music
file from local storage in a loop using the standard Android
music player. All results were normalized against the per-
formance of the manufacturer’s stock configuration without
the background workload.

To measure power consumption, we compared the power
consumption of the latest manufacturer stock image avail-
able for the respective mobile devices against that of Base-
line and Cells in 1-VP, 2-VP, 3-VP, 4-VP, and 5-VP configu-
rations. We measured two different power scenarios. In the
first scenario, the device configuration under test was fully
booted, all VPs started up and KSM had stopped merg-
ing pages, then the Android music player was started. In
multiple VP configurations, the music player ran in the fore-
ground VP, preventing the device from entering a low power
state. The music player repeated the same song continuously
for four hours. During this time we sampled the remaining
battery capacity every 10 seconds. In the second power sce-
nario, the device configuration under test was fully booted,
and then the device was left idle for 12 hours. During the
idle period, the device would normally enter a low power
state, preventing intermediate measurements. However, oc-
casionally the device would wake up to service timers and
Android system alarms, and during this time we would take
a measurement of the remaining battery capacity. At the
end of 12 hours we took additional measurements of capac-
ity. To measure power consumption due to Cells and avoid
having those measurements completely eclipsed by Wi-Fi,
cellular, and display power consumption, we disabled Wi-
Fi and cellular communication, and turned off the display
backlight for these experiments.

To measure memory usage, we recorded the amount of mem-
ory used for the Baseline and Cells in 1-VP, 2-VP, 3-VP,
4-VP, and 5-VP configurations. We measured two different
memory scenarios. First, we ran a full Android environment
without launching any additional applications other than
those that are launched by default on system bootup (No
Apps). Second, we ran the first scenario plus the Android
Web browser, the Android email client, and the Android
calendar application (Apps). In both scenarios, an instance
of every application was running in all background VPs as
well as the foreground VP.

8.2 Measurements
Figures 3a to 3f show measurement results. These are the
first measurements we are aware of for running multiple An-

183



0.00!

0.20!

0.40!

0.60!

0.80!

1.00!

1.20!

1.40!

Linpack! NeoCore! Quadrant!
I/O!

Sun 
Spider!

Network!

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(a) Normalized Nexus 1 results

0.00!

0.20!

0.40!

0.60!

0.80!

1.00!

1.20!

1.40!

Linpack! NeoCore! Quadrant!
I/O!

Sun 
Spider!

Network!

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(b) Normalized Nexus S results

0.00!

0.20!

0.40!

0.60!

0.80!

1.00!

1.20!

1.40!

Linpack! NeoCore! Quadrant!
I/O!

Sun 
Spider!

Network!

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(c) Normalized Nexus 1 + music results

0.00!

0.20!

0.40!

0.60!

0.80!

1.00!

1.20!

1.40!

Linpack! NeoCore! Quadrant!
I/O!

Sun 
Spider!

Network!

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(d) Normalized Nexus S + music results

0.00!

0.20!

0.40!

0.60!

0.80!

1.00!

1.20!

1.40!

Nexus 1 After 
4hrs Music!

Nexus S After 
4hrs Music!

Nexus 1 After 
12hrs Idle!

Nexus S After 
12hrs Idle!

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(e) Normalized battery capacity

0!

64!

128!

192!

256!

320!

384!

448!

512!

Nexus 1                
No Apps!

Nexus 1                
Apps!

Nexus S                
No Apps!

Nexus S                
Apps!

Baseline 1-VP 2-VP 3-VP 4-VP 5-VP 

(f) Memory usage in MB

Figure 3: Experimental results

droid instances on a single phone. In all experiments, Base-
line and stock measurements were within 1% of each other,
so only Baseline results are shown.

Figures 3a and 3b show the runtime overhead on the Nexus
1 and Nexus S, respectively, for each of the benchmark ap-
plications with no additional background workload. Cells
runtime overhead was small in all cases, even with up to 5
VPs running at the same time. Cells incurs less than than
1% overhead in all cases on the Nexus 1 except for Network
and Quadrant I/O, and less than 4% overhead in all cases
on the Nexus S. The Neocore measurements show that Cells
is the first system that can deliver fully-accelerated graphics
performance in virtual mobile devices. Quadrant I/O on the
Nexus 1 has less than 7% overhead in all cases, though the
4-VP and 5-VP measurements have more overhead than the
configurations with fewer VPs. This is likely due to the use
of the slower SD card on the Nexus 1 for this benchmark in-
stead of internal flash memory on the Nexus S coupled with
the presence of I/O system background processes running in
each VP.

The Network overhead measurements show the highest over-
head on the Nexus 1 and the least overhead on the Nexus
S. The measurements shown are averaged across ten experi-
ments per configuration. The differences here are not reflec-
tive of any significant differences in performance as much
as the fact that the results of this benchmark were highly
variable; the variance in the results for any one configura-
tion was much higher than any differences across configu-
rations. While testing in a more tightly controlled envi-
ronment would provide more stable numbers, any overhead
introduced by Cells was consistently below Wi-Fi variabil-
ity levels observed on the manufacturer’s stock system and
should not be noticeable by a user.

Figures 3c and 3d show the runtime overhead on the Nexus
1 and Nexus S, respectively, for each of the benchmark ap-

plications while running the additional background music
player workload. All results are normalized to the perfor-
mance of the stock system running the first scenario without
a background workload to show the overhead introduced by
the background workload. As expected, there is some ad-
ditional overhead relative to a stock system not running a
background workload, though the amount of overhead varies
across applications. Relative to a stock system, Neocore has
the least overhead, and has almost the same overhead as
without the background workload because it primarily uses
the GPU for 3D rendering which is not used by the music
player. Linpack and SunSpider incur some additional over-
head compared to running without the background work-
load, reflecting the additional CPU overhead of running the
music player at the same time. Network runtime overhead
while running an additional background workload showed
the same level of variability in measurement results as the
benchmarks run without a background workload. Cells net-
work performance overhead is modest, as the variance in
the results for any one configuration still exceeded the dif-
ference across configurations. Quadrant I/O overhead was
the highest among the benchmark applications, reflecting
the expected I/O contention between the I/O benchmark
and the music player.

Comparing to the Baseline configuration with an additional
background workload, Cells overhead remains small in all
cases. It incurs less than 1% overhead in all cases on the
Nexus 1 except for Network and Quadrant I/O, and less
than 4% overhead in all cases on the Nexus S except for
Quadrant I/O, although the majority of benchmark results
on the Nexus S show nearly zero overhead. Quadrant I/O on
the Nexus 1, while running an additional background work-
load, incurs a maximum overhead of 7% relative to Baseline
performance. Quadrant I/O on the Nexus S has less than 2%
overhead for the 1-VP configuration when compared to the
Baseline configuration. However, configurations with more
than 1 VP show an overhead of 10% relative to the Base-

184



line due to higher I/O performance in the Nexus S baseline
compared to the Nexus 1. The higher absolute performance
of the Nexus S accentuates the virtualization overhead of
running multiple VPs.

Figure 3e shows power consumption on the Nexus 1 and
Nexus S, both while playing music with the standard An-
droid music player for 4 hours continuously, and while let-
ting the phone sit idle for 12 hours in a low power state. In
both scenarios, the background VPs were the same as the
foreground VP except that in the second scenario the music
player was not running in the background VPs. Note that
the graph presents normalized results, not absolute percent-
age difference in battery capacity usage, so lower numbers
are better.

The power consumption attributable to Cells during the 4
hours of playing music on the Nexus 1 increased while run-
ning more VPs, which involved scheduling and running more
processes and threads on the system and resulted in a higher
power supply load variation. The nonlinearity in how this
variation affects power consumption resulted in the 4-6%
overhead in battery usage for 1-VP through 3-VP, and the
10-20% overhead for 4-VP and 5-VP. In contrast, the Nexus
S showed no measurable increase in power consumption dur-
ing the 4 hours of playing music, though the the noisy mea-
surements had some slight variation. Because the Nexus S
is a newer device, the better power management may be re-
flective of what could be expected when running Cells on
newer hardware.

Nexus 1 power consumption after 12 hours of sitting idle was
within 2% of Baseline. Similarly, Nexus S measurements
showed no measurable increase in power consumption due
to Cells after the 12 hour idle period. When the device sat
idle, the Android wake lock system would aggressively put
the device in a low power mode where the CPU was com-
pletely powered down. The idle power consumption results
hold even when background VPs are running applications
which would normally hold wake locks to prevent the device
from sleeping such as a game like Angry Birds or the An-
droid music player. This shows that the Cells’ wake lock
virtualization makes efficient use of battery resources.

Figure 3f shows memory usage on the Nexus 1 and Nexus
S. These results show that by leveraging the KSM driver
and file system unioning, Cells requires incrementally less
memory to start each additional VP compared to running
the first VP. Furthermore, the 1-VP configuration uses less
memory than the Baseline configuration, also due to the
use of the KSM driver. Cells device memory use increases
linearly with the number of VPs running, but at a rate much
less than the amount of memory required for the Baseline.

The Nexus 1 memory usage is reported for both memory sce-
narios, No Apps and Apps, across all six configurations. The
No Apps measurements were taken after booting each VP
and waiting until CellD disabled the KSM driver. The Apps
measurements were taken after starting an instance of the
Android Web browser, email client, and calendar program in
each running VP. Leveraging the Linux KSM driver, Cells
uses approximately 20% less memory for 1-VP than Base-
line in the No Apps scenario. The No Apps measurements

show that the memory cost for Cells to start each addi-
tional VP is approximately 55 MB, which is roughly 40%
of the memory used by the Baseline Android system and
roughly 50% of the memory used to start the first VP. The
reduced memory usage of additional VPs is due to Cells’
use of file system unioning to share common code and data
as well as KSM, providing improved scalability on memory-
constrained phones.

As expected, the No Apps scenario uses less memory than
the Apps scenario. Starting all three applications in the
1-VP Apps scenario consumes 24 MB. This memory scales
linearly with the number of VPs because we disable the KSM
driver before starting the applications. It may be possible to
reduce the memory used when running the same application
in all VPs by periodically enabling the KSM driver, however
application heap usage would limit the benefit. For example,
while Cells uses 20% less memory for 1-VP than Baseline
in the No Apps scenario, this savings decreases in the Apps
scenario because of application heap memory usage.

The Nexus S memory usage is reported under the same con-
ditions described above for the Nexus 1. The memory cost
of starting a VP on the Nexus S is roughly 70 MB. This is
higher than the Nexus 1 due to increased heap usage by An-
droid base applications and system support libraries. The
memory cost of starting all three apps in the 1-VP Apps
scenario is approximately the same as the Nexus 1, and also
scales linearly with the number of running VPs.

However, the total memory usage for the Nexus S shown in
Figure 3f does not continue to increase with the number of
running VPs. This is due to the more limited available RAM
on the Nexus S and the Android low memory killer. The
Nexus S contains several hardware acceleration components
which require dedicated regions of memory. These regions
can be multiplexed across VPs, but reduce the total available
system memory for general use by applications. As a result,
although the Nexus 1 and Nexus S have the same amount
of RAM, the RAM available for general use on the Nexus
S is about 350 MB versus 400 MB for the Nexus 1. Thus,
after starting the 4th VP in the No Apps scenario, and after
starting the 3rd VP in the Apps scenario, the Android low
memory killer begins to kill background processes to free
system memory for new applications. While this allowed us
to start and interact with 5 VPs on the Nexus S, it also
slightly increased application startup time.

9. RELATED WORK
Virtualization on embedded and mobile devices is a rela-
tively new area. Bare-metal hypervisors such as OKL4 Mi-
crovisor [22] and Red Bend’s VLX [25] offer the potential
benefit of a smaller trusted computing base, but the disad-
vantage of having to provide device support and emulation,
an onerous requirement for smartphones which provide in-
creasingly diverse hardware devices. For example, we are
not aware of any OKL4 implementations that run Android
on any phones other than the dated HTC G1. A hosted vir-
tualization solution such as VMware MVP [2] can leverage
Android device support to more easily run on recent hard-
ware, but its trusted computing base is larger as it includes
both the Android user space environment and host Linux
OS. Xen for ARM [13] and KVM/ARM [5] are open-source

185



virtualization solutions for ARM, but are both incomplete
with respect to device support. All of these approaches re-
quire paravirtualization and require an entire OS instance
in each VM adding to both memory and CPU overhead.
This can significantly limit scalability and performance on
resource constrained phones. For example, VMware MVP
is targeted to run just one VM to encapsulate an Android
virtual work phone on an Android host personal phone.

Cells’ OS virtualization approach provides several advan-
tages over existing hardware virtualization approaches on
smartphones. First, it is more lightweight and introduces
less overhead. Second, only a single OS instance is run to
support multiple VPs as opposed to needing to run sev-
eral OS instances on the same hardware, one per VM plus
an additional host instance for hosted virtualization. At-
tempts have been made to run a heavily modified Android
in a VM without the OS instance [12], but they lack sup-
port for most applications and are problematic to maintain.
Third, OS virtualization is supported in existing commod-
ity OSes such as Linux, enabling Cells to leverage existing
investments in commodity software as opposed to building
and maintaining a separate, complex hypervisor platform.
Fourth, by running the same commodity OS already shipped
with the hardware, we can leverage already available device
support instead of needing to rewrite our own with a bare
metal hypervisor.

Cells has two potential disadvantages versus hardware vir-
tualization. First, the TCB necessary for ensuring security
is potentially larger than a bare metal hypervisor, though no
worse than hosted virtualization. We believe the benefits in
ease of deployment from leveraging existing OS infrastruc-
ture are worth this tradeoff. Second, applications in VPs
are expected to run on the same OS, for example VPs cannot
run Apple iOS on an Android system. However, running a
different OS using hardware virtualization would first need
to overcome licensing restrictions and device compatibility
issues that would prevent popular smartphone OSes such as
iOS from being run on non-Apple hardware and hypervisors
from being run on Apple hardware.

User-level approaches have also been proposed to support
separate work and personal virtual phone environments on
the same mobile hardware. This is done by providing ei-
ther an Android work phone application [7] that also sup-
ports other custom work-related functions such as email, or
a secure SDK on which applications can be developed [31].
While such solutions are easier to deploy, they suffer from
the inability to run standard Android applications and a
weaker security model.

Efficient device virtualization is a difficult problem on user-
centric systems such as desktops and phones that must sup-
port a plethora of devices. Most approaches require em-
ulation of hardware devices, imposing high overhead [34].
Dedicating a device to a VM can enable low overhead pass-
through operation, but then does not allow the device to be
used by other VMs [20]. Bypass mechanisms for network
I/O have been proposed to reduce overhead [17], but re-
quire specialized hardware support used in high-speed net-
work interfaces not present on most user-centric systems,
including phones. GPU devices are perhaps the most diffi-

cult to virtualize. For example, VMware MVP simply can-
not run graphics applications such as games within a VM
with reasonable performance [VMware, personal communi-
cation]. There are two basic GPU virtualization techniques,
API forwarding and back-end virtualization [6]. API for-
warding adds substantial complexity and overhead to the
TCB, and is problematic due to vendor-specific graphics ex-
tensions [14]. Back-end virtualization in a type-1 hypervisor
offers the potential for transparency and speed, but unfor-
tunately most graphics vendors keep details of their hard-
ware trade-secret precluding any use of this virtualization
method. In contrast, Cells leverages existing GPU graphics
context isolation and takes advantage of the usage model of
mobile devices to create a new device namespace abstraction
that transparently virtualizes devices while maintaining na-
tive or near native device performance across a wide range
of devices including GPU devices.

10. CONCLUSIONS
We have designed, implemented, and evaluated Cells, the
first OS virtualization solution for mobile devices. Mobile
devices have a different usage model than traditional com-
puters. We use this observation to provide new device virtu-
alization mechanisms, device namespaces and device names-
pace proxies, that leverage a foreground-background usage
model to isolate and multiplex phone devices with near zero
overhead. Device namespaces provide a kernel-level abstrac-
tion that is used to virtualize critical hardware devices such
as the framebuffer and GPU while providing fully acceler-
ated graphics. Device namespaces are also used to virtualize
Android’s complicated power management framework, re-
sulting in almost no extra power consumption for Cells com-
pared to stock Android. Cells proxy libraries provide a user-
level mechanism to virtualize closed and proprietary device
infrastructure, such as the telephony radio stack, with only
minimal configuration changes to the Android user space en-
vironment. Cells further provides each virtual phone com-
plete use of the standard cellular phone network with its own
phone number and incoming and outgoing caller ID support
through the use of a VoIP cloud service.

We have implemented a Cells prototype that runs the latest
open-source version of Android on the most recent Google
phone hardware, including both the Nexus 1 and Nexus S.
The system can use virtual mobile devices to run standard
unmodified Android applications downloadable from the An-
droid market. Applications running inside VPs have full ac-
cess to all hardware devices, providing the same user experi-
ence as applications running on a native phone. Performance
results across a wide-range of applications running in up to 5
VPs on the same Nexus 1 and Nexus S hardware show that
Cells incurs near zero performance overhead, and human UI
testing reveals no visible performance degradation in any of
the benchmark configurations.

11. ACKNOWLEDGMENTS
Qi Ding and Charles Hastings helped with running bench-
marks to obtain many of the measurements in this paper.
Kevin DeGraaf setup our Asterisk VoIP service. Philip
Levis provided helpful comments on earlier drafts of this
paper. This work was supported in part by NSF grants
CNS-1018355, CNS-0914845, CNS-0905246, AFOSR MURI
grant FA9550-07-1-0527, and a Google Research Award.

186



12. REFERENCES
[1] Asterisk. http://www.asterisk.org.

[2] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung,
C. Newell, H. Tuch, and B. Zoppis. The VMware
Mobile Virtualization Platform: Is That a Hypervisor
in Your Pocket? ACM SIGOPS Operating Systems
Review, 44:124–135, Dec. 2010.

[3] S. Bhattiprolu, E. W. Biederman, S. Hallyn, and
D. Lezcano. Virtual Servers and Checkpoint/Restart
in Mainstream Linux. ACM SIGOPS Operating
Systems Review, 42:104–113, July 2008.

[4] CNN. Industry First: Smartphones Pass PCs in Sales.
http://tech.fortune.cnn.com/2011/02/07/idc-

smartphone-shipment-numbers-passed-pc-in-

q4-2010.

[5] C. Dall and J. Nieh. KVM for ARM. In Proceedings of
the Ottawa Linux Symposium, Ottawa, Canada, June
2010.

[6] M. Dowty and J. Sugerman. GPU Virtualization on
VMware’s Hosted I/O Architecture. ACM SIGOPS
Operating Systems Review, 43:73–82, July 2009.

[7] Enterproid, Inc. http://www.enterproid.com.

[8] Google. Nexus One - Google Phone Gallery, May 2011.
http://www.google.com/phone/detail/nexus-one.

[9] Google. Nexus S - Google Phone Gallery, May 2011.
http://www.google.com/phone/detail/nexus-s.

[10] Google Inc. Google Voice, Feb. 2011.
http://www.google.com/googlevoice/about.html.

[11] HFS ∼ HTTP File Server.
http://www.rejetto.com/hfs/.

[12] M. Hills. Android on OKL4. http:
//www.ertos.nicta.com.au/software/androidokl4/.

[13] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park,
and C. Kim. Xen on ARM: System Virtualization
using Xen Hypervisor for ARM-based Secure Mobile
Phones. In Proceedings of the 5th Consumer
Communications and Newtork Conference, Las Vegas,
NV, Jan. 2008.

[14] Khronos Group. OpenGL Extensions – OpenGL.org.
http://www.opengl.org/wiki/OpenGL_Extensions.

[15] K. Kolyshkin. Recent Advances in the Linux Kernel
Resource Management. http:
//www.cse.wustl.edu/~lu/control-tutorials/

im09/slides/virtualization.pdf.

[16] O. Laadan, R. Baratto, D. Phung, S. Potter, and
J. Nieh. DejaView: A Personal Virtual Computer
Recorder. In Proceedings of the 21st Symposium on
Operating Systems Principles, Stevenson, WA, Oct.
2007.

[17] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
Performance VMM-bypass I/O in Virtual Machines.
In Proceedings of the 2006 USENIX Annual Technical
Conference, Boston, MA, June 2006.

[18] Microsoft. About the Wireless Hosted Network.

http://msdn.microsoft.com/en-us/library/

dd815243(v=vs.85).aspx.

[19] Mobile Systems. Office Suite Pro (Trial) – Android
Market. https://market.android.com/details?id=
com.mobisystems.editor.office_with_reg.

[20] NVIDIA Corporation. NVIDIA SLI MultiOS, Feb.
2011.
http://www.nvidia.com/object/sli_multi_os.html.

[21] J. R. Okajima. AUFS.
http://aufs.sourceforge.net/aufs2/man.html.

[22] Open Kernel Labs. OKL4 Microvisor, Mar. 2011.
http:

//www.ok-labs.com/products/okl4-microvisor.

[23] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: a System for
Migrating Computing Environments. In Proceedings of
the 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, Dec. 2002.

[24] polarbit. Reckless Racing – Android Market.
https://market.android.com/details?id=com.

polarbit.RecklessRacing.

[25] Red Bend Software. VLX Mobile Virtualization.
http://www.redbend.com.

[26] Rovio Mobile Ltd. Angry Birds – Android Market.
https://market.android.com/details?id=com.

rovio.angrybirds.

[27] G. Su. MOVE: Mobility with Persistent Network
Connections. PhD thesis, Columbia University, Oct.
2004.

[28] J. Sugerman, G. Venkitachalam, and B. Lim.
Virtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor. In Proceedings of the
2001 USENIX Annual Technical Conference, Boston,
MA, June 2001.

[29] VMware, Inc. VMware Workstation.
http://www.vmware.com/products/workstation/.

[30] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th

Symposium on Operating Systems Design and
Implementation, Boston, MA, Dec. 2002.

[31] WorkLight, Inc. WorkLight Mobile Platform.
http://www.worklight.com.

[32] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility and
Unix Semantics in Namespace Unification. ACM
Transactions on Storage (TOS), 2:74–105, Feb. 2006.

[33] R. J. Wysocki. Technical Background of the Android
Suspend Blockers Controversy.
http://lwn.net/images/pdf/suspend_blockers.pdf.

[34] Xen Project. Architecture for Split Drivers Within
Xen, 2011. http:
//wiki.xensource.com/xenwiki/XenSplitDrivers.

[35] ZDNet. Stolen Apps that Root Android, Steal Data
and Open Backdoors Available for Download from
Google Market. http://zd.net/gGUhOo.

187

http://www.asterisk.org
http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010
http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010
http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010
http://www.enterproid.com
http://www.google.com/phone/detail/nexus-one
http://www.google.com/phone/detail/nexus-s
http://www.google.com/googlevoice/about.html
http://www.rejetto.com/hfs/
http://www.ertos.nicta.com.au/software/androidokl4/
http://www.ertos.nicta.com.au/software/androidokl4/
http://www.opengl.org/wiki/OpenGL_Extensions
http://www.cse.wustl.edu/~lu/control-tutorials/im09/slides/virtualization.pdf
http://www.cse.wustl.edu/~lu/control-tutorials/im09/slides/virtualization.pdf
http://www.cse.wustl.edu/~lu/control-tutorials/im09/slides/virtualization.pdf
http://msdn.microsoft.com/en-us/library/dd815243(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd815243(v=vs.85).aspx
https://market.android.com/details?id=com.mobisystems.editor.office_with_reg
https://market.android.com/details?id=com.mobisystems.editor.office_with_reg
http://www.nvidia.com/object/sli_multi_os.html
http://aufs.sourceforge.net/aufs2/man.html
http://www.ok-labs.com/products/okl4-microvisor
http://www.ok-labs.com/products/okl4-microvisor
https://market.android.com/details?id=com.polarbit.RecklessRacing
https://market.android.com/details?id=com.polarbit.RecklessRacing
http://www.redbend.com
https://market.android.com/details?id=com.rovio.angrybirds
https://market.android.com/details?id=com.rovio.angrybirds
http://www.vmware.com/products/workstation/
http://www.worklight.com
http://lwn.net/images/pdf/suspend_blockers.pdf
http://wiki.xensource.com/xenwiki/XenSplitDrivers
http://wiki.xensource.com/xenwiki/XenSplitDrivers
http://zd.net/gGUhOo

	Introduction
	Usage Model
	System Architecture
	Kernel-Level Device Virtualization
	User-Level Device Virtualization
	Scalability and Security

	Graphics
	Framebuffer
	GPU

	Power Management
	Frame Buffer Early Suspend
	Wake Locks

	Telephony
	RIL Proxy
	Multiple Phone Numbers

	Networking
	Experimental Results
	Methodology
	Measurements

	Related Work
	Conclusions
	Acknowledgments
	References



