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ABSTRACT
We present S, the first system to provide transparent, low-
overhead application record-replay and the ability to go live from
replayed execution. S introduces new lightweight operat-
ing system mechanisms, rendezvous and sync points, to efficiently
record nondeterministic interactions such as related system calls,
signals, and shared memory accesses. Rendezvous points make
a partial ordering of execution based on system call dependen-
cies sufficient for replay, avoiding the recording overhead of main-
taining an exact execution ordering. Sync points convert asyn-
chronous interactions that can occur at arbitrary times into syn-
chronous events that are much easier to record and replay.

We have implemented S without changing, relinking, or re-
compiling applications, libraries, or operating system kernels, and
without any specialized hardware support such as hardware perfor-
mance counters. It works on commodity Linux operating systems,
and commodity multi-core and multiprocessor hardware. Our re-
sults show for the first time that an operating system mechanism
can correctly and transparently record and replay multi-process and
multi-threaded applications on commodity multiprocessors. S
recording overhead is less than 2.5% for server applications includ-
ing Apache and MySQL, and less than 15% for desktop applica-
tions including Firefox, Acrobat, OpenOffice, parallel kernel com-
pilation, and movie playback.

Categories and Subject Descriptors
C.4 [Performance of Systems]; D.4.5 [Operating Systems]: Re-
liability—Fault-Tolerance; D.4.8 [Operating Systems]: Perfor-
mance.

General Terms
Design, Experimentation, Performance, Reliability.
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Record-Replay, Virtualization, Fault-Tolerance, Debugging.
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1. INTRODUCTION
Deterministic application record and replay is the ability to record

application execution and deterministically replay it at a later time.
Record-replay has many potential uses, including diagnosing and
debugging applications by capturing and reproducing hard to find
bugs, dynamic application analysis by performing costly instru-
mentation on replicas that replay application behavior recorded on
production systems, intrusion analysis by capturing intrusions in-
volving non-deterministic effects, and fault-tolerance by providing
replicas that replay execution and at the occurrence of a fault, go
live in place of the previously running application instance.

Many approaches have tried to provide record-replay functional-
ity, but have suffered from fundamental limitations that make them
unusable in many cases. First, most approaches only support re-
playing the recorded application execution, and do not allow the
replayed instance to go live and continue normal execution. This
only works for simple debugging uses. It does not work for most
scenarios, including any form of debugging that requires the re-
played instance to go live, such as debugging past the end of a
recorded execution, fault-tolerance which requires the replayed in-
stance to be able to go live when the primary fails, or time-travel
execution in which an application can go back in time and go live
from any point in its recorded execution.

Second, previous approaches either require application changes
or rely on specialized hardware that is not available. Approaches
requiring application changes impose a recurring development cost
on each application to provide record-replay, and do not work for
unmodified applications. Approaches requiring specialized hard-
ware rely on either hardware architectures that exist in simulation
only, or assume the availability of accurate instruction or branch
counters to track the precise timing of asynchronous events. Such
counters are not available on many CPUs, and even when available,
often do not have the required level of accuracy because they were
designed for performance work where occasional missed counts in
various corner cases were not problematic. For example, most Intel
CPU revisions do not have accurate enough branch or instruction
counters, posing an enormous problem for record-replay [31].

Third, previous application transparent approaches either do not
support multiprocessor systems at all, or require using a virtual
machine monitor (VMM) and suffer significant performance over-
head on multiprocessor systems. This overhead is imposed on the
recording of execution and can result in more than an order of mag-
nitude reduction in application performance [10]. Such overhead is
unacceptable even for debugging or analysis. Because the record-
ing must often be done on a production system to capture and iden-
tify real bugs for debugging or real application behavior for analy-
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sis, minimizing recording overhead is crucial to avoid any adverse
impact on production application execution.

To address these problems, we introduce S, the first sys-
tem to provide transparent, low-overhead application record-replay
and the ability to go live from replayed execution. S uniquely
combines transparency and low-overhead for application execution
recording based on two principles. First, S primarily operates
at the well-defined interface between applications and the operating
system to record and replay the execution of multiple processes and
threads in a consistent and coordinated manner. Using a standard
interface that applications already use avoids the need to modify ap-
plications to enable record-replay, providing transparency. Using a
higher-level interface avoids the need to track and record low-level
hardware and operating system nondeterministic effects that have
no impact on enabling deterministic application replay, reducing
overhead. Unlike VMM approaches, it also enables finer granu-
larity per application record-replay as opposed to limiting record-
replay to an entire operating system instance. Second, S ob-
serves that real applications do frequent system activities such as
I/O. These activities can be recorded efficiently with relative ease
because their timing is synchronous with the execution of the pro-
cess performing the activities. Using these activities, S con-
verts nondeterministic asynchronous interactions that are difficult
to record and replay efficiently without additional hardware sup-
port into synchronous interactions that can be recorded in software
with low overhead. In other words, the timing of an application ex-
ecution may be perturbed in a manner that makes it easier to record
efficiently without sacrificing correctness or performance.

Using these principles, S introduces two novel mechanisms
to address the key challenge of handling nondeterministic execu-
tion. First, S introduces rendezvous points to record all non-
deterministic interactions between applications and the operating
system that involve system calls. To be able to go live at any point
during replay, the effect of system calls inside the kernel must be
replayed; replaying just the outcome of system calls in user space
is not sufficient. S does not aim to replay the exact schedul-
ing order as in the original execution, but instead uses rendezvous
points to make a partial ordering of execution based on system call
dependencies sufficient for replay. Since an exact execution order-
ing is not needed, S does not incur the associated recording
overhead and does not need hardware counters used to maintain
such an ordering. S also logs input data delivered through
system calls to account for nondeterminism due to external input.

Second, S introduces sync points that correspond to syn-
chronous system events such as system calls and certain page faults
to deterministically record the timing of nondeterministic events
like signals and shared memory interleavings. For a target process
or thread, an asynchronous event such as a signal or shared memory
access by other processes or threads may occur at any time during
the target process’s execution. This is hard to replay since the event
must be replayed at the exact same instruction in the target pro-
cess as during recording. S defers asynchronous events until
sync points occur to make their timing deterministic so that they are
easier to efficiently record and replay. Sync points do not require
hardware counters or application modifications that are necessary
with previous approaches, and do not adversely impact application
performance because they occur frequently enough in real server
and desktop applications due to operating system activities.

S fully supports record and replay of real multi-process and
multi-threaded applications, and enables an application to switch
from being replayed to running live at any point in time. S ac-
complishes all of this in an application transparent manner, does not
require changing, relinking, or recompiling applications, libraries,

or operating system kernels, does not require any specialized hard-
ware support, does not require a VMM or incur its associated costs,
and works on commodity multi-core and multiprocessor hardware
and operating systems.

We have implemented a S Linux prototype and evaluated its
performance on multi-core and multiprocessor systems on a wide
range of real applications. Our results show for the first time that
(1) sync points are an effective, lightweight mechanism for han-
dling nondeterminism due to signals and shared memory, (2) sync
points occur often enough in real server and desktop applications
that the vast majority of asynchronous events are handled instan-
taneously, and even when events are deferred, they are delayed for
25 to 220 µs on average, (3) an operating system mechanism can
record-replay real multi-threaded and multi-process applications,
(4) transparent, low-overhead record-replay can be done for work-
loads across a wide range of server and desktop applications, in-
cluding Apache, MySQL, Firefox, Acrobat, OpenOffice, parallel
make, and MPlayer. On a 4-CPU multiprocessor, S’s record-
ing overhead was under 2.5% for server applications, and less than
15% for desktop applications. These results show for the first time
a new level of transparent record and replay performance on com-
modity multiprocessor systems that was not previously possible.

2. ARCHITECTURE OVERVIEW
S can record and replay the execution of a group of pro-

cesses and threads from any point in time. We refer to a group
of processes and threads being recorded or replayed as a session.
S checkpoints the session at a desired starting time and records
the execution going forward. It can then restart and replay the ses-
sion from the checkpoint. Checkpoints can be taken at any time,
replay can be done at any later time as well as on another machine,
and replayed execution can go live at any time and continue normal
execution. S’s checkpoint-restart mechanism provides a con-
sistent checkpoint of process and filesystem state based on Zap [14,
15, 24]. We only consider execution replay on a machine with the
same CPU type and features, such as x86 MMX/SSE instructions,
as where the execution was recorded. For example, a process that
uses MMX instructions when it is recorded cannot be replayed on a
machine without MMX instructions. We will use Linux semantics
to describe how record-replay is accomplished in further detail.

S can start recording execution from a checkpoint of a ses-
sion, or it may begin with an empty session by launching a new
process. To begin recording, a dedicated monitor process attaches
itself to the target process(es), setting a special recording flag for
each process to indicate that it is being recorded. This flag is in-
herited via the fork and clone system calls, so that new threads
and children of a recorded process will automatically become part
of the recorded session. Recording takes place in the context of the
recorded process. S uses stubs to interpose on key operating
system kernel entry points to perform some processing before and
after the entry points as needed. For instance, when a recorded pro-
cess executes a system call, S produces events that describe
the system call and its outcome by recording information about
the system call before and after the system call executes. S
records by intercepting all interactions of processes with their envi-
ronment, capturing all nondeterminism in events that are stored in
log queues inside the kernel. S allocates a private kernel log
queue for each process. Processes generate events during record-
ing, and append them to the log queue. As processes fill their log
queues with events, the monitor pulls them from the queues and
saves them to permanent storage. Recording of a process ends
when the process exits, or when S explicitly tells the moni-
tor to stop the recording.
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Event Description Payload Details
hw_inst hardware instruction trap op-code and data, e.g. RDTSC and 64-bit counter value Section 2

syscall_ret system call return system call return value Section 3
copy_data data transfer to/from user space size and contents of data transfer Section 3

page_public make page public (not owned) page address Section 4
page_share_read make page shared read-only page address, page sequence number Section 4
page_own_write make page owned read/write page address, page sequence number Section 4

rendezvous resource synchronization resource sequence number Section 5
signal_receive process received signal signal number, whether or not in system call, signal data Section 6

async_reset force a sync point process user space signature at forced sync point Section 6

Table 1: S record-replay events

S can start replaying a session from the beginning of its ex-
ecution or from a restarted session. To replay, the monitor launches
a new process, or restarts the desired session from the respective
checkpoint and marks all processes with a special replaying flag.
A log queue is allocated for each process. Thereafter, the monitor
reads the recorded events from storage and places the data in the
respective log queues. The recorded events are consumed from
the log queues to steer the processes to follow the same execution
paths they had during recording. Replay takes place in the context
of the process being replayed. S uses the same stubs for re-
play as it did for recording to take control over process execution
by interposing on key operating system kernel entry points. For ex-
ample, when a system call is invoked at replay, S consumes an
event from the log queue to determine how to correctly replay the
effect of the system call. Replay of a process ends when the process
terminates, or when all the recorded events have been consumed.

S can also let the session go live, transitioning it from con-
trolled replay to live execution, by detaching the monitor from the
processes and flushing all remaining events. To do this, S
must do two things to ensure that the replayed session is always
in a state that allows it to transition to live execution. First, S
needs to not only replay the application state in user space, but also
the corresponding state that is internally maintained by the operat-
ing system on the application’s behalf. Second, Smust ensure
that the replayed processes perceive the underlying system to be the
same as at the time of recording. System identifiers such as process
IDs and network port numbers must be perceived by processes to
remain the same for them to run correctly after they transition to
live execution. To guarantee this even if the underlying system has
changed, S uses operating system virtualization [24] to encap-
sulate processes in a virtual execution environment that provides
the same private, virtualized view of the system when the session is
replayed or goes live as when it was recorded. Processes only see
virtual identifiers that always stay the same. Virtual identifiers are
transparently remapped by the environment to real operating sys-
tem resource identifiers, and the mappings are updated so that the
session can go live at any time.

The events that S records and replays each contains two
fields: the event type, and a payload whose size and contents de-
pend on the event in question. Events are not timestamped because
S does not replay based on explicit event timing information,
and does not aim to repeat the exact scheduling order as in the orig-
inal execution; rather, it ensures that events are ordered correctly by
tracking dependencies among events. Two events are related if they
access the same resource and at least one of them modifies it, for
instance a write and read on a pipe. S tracks dependencies
to preserve the partial order of related events during replay.

Table 1 lists all event types recorded and replayed by S.
These events correctly account for all sources of nondeterministic
execution that are needed to support deterministic replay: nonde-
terministic machine instructions, system calls, signals, and shared

memory interleavings. External input is also a source of nondeter-
minism, but this occurs through system calls.

The hw_inst event is used for nondeterministic machine instruc-
tions which interact directly with the hardware and bypass the op-
erating system. There are three such instructions on x86 CPUs.
They all involve reading CPU counters and can be recorded by sim-
ply trapping when they occur. While trapping is expensive, these
instructions typically occur infrequently; standard binary instru-
mentation techniques can be used to optimize performance. When
a nondeterministic machine instruction occurs, S records a
hw_inst event whose payload is the instruction type and its result.
For example, when the RDTSC instruction occurs, S records a
hw_inst event whose payload is the RDTSC instruction opcode and
the 64-bit value of the timestamp counter. During replay, S
returns the recorded result instead of executing the instruction.

Section 3 describes the syscall_ret and copy_data events used for
system calls and data transfer between kernel and user space, re-
spectively. Section 4 describes the page_public, page_share_read,
and page_own_write events used for shared memory interleavings.
Section 5 covers the rendezvous event used for ordering access
to shared resources via system calls. Section 6 describes the sig-
nal_received and async_reset events used for signal delivery and
for recording of asynchronous events, respectively.

3. SYSTEM CALLS
System calls are the predominant form for processes to interact

with the environment and with other processes. System call inter-
position is used to record and replay the execution of system calls.
Unlike other approaches [11, 26, 28], S does not simply feed
processes with logged data to simulate the effect of system calls.
This is not sufficient to enable replayed execution to go live. In-
stead, S re-executes system calls during replay to ensure that
the corresponding in-kernel state of a replayed session is updated
properly so that it can transition to live execution at any time. We
first describe the basics of how S handles system calls, then
describe in Section 5 how S handles nondeterminism due to
system calls that access shared resources.

3.1 Record
During recording, S always allows each system call to exe-

cute and records its return value using the syscall_ret event so that
the same values can be returned on replay. The system call num-
ber is not recorded since it will be available on replay when the
process executes the same system call. For system calls that cre-
ate and terminate processes and threads, namely fork, clone, and
exit, S also sets up the log queues, arranges to control the
execution of new processes and threads when they are created, and
performs proper cleanup as processes and threads exit. For system
calls that transfer nondeterministic or external data from kernel to
user space, S records the data to the log queue of the calling
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Record (action) → Event log → Replay (action)
ret = gettimeofday(K, NULL) (do nothing)
(system call returned) syscall_ret(ret)
copy out: K→u (size) copy_data(size, K) copy out: K→u (size)
return(ret) return(ret)

Figure 1: Record-replay of gettimeofday: To record, S invokes the
system call with an in-kernel buffer (K), logs the return value and input data,
copies the data to the user buffer (u) and returns. To replay it copies the logged
data to the user space buffer and returns the logged return value.

process using the copy_data event so that the same data can be out-
put by the system call on replay. For example, Figure 1 shows the
recording of gettimeofday, which outputs to a data structure a
time value which must be recorded. Similarly, all external input
data, including network inputs and data from special devices such
as /dev/urandom, are delivered via system calls, mainly the read
system call, and must be recorded.

Data from user space used as input for system calls never needs
to be recorded; it is always deterministic on replay since it resides
in the address space of a replayed process. The only exception is
if a buffer corresponds to mapped I/O memory, whose contents are
logged as well using the copy_data event. Similarly, S does
not record input from file descriptors that refer to a local filesystem
or to objects such as pipes, because their state and contents during
replay are controlled by the replay and therefore deterministic. In
contrast, approaches that use system call simulation must explicitly
log such data, significantly inflating the resulting log size.

3.2 Replay
During replay, S replays the system calls of each process

independently, unless system calls access shared resources as dis-
cussed in Section 5. When a replayed process invokes a system
call, S intercepts it and uses the return value from the corre-
sponding syscall_ret event in the log queue of the calling process
as the return value of the system call. It does not return the value
from executing the actual system call, which may differ and result
in the replay diverging from the recorded execution.

For system calls that transfer nondeterministic data from kernel
to user space, the data logged in the corresponding copy_data event
is also returned on replay. For example, Figure 1 shows the replay
of the gettimeofday system call from an event log.

Beyond dealing with the return value and nondeterministic data,
we can classify system calls into two categories: idempotent and
non-idempotent. Idempotent system calls do not modify the inter-
nal kernel state, and therefore the underlying call does not even
need to be executed. These system calls typically query resource
identifiers, such as getpid, getppid, getuid and getgid, or
transfer data about resources, such as uname, getrusage, time,
getitimer, gettimeofday, and sysinfo. Non-idempotent sys-
tem calls modify system state and therefore replay typically re-
quires executing the underlying system call.

The processing of non-idempotent system calls varies for differ-
ent system calls. Most of these system calls are replayed directly by
executing them. Examples include setsid, brk, reading from and
writing to a pipe, etc. By executing these system calls, S guar-
antees that the state of all the resources that belong to the session
is correct at all times, and the session may safely stop replaying,
go live, and proceed to execute normally. If a system call execu-
tion that was successful in the original application execution fails
during replay, S aborts the replay.

For system calls that create and terminate processes and threads,
namely fork, clone and exit, S sets up the log queues,
arranges to control the execution of new processes and threads
when they are created, and performs proper cleanup as processes

and threads exit. When creating processes and threads during re-
play, S relies on the underlying virtual namespace to provide
a method to select predetermined virtual process identifiers so that
processes can reclaim the same set of virtual resource identifiers
they had used during recording. The same is true for other system
calls that allocate resources with identifiers assigned by the kernel,
such as IPC identifiers.

For system calls that carry out external I/O, the internal state of
file descriptors, such as file position, is updated even though data
may not be explicitly sent or received through the file descriptors.
For example, for external input, S replays the data to the ap-
plication from the log rather than fully execute the system call.

For system calls that accept wildstar (catch-all) arguments, such
as mmap and wait, S already knows the outcome of the system
call, e.g., which address or process was selected. For deterministic
replay, it simply substitutes that outcome for the wildstar argument.

3.3 Go Live
In most cases, executing recorded system calls during replay is

sufficient to automatically replay the kernel state correctly, due to
the deterministic behavior of the application and the operating sys-
tem. For example, when an application creates and then writes to a
pipe, the kernel internally allocates a pipe object, populates the pro-
cess’s file table with suitable file descriptors, and then places data
in the pipe’s internal buffer. During replay, the application will is-
sue the same system calls, in the same partial order, and the kernel
will deterministically behave in the same way and reconstruct the
same internal state.

However, internal kernel state that is related to external entities
is unique in that it interacts with, and is affected by, state that is not
controlled by the session. How such state is handled is predicated
on what is assumed about the external environment when a ses-
sion goes live. We identify two scenarios: stand-alone execution
assumes that the original external links are non-existent, e.g. in
debugging use case, and switch-over execution assumes that they
remain as is, e.g. for replica execution.

In stand-alone replay, internal kernel state linked to outside the
session would become meaningless once the session goes live. Thus,
S needs to cast meaningful state that gracefully reflects the
new status of the resources it represents. It does so by partially
executing select system calls that create or manipulate this state.

To illustrate this concept, consider network connections created
via connect and accept system calls. Since connect attempts
to create a connection to the external world, S skips its in-
vocation during stand-alone replay. A successful accept will re-
ceive an incoming connection into a new socket. To replay this,
S creates a new, disconnected, socket instead. The end result
in both cases, is that the socket remains closed; should the applica-
tion thereafter go live, it will perceive a network disconnect upon
the next attempt to read or write the socket.

Switch-over replay, on the other hand, introduces two additional
complexities. First, it requires that the transition to live execution
occur transparently, in a way that external entities, such as remote
connections, would not notice. Second, replaying of kernel state is
no longer deterministic, since it is affected by the interaction with
external entities, e.g. the random choice of sequence numbers for
TCP connections, and interleaved order of incoming messages.

S’s approach is to maintain a compatible, but not necessar-
ily identical, internal kernel state during replay. This avoids nu-
merous intricacies involved in identifying, recording and replaying
nondeterministic events of, for instance, the network stack. A key
observation is that the replay does not interact with the real world
until it goes live. It is permissible to have differences in the inter-
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nal state, provided that when the transition to live execution takes
place, the state is consistent with what was previously published to,
and hence expected by, the external world.

Consider, for instance, internal kernel state that corresponds to
network communication. For protocols that lack reliability guar-
antees, such as UDP, S need only maintain the correspond-
ing network endpoint, and may safely ignore buffered or in-transit
data. For connection-oriented protocols, like TCP, it records impor-
tant events that permanently affect the internal state. This includes
selection of port number, updates of sequence numbers and times-
tamps, setup of timer expirations, and acknowledged received data.
Unacknowledged received data is not tracked since it will be re-
transmitted. Data in the send buffers is not logged either because it
will be deterministically reproduced by replaying the application.

4. SHARED MEMORY
Replaying shared memory interleaving is critical for determinis-

tic replay, especially on multiprocessor machines. Memory shar-
ing happens either explicitly when multiple processes share a com-
mon shared mapping, or implicitly when the entire address space
is shared, e.g. with threads. The main tool to monitor and control
memory access in software is the page protection mechanism. Re-
playing the order of memory accesses efficiently in software is fun-
damentally difficult since one process may access shared memory
asynchronously with, and at any arbitrary location within, another
process’s execution.

S addresses this problem by introducing page ownership
management. Because of spatial and temporal locality, a process
typically accesses multiple locations on a page during a given time
interval. If we can guarantee that no other processes modify that
page during the same time interval, then the page can be treated
like private memory for that process during that interval. There
would be no need to track memory accesses since there are no non-
deterministic shared memory interleavings. This scheme requires
a protocol to manage page ownership transitions, and a method to
ensure that such transitions occur at precisely the same location in
the execution during both record and replay. The latter problem is
the key challenge, and is discussed in Section 6.

S employs a concurrent read, exclusive write (CREW) pro-
tocol [7, 17] for shared memory access, but with additional opti-
mizations. A state field of a page indicates whether it is un-owned
(public), owned exclusively for read and write (owned_write) or
shared for read by one or more processes (shared_read). A process
that owns a page exclusively has its PTE set as read and write. A
process that shares a page has the PTE set to read-only. Otherwise
the respective PTE will remain invalid to prevent access. A page
that is shared for reading continuously tracks its list of readers, and
an exclusively owned page tracks its writer (owner).

Transitions between the page states are as follows. A public
page becomes shared_read or owned_write on the first read or write
access, respectively. An owned_write page becomes shared_read
when another process attempts to read from it; the owner process
will give up exclusive access and downgrade its PTE to be read-
only. An owned_write page can also change owner, in which case
the old owner will give it up and invalidate its own PTE, while the
new owner will adjust its PTE accordingly. A shared_read page
becomes owned_write when the page is accessed for writing. Fi-
nally, a page becomes public when all processes that have a right to
access terminate.

Transitions between page states occur as a result of page faults,
which indicate that the faulting process is requesting access to a
given page. S employs two optimizations to reduce the oc-
currence of these faults. First, S optimizes for the common

memory access pattern of reading then writing the same, or nearby,
memory addresses. For this pattern, the standard CREW protocol
incurs two page faults: a read fault makes the page shared_read and
a write fault makes it owned_write. To avoid this cost, Smarks
pages when they experience a double fault by the same process. A
marked page will transition directly to owned_write on subsequent
page faults, whether they are reads or writes. Finally, S clears
the flag if the number of page faults exceeds a defined threshold, to
adjust its behavior for possibly changing memory access patterns.

Second, S optimizes to reduce frequent transfers of page
ownership. This can occur among multiple threads due to true or
false data sharing. Such page ping-ponging can cause thrashing,
especially when multiple pages are involved. For instance, a thread
that uses two pages repeatedly in a tight loop may lose ownership
of one page while faulting on the other. To mitigate this, S
defines a minimal ownership retention interval that begins with an
ownership change. Ownership transitions are disallowed until the
interval expires.The length of the interval is comparable to a stan-
dard scheduler time quantum so that a running process is likely to
complete its scheduled time quantum of work.

S’s page ownership management mechanism requires up-
dating PTEs. To support threads without high overhead due to
TLB invalidations, we use private page tables to track thread shared
memory accesses. All threads associated with a process share a
common page table for reference, but each thread uses its own pri-
vate page table. The reference page table maintains the current state
of all pages. When a thread causes a page fault, S consults the
corresponding entry in the reference page table and copies the PTE
to the thread’s private table. This is inexpensive because it only
flushes a single TLB entry on the local CPU, instead of a costly
inter-processor interrupt followed by a global TLB flush. The ref-
erence page table is explicitly updated when the process’s address
space layout is modified, e.g. through mmap, munmap and mpro-

tect. For a single thread, the private page table directly mirrors
the reference page table.

5. RENDEZVOUS POINTS
System calls that access shared resources may cause nondeter-

minism arising from the order of the execution of related system
calls that access the same resource and at least one of them mod-
ifies it. For instance, a write and a read on the same pipe are
related. The order in which related system calls occur needs to be
recorded so they can be deterministically replayed. It is crucial to
do this in a way that does not degrade performance and scalability
on multiprocessor systems.

By operating at the system call level, S introduces a novel
mechanism to address this problem by capturing concurrency at
the same granularity as the operating system. The only require-
ment is to record and replay the order of any two related system
calls. Related system calls occur from accessing shared resources.
We observe that the operating system kernel must already provide
locations where access to shared kernel objects is serialized for cor-
rectness. S can thus mimic these serialized access points to
record and replay the order of any two related system calls.

S introduces rendezvous points, locations at which system
call ordering is tracked during recording and enforced during re-
play. Because related system calls occur from accessing shared re-
sources, S synchronizes access to each such resource by con-
verting all locations in which shared resources are accessed into
rendezvous points. Since these locations are already used by the
kernel to serialize access to an instance of a shared resource, ren-
dezvous points do not reduce the scalability or concurrency of the
kernel. Our approach avoids the overhead of maintaining an exact
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Record (action) → Event log → Replay (action) User-space
copy in: u→K (size) copy in: u→K (size) (A) write(fd, u, size)
rendezvous(A, fd.inode) (A) rendezvous(SEQ) rendezvous(A, fd.inode)
ret = write(fd, K, size) ret = write(fd, K, size)
(system call returned) (A) syscall_ret(ret) (system call returned)
return(ret) return(ret)

· · · · · · · · · · · ·

rendezvous(B, fd.inode) (B) rendezvous(SEQ+1) rendezvous(B, fd.inode) (B) read(fd, u, size)
ret = read(fd, K, size) ret = read(fd, K, size)
return ret (B) syscall_ret(ret) return ret
copy out: K→u (size) copy out: K→u (size)
return(ret) return(ret)

Figure 2: Rendezvous points: Process A must pass a rendezvous point before it can invoke the system call in both record and replay. Process B must do so too, but
with a larger sequence number, thus preserving their relative order. The data itself is deterministic and not logged.

execution ordering of system calls and makes a partial ordering of
execution based on system call dependencies sufficient for replay.

Rendezvous points are recorded by associating each resource in-
stance with a wait queue and a unique sequence number counter.
At any time, exactly one process may be executing inside a given
rendezvous point, while others must block until the resource is re-
leased. During recording, a process that attempts to access a shared
resource will first pass through the corresponding rendezvous point.
By doing so, it will increment the sequence number and generate
a matching rendezvous event. The sequence number in the ren-
dezvous event indicates the exact access order for the resource,
which can be used to enforce the order during replay. Figure 2
shows the recording of the write and read system calls using ren-
dezvous points and the resulting log. Ideally, for each rendezvous
point, we could reuse the respective kernel locking primitive al-
ready in place for the associated resource, but this involves kernel
changes. To avoid changing the underlying kernel, S resorts
to its own, separate mutex to interpose transparently at well-defined
kernel entry points. Section 7 shows that our approach incurs low
overhead on real applications.

During replay, S replays the system calls of each process
independently from other processes until reaching a rendezvous
point. S repeats the order in which processes executed through
rendezvous points when originally recorded by only permitting the
process with matching (smallest) sequence number to enter at any
single time. Processes with higher sequence numbers will block
and wait for their turn. S exploits these rendezvous points to
preserve the partial ordering of related system calls during replay.
Figure 2 illustrates the use of rendezvous points when replaying the
write and read system calls.

Table 2 lists all categories of related systems calls, and the re-
spective resources used for rendezvous points. S defines a
special pseudo rendezvous point that is used for system calls that
access properties global to the execution environment, such as sys-
log, sethostname, and settimeofday. It is also used for system
calls that modify system-wide state such as mount points, pseudo
terminals, etc. This preserves their order to ensure that the settings
are accurate should the system go live at any point.

For system calls that operate on open file objects, including files,
devices, network sockets, and pipes, S uses inodes as ren-
dezvous points. Inodes are referenced by a variety of file-related
system calls such as read, write, close, and fcntl. Since most
file-related operations are re-executed during replay, this ensures
that they occur in the proper order for a given inode. Similarly,
for system calls that operate on System V IPC objects, including
message queues, semaphores, and shared memory, S uses the
respective System V IPC resources as rendezvous points.

Shared memory pages that are file mapped can be accessed ei-
ther via direct memory references, or through the virtual filesystem
(VFS) using read and write. By definition, access via system

calls will bypass the page protection mechanism that enforces the
CREW protocol. For example, through the VFS, a process may
change a page that it does not own. To prevent deadlocks and en-
sure consistency with CREW, S associates rendezvous points
with these pages. This guarantees that the two methods to access
shared mapped pages are properly coordinated, and that their order
is preserved between record and replay.

For system calls that operate on filesystem pathnames, includ-
ing open, unlink, creat, fifo, access, stat, chmod, chown,
execve, and chroot, S must be able to track their ordering
to replay them correctly because they may modify the state of the
filesystem by creating, deleting and modifying attributes of files.
S uses filesystem mount points as rendezvous points, but uses
them at the VFS layer, not the system call layer. Using them at
the system call layer would serialize all filesystem accesses during
recording and cause high overhead. Instead, we observe that the
order in which system calls that act on pathnames view and mod-
ify the filesystem state depends on the order of pathname lookup
progress at the VFS layer. The VFS performs pathname traversals
one component at a time, always holding the lock of a parent direc-
tory while accessing or modifying its contents. To reproduce the
order of system calls that act on pathnames, it suffices to record the
order of pathname traversal. S achieves this by interposing on
the VFS pathname traversal to increment the sequence number for
the rendezvous point associated with the mount point. Since S
is only concerned with actions that affect the existence or access
permissions of files, it only needs to increment the sequence num-
ber for system calls that perform such operations. This imposes
negligible overhead during recording.

In the presence of threads, Smust also use rendezvous points
to track system calls that create file descriptors, modify memory
layout, and modify process properties or credentials, since those
per process resources are shared among threads. For system calls
that create file descriptors, such as open, pipe, and fifo, S
uses the calling process’s file descriptor table as a rendezvous point.
S cannot rely on an underlying inode for synchronization, be-
cause it does not yet exist. For system calls that modify the memory
layout, such as brk, mmap, munmap, and mprotect, S uses the
calling process’s memory descriptor as a rendezvous point. For sys-

System call category Rendezvous resource
actions on globals global (pseudo)
actions on open file objects inode of the file
actions on IPC objects IPC objects
read/write shared mapped files memory page
actions on pathnames filesystem mount point
create file descriptors file descriptors table
modify memory layout memory descriptor
actions on process properties process descriptor

Table 2: List of rendezvous points categories.
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tem calls that modify process properties and credentials, including
setuid, setgid, setpgid, setsid, setrlimit, S uses the
process descriptor as the rendezvous point. This is convenient be-
cause the properties belong to a process, and the affected operations
are performed in that process’s context.

S also uses the process descriptor rendezvous point to en-
sure correct ordering among system calls that modify the filesystem
view of a process, such as chroot and chdir. System calls that are
re-executed on replay and implicitly rely on process properties and
credentials must also use the rendezvous point associated with the
process descriptor. For example, open and access use a process’s
user and group identifiers to decide if it has sufficient permissions
to operate on a file, kill uses capabilities to permit a signal, and
setpgid uses a process’s session identifier.

Executing a system call may result in recording multiple ren-
dezvous events. The categories of rendezvous points listed in Ta-
ble 2 are not mutually exclusive. For example, running open on a
file already opened by another process, will result in a rendezvous
event for the global resource, for the process descriptor, and for the
inode resource.

6. SYNC POINTS
Asynchronous events cause nondeterminism arising from the tim-

ing of their occurrence. Replaying asynchronous events is chal-
lenging because it requires that a recorded event occur at the exact
same place in the process’s instruction stream as during recording.
It is difficult because it could have occurred at an arbitrary loca-
tion during the execution. The two predominant examples of asyn-
chronous events are signal delivery and page ownership transfers
for shared memory, described in Section 4.

Consider signal delivery. Signals are delivered in two steps.
First, the sender process sends a signal to the target process, which
is marked as having a signal pending. Second, the target process
detects the pending signals when it resumes from kernel space, and
handles them. If the target process is executing in user space, an
inter-processor interrupt will force it into kernel space, where it will
detect the pending signals. Replaying this behavior requires inter-
rupting the target process at the exact same instruction as during its
original execution. This is difficult because the interrupt could have
occurred at any time during execution.

Consider page ownership transfers for managing shared memory.
As described in Section 4, a process requesting access to a shared
memory page will page fault if it does not have the necessary own-
ership to read or write the page. This fault occurs asynchronously
with the execution of the process that owns the page. Replaying this
behavior requires interrupting the owner process at the exact same
instruction at which ownership is transferred to the requesting pro-
cess as during its original execution. This is difficult because the
fault could have occurred at any time during its execution.

Attempting to address this problem while providing application
transparent record-replay, previous approaches [4, 5, 9, 10] have re-
lied on hardware providing a cycle accurate instruction counter [27].
The respective counter value at which the asynchronous event oc-
curs is logged so that during replay, the event can be replayed at
the exact same counter value. The fundamental problem with this
approach is that such counters are not available on many CPUs, and
even when available, often do not have required degree of accuracy
because they were not designed for this purpose. They work for
performance measurements where occasional missed counts in var-
ious corner cases are not problematic, but do not work for record-
replay where precise instruction counts are required.

S takes a fundamentally different approach to address this
problem by introducing a novel and efficient mechanism that makes

asynchronous events much easier to record and replay by deferring
their delivery until the nearest synchronous system event. This is
done by introducing sync points to represent synchronous system
events which are used for this purpose. Sync points are locations in
a recorded process’s execution which (1) cause the process to en-
ter kernel space by executing the following instruction, and (2) are
guaranteed to do so deterministically during replay (assuming a
faithful execution prior to reaching there). Since S interposes
on these kernel entry points, it can easily record the occurrence and
location of sync points. Calling a system call and triggering a trap
due to division by zero are two examples of sync points. Certain
page faults, namely due to invalid memory access, or due to mem-
ory sharing also qualify. However, page faults due to copy-on-write
or memory paging do not satisfy the second requirement.

6.1 Signal Delivery
During recording, S defers the delivery of an asynchronous

signal until the target process is at a sync point. This allows S
to easily determine the exact instruction at which the signal is deliv-
ered. If the target process is in user space, S queues the signal
until the process reaches a sync point, such as a system call, and
therefore synchronously enters the kernel. This effectively trans-
forms the asynchronous nature of signals into synchronous behav-
ior. Specifically, when a process enters kernel space, it first checks
if it has any pending deferred signals. If so, S will deliver
them to the process and log a corresponding signal_receive event
for each delivered signal, then force it to return to user space to
handle them. In the case of a sync point due to a system call, it will
also rewind the instruction pointer so that the process will re-issue
the system call. If the target process is in kernel space, it is already
at a sync point and the signal is delivered immediately.

Note that some signals are synchronous in that they are the direct
result of an action of the process, like SIGSEGV, SIGFPE, SIGBUS.
These occur while the process is in user space, and cannot be de-
ferred for a later time. They already force the process into kernel
space and can therefore be delivered and handled on the spot. These
signals do not need to be logged because they are deterministic, and
will implicitly occur as part of the replay once the condition occurs
that had triggered them in the original recording.

During replay, the sender process skips the system call that sends
the signal and continues execution. Instead, signal delivery is de-
terministically replayed at the occurrence of sync points in the exe-
cution of the receiving process. When a process enters kernel space
as it reaches a sync point, S examines the next event in its log
queue; if it finds a signal_receive event, it will deliver the desig-
nated signal to the process. The process will handle the signal as
soon as it resumes to user space. Figure 3a illustrates record-replay
of signals.

One set of signals, SIGSTOP and SIGCONT, are treated differ-
ently. Unlike other signals, which are replayed by arranging for
the process to receive the desired signal, S does not resend
SIGSTOP as it would interfere with the replay. Because replay is
performed in the context of the process, a stopped process will
never check its queue for the corresponding SIGCONT signal. In-
stead S maintains the process in a “stalled” state in kernel
space, and examines the following events in the queue. The next
event may be either another signal_receive event or a page owner-
ship transition event, as discussed in Section 4. S processes
the remaining events in the queue until it encounters a SIGCONT,
and then allows the process to resume execution. When a session
that contains a stalled process prepares to go live, S arranges
to send the previously skipped SIGSTOP to the process, forcing the
process into the proper kernel state.
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Record (action) → Event log → Replay (action) User-space
(a) (do nothing) (queue sig on B) (do nothing) (A) kill(B, sig)

return(0) (A) syscall_ret(0) return(0)
· · · · · · · · · · · ·

kill(B, sig) (B) signal_received(sig) kill(B, sig) (B) sync point
(b) (A) (stall) (queue ADDR on B) (A) (stall) (A) read page ADDR

· · · · · · · · · · · ·

(B) (adjust PTE) (B) page_share_read(ADDR) (B) (adjust PTE) (B) sync point
(A) (adjust PTE) (A) page_share_read(ADDR) (A) (adjust PTE) (A) woken up
(A) read page ADDR (A) read page ADDR

Figure 3: Asynchronous events record-replay: (a) The sender of a signal always skips the call and notifies the receiver instead; The receiver handles and logs the
signal when it reaches a sync point. (b) Assume process B owns a page for writing. Process A faults reading from the page, notifies the owner, and blocks; When B reaches
a sync point, it downgrades the page state (and PTE) to read-only, and logs a memory event; Finally, A updates its own PTE and resumes execution.

6.2 Page Ownership Transfer
Page state transitions are allowed to only take place when S

can conveniently track, and later replay them. We draw the fol-
lowing analogy to signal delivery: the process that page faults and
the page owner(s) are analogous to the sender and the receiver of a
signal, respectively. S converts asynchronous memory events
into synchronous ones by deferring them until the owner process
reaches a sync point.

When a process tries to access an owned page it notifies the
owner and, unlike with signals, blocks until access is granted. Con-
versely, owner processes check for pending requests at every sync
point and, if necessary, give up ownership. Figure 3b illustrates
record-replay of memory interleaving. Note that page faults due
to the memory interleaving under the CREW protocol contribute
significantly to the pool of sync points, adding to system calls.

Although transfer of page ownership is always performed by the
owner process(es), there is one exception to this rule due to in-
teraction of blocking system calls and shared memory. When an
owner of a page blocks inside a system call, it cannot transfer its
page ownership to another process. This can cause long delays in
ownership transfer, and even lead to a deadlock if, for example, the
owner blocks on a read from a pipe, and the other process stalls on
a memory access while attempting to write into the same pipe.

To address this problem, S guarantees that user space shared
memory is not accessed by an owner process when it is executing
a system call. If another process needs to access a shared mem-
ory page owned by the calling process, S can simply trans-
fer ownership to the requesting process knowing that the original
owner process will not access shared memory because it is execut-
ing a system call. There are no shared memory interleavings to
track between the original owner process and the requesting pro-
cess. S can just identify the location in the original owner’s
instruction stream at which this ownership transfer occurs as being
the occurrence of the system call, which it already logs.

More specifically, since various system calls transfer data be-
tween the kernel and user space which could involve a shared page
owned by the calling process, S uses an in-kernel staging area
where it temporarily stores both input and output data. As a result,
only the staging area, not user space memory, is accessed by the
calling process during system calls. S flags an owner that en-
ters a system call as a weak-owner until the system call completes.
This flag indicates that other processes may promptly revoke own-
ership of pages that it holds whose retention interval expired. If dur-
ing the system call the owner also becomes blocked, S flags
it as a sleep-owner until it resumes execution. This flag indicates
that other processes may promptly revoke ownership of any pages
that it holds. PTEs of the requesting processes and the owner are
updated promptly to reflect these actions.

6.3 Signature Record and Replay
Deferring signals and page ownership transfers may incur a per-

formance penalty by increasing the latency of signal delivery and
page faults on shared memory, respectively. S’s approach to
recording and replaying asynchronous events is predicated on the
assumption that sync points occur frequently enough in real appli-
cations, since they often enter kernel mode by executing system
calls or causing page faults. Based on this assumption, we expect
any performance overhead to be low in practice. Section 7 presents
experimental results that validate our assumption.

In addition, for tracking shared memory, it assumes that real
applications do not typically use user space-only spinlocks or re-
lated mechanisms. For example, consider a thread that reads from
a memory location in a busy loop until it finds a positive value, and
another thread that intends to write a positive value to that location.
Assume that the former thread becomes the owner of the page. The
threads are now deadlocked, since the second thread waits for the
first thread to give up the ownership for the page, and the first thread
waits for the second one to change the value in the memory.

Although the likelihood of either scenario is not common in real
applications, S also provides a novel but more heavyweight
mechanism to record and replay asynchronous events that were de-
ferred for too long due to an unlikely absence of sync points. Dur-
ing recording, if a signal, or a page ownership transfer, has been
deferred for a period that exceeds a predefined threshold, S
switches to a different mechanism. S sends the target process a
reserved signal that forces it into kernel mode. By using a reserved
signal, we ensure that process execution does not depend on it in
any way. It then creates a signature of the process: a lightweight
checkpoint of the current user space context of just that process,
namely its registers and writable memory pages.

A key observation here is that between sync points, the process is
guaranteed to not have any interactions with the operating system,
or any nondeterministic interactions with other processes, since
its last sync point and until it is finally forced into kernel mode.
Therefore, S is also guaranteed not to have missed recording
any nondeterministic interactions by forcing the process into kernel
mode. Thus, forcing the process into kernel mode can be thought of
as resetting the recording, and is logged as a async_reset event. By
forcing the process into kernel mode, we effectively create a new
sync point. The original pending signal or page ownership transfer
can then be handled and its location with respect to the new sync
point is precisely known.

During replay, the key issue is knowing when the process should
consume the async_reset event. Other approaches suggested the
use of hardware performance counters despite their shortcomings [3,
29]. Since S is designed for commodity operating systems
without base kernel changes, it does not have access to scheduling
decisions and data that are essential for using performance count-
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Name Description Benchmark Time
apache-p Apache 2.0.54, 8 processes, prefork httperf 0.8 (rate=1500, num-calls=20) 189 s
apache-t Apache 2.0.54, 50 threads, worker httperf 0.8 (rate=1500, num-calls=20) 187 s
mysql MySQL 5.0.60 database server sql-bench 184 s
ssh-s OpenSSH 5.1p1 (server) 50 SSH sessions (10 concurrent), each emulates user typing 5K text file 53 s
ssh-c OpenSSH 5.1p1 (client) 50 SSH sessions (10 concurrent), each emulates user typing 5K text file 53 s
make parallel compilation of Linux kernel make -j10 of the Linux kernel 101 s
untar untar of Linux 2.6.11.12 source tree gunzip linux-2.6.11.12.tar.gz | tar xf - 2.8 s
urandom reading from /dev/urandom dd=/dev/random bs=1k count=10000 | lzma > /dev/null 2.6 s
editor vim 7.1 text editor vim -S vi.script to append ’hello world’ 1000000 times 12.4 s
firefox Firefox 3.0.6 web browser in VNC SunSpider 0.9 JavaScript benchmark 120 s
acroread Adobe Acrobat Reader 8.1.3 in VNC open 190 KB PDF, close and exit 2.8 s
mplayer Mplayer 1.0rc2 movie player in VNC play 10 MB 1280x720 HDTV video at 24 frames/s 30.8 s
openoffice OpenOffice 3.0.1 office suite in VNC Jungletest r27 (2009-03-08) open document, export, close, and exit 4.9 s

Table 3: Application scenarios

ing; without it, it is impossible to accurately correlate performance
counter data to individual processes that execute in user space.

S takes a different approach. Starting at the last event in
the log prior to the async_reset event, it will set a breakpoint at
the instruction specified by the saved value of the program counter.
The process will generate an exception each time that it reaches
the instruction pointed to by the saved program counter, prompting
S to compare its current user space context, namely, registers
and contents of writable memory pages with that of the async_reset
event. The async_reset event occurs when the data at the replayed
process matches that of the event. Once that happens, S can
remove the breakpoint and continue normal replay. Although this
signature-based record and replay can be expensive, the overhead
can be minimized by only recording differences in signatures. More
importantly, forcing a sync point is rarely needed in practice for
handling asynchronous events.

7. PERFORMANCE EVALUATION
We have implemented a S prototype as a Linux kernel mod-

ule and associated user-level tools. To demonstrate the effective-
ness of our approach, we evaluated the ability and performance
of our unoptimized prototype to record-replay real applications on
commodity multiprocessors and operating systems.

We ran our experiments on an IBM HS20 eServer BladeCen-
ter, each blade with dual 3.06 GHz Intel Xeon CPUs with hyper-
threading, 2.5 GB RAM, a 40 GB local disk, interconnected with
a Gigabit Ethernet switch. Each blade was running the Debian 3.1
distribution and the Linux 2.6.11.12 kernel and appears as a 4-CPU
multiprocessor to the operating system. For application workloads
that required clients and a server, we ran the clients on one blade
and the server on another.

We recorded and replayed a wide range of real applications,
listed in Table 3. The list includes (1) server applications such
as Apache in both multi-process (apache-p) and multi-threaded
(apache-t) configurations, MySQL (mysql), and an OpenSSH
server (ssh-s), (2) utility programs such as SSH clients (ssh-c),
make (make), untar (untar), compression programs such as gzip
and lzma, and a vi editor (editor), and (3) graphical desktop ap-
plications such as Firefox (firefox), Acrobat Reader (acroread),
MPlayer (mplayer), and OpenOffice (openoffice). To run the
graphical applications on the blade which lacks a monitor, we used
VNC (TightVNC Server 1.3.9) to provide a virtual desktop.

We measured the performance of S using the benchmark
workloads listed in Table 3. Applications were all run with their
default configurations. Workloads were selected to stress the sys-
tem to provide a conservative measure of performance. For exam-
ple, firefox runs the widely used SunSpider benchmark designed
to measure real-world web browser JavaScript performance. We

also included benchmarks that emulate multiple interactive users
such as ssh-s and ssh-c, which open multiple concurrent SSH
sessions, each having an emulated user input text into a vi editor at
world-record typing speed [18] to create a 5 KB file, then exiting.
We focus on quantifying the performance overhead and storage re-
quirements of running applications with S in terms of the cost
of continuously recording the execution, and speedup of replayed
execution versus recorded execution. Previous work shows that the
overhead of the virtual execution environment is small [16, 24].

Figure 4 shows the performance overhead of recording the appli-
cation workloads. Performance is measured as completion time in
all cases except for apache-p and apache-t which report perfor-
mance in completed requests per second. No frames were dropped
during logging of mplayer playback. Results are shown normal-
ized to native execution without recording. Recording overhead
was under 2.5% for server applications and under 7% for all desk-
top applications except for openoffice, which was 15%. For all
desktop applications, there was no user noticeable degradation in
interactive performance.

Figure 4 also shows the performance of replaying the applica-
tions workloads. Performance is measured as completion time,
normalized to execution with recording. Replaying speedup rel-
ative to recording was at least 1 in all cases, and reached as much
as a factor of 70 for ssh-c. The results demonstrate that S can
replay applications at least as fast as it records, as expected. This
is useful for fault-tolerant systems to guarantee that replay on the
backup does not slow down execution on the primary.

Two factors contribute to replay speedup: omitted in-kernel work
due to system calls partially or entirely skipped (e.g. network out-
put), and compressed time due to time waiting skipped at replay
(e.g. timer expiration). Application that do neither perform the
same work whether recording or replaying, and sustain speedups
close to 1. This includes computation-intensive workloads such as
make, urandom, untar, and editor. The speedup increases as the
workload exhibits more idle time in sleeping or blocking (mostly
waiting for input events). For instance, mplayer spends about 23%
of the time sleeping during recording, and its replay speedup is
roughly 1.3. Replay speedup is noticeably larger for workloads
that spend much of their time sleeping: 3.9 for acrobat, 7.1 for
apache-p, and 5.8 for apache-t. Interactive workloads obtained
the largest speedups: 19 for ssh-s and 70 for ssh-c.

Figure 5 shows the storage growth rate of recording. Storage
requirements are decomposed into memory-related events (mem-
ory), nondeterministic input data returned by system calls (input
data), and other data which is primarily system call return val-
ues and rendezvous points (syscalls). The storage growth rates
ranged from 100 KB/ s for ssh-c to almost 1.9 MB/ s for mysql.
These storage requirements are quite modest. When compressed
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Figure 4: Recording runtime overhead
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Figure 6: No. of processes and threads
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Figure 7: Sync points interval and length
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Figure 8: Count of signals and memory
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Figure 9: Delay of signals and memory

using lzma, storage growth rates dropped to between 1 to 90 KB/ s
for all scenarios except urandom, whose storage growth rate re-
mained a bit over 1.1 MB/ s. Most of the log of urandom is due to
input of random data, which does not compress well.

Figure 6 shows the average number of processes and threads run-
ning for each application scenario. The sum of the two is the av-
erage number of total Linux tasks running. All workloads except
editor consisted of multiple processes or threads, demonstrating
S’s ability to record and replay real multi-process and multi-
threaded application workloads. Five of the scenarios used threads:
apache-t, mysql, ssh-c, firefox, and openoffice. For all
of these scenarios except ssh-c, this correlates with the majority
of the log storage consisting of memory events, as shown in Fig-
ure 5. The threads in ssh-c are used in the benchmark to manage
concurrent sessions. They involve very little contention over shared
memory, and therefore do not contribute much to the log size. Con-
versely, apache-p shows mild shared memory activity despite be-
ing a multi-process application rather than multi-threaded.

Figure 7 shows the time interval between consecutive per pro-
cess sync points for each application scenario. The average time
interval is measured per process then averaged over all processes.
It is at most 30 µs for all scenarios except make, urandom and ed-

itor, for which it is less than 500 µs. These three are CPU inten-
sive workloads that produce sync points only due to system calls.
The maximum time interval between sync points for almost all ap-
plication workloads was less than 100 ms, which is also not large
and similar to the scheduling time quantum in Linux. The maxi-
mum time interval for three application workloads, make, fire-
fox, and openoffice, was higher, but only occurred once, dur-
ing the startup of each application. If we exclude these outliers
and compute the 99th percentile of the time interval between sync
points, the time interval is less than 10 ms.

Figure 7 also shows the average length of sync points per process
for each application scenario. It is at least 300 µs for all scenarios
except untar and mplayer, in which it is over 50 µs. More impor-
tantly, in all workloads the average time spent at a sync point is sig-
nificantly larger—over an order of magnitude in most cases—than
the time spent between sync point, or outside sync points. Pro-

cesses persist longer at sync points whenever, for example, they
block on I/O in a system call or wait for page ownership transfer.
During the time intervals within sync points, asynchronous events
for a process are delivered instantly and need not be deferred. In
other words, on average, most of the time asynchronous events can
be delivered promptly; and if not, then they are delayed for a short
period. This establishes the empirical grounds for S’s reliance
on sync points to successfully convert asynchronous events to syn-
chronous ones in a timely manner.

Figure 8 shows the total number of signals and shared memory
page faults due to S’s page ownership management mecha-
nism for each application scenario. Page faults not due to S
are not included. The totals are decomposed into those that are
handled instantly versus those that need to be deferred until a sync
point is reached. The measurements show that S provides
low-overhead execution recording even in the presence of a large
number of asynchronous events. Nearly all asynchronous events of
either type are handled instantly as they arrive, because the process
that is the target of these events is already executing in the kernel at
a sync point. Sync points not only happen frequently enough, but
also endure long enough, that the vast majority of asynchronous
events can be handled immediately without being deferred.

Observe in Figure 8 that asynchronous events due to shared mem-
ory page faults predominate over signals in scenarios that involve
multiple threads or shared memory. In these scenarios, page faults
due to S’s page ownership management occur in larger num-
bers, and, since they themselves are sync points, they contribute to
the pool of available sync points. The fraction of sync points due
to shared memory page faults of the total number of sync points
ranges from 10% in apache-p, to 30% in mysql, apache-t, fire-
fox, and openoffice, and up to 50% in mplayer. In other words,
applications that need sync points for shared memory accesses are
also likely to have sync points more frequently.

Figure 9 shows the amount of delay incurred for signals and
shared memory accesses. Signals were delayed at most 100 µs on
average, except ssh-c, which reached 220 µs. The average delay
for only those few deferred signals that could not be handled in-
stantly was at most 1 ms. CPU intensive workloads without shared
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memory produce sync points only due to system calls, and sus-
tain longer delays for deferred signals. For example, in make, 135
SIGCHLD signals were deferred as the parent process waited to
be scheduled while compilations occupied the CPUs. Only when
it was scheduled, it reached a sync point and handled the signal.
However, even without S, when the signal is delivered in-
stantly, the parent process would only handle the signal after a com-
parable delay since it would still wait to be scheduled. In multi-
threaded workloads, the delays for signals are longer, despite the
addition of sync points due to shared memory accesses. This is be-
cause our prototype only considered sync points due to system calls
for deferred signals. The delays would probably be more compara-
ble to those for shared memory access if sync points due to shared
memory were also used.

Unlike with signals, when a shared memory event occurs, the
process that faulted blocks until access is granted. Thus, whether
memory events are delayed and for how long is pivotal for the per-
formance of the system. Fortunately, shared memory accesses in-
troduce numerous additional sync points due to page ownership
transfers. The average delay for shared memory accesses was less
than 25 µs. If we consider only deferred shared memory accesses
that could not be handled instantly, the average delay increases
modestly to at most 60 µs. These delays are comparable to the
native service time of a page fault. S’s sync points convert
page ownership transfers from asynchronous events to synchronous
events with negligible impact on page fault performance, since most
asynchronous events are handled instantaneously.

Finally, through all the executions of the application scenarios,
we have never observed a situation in which a process failed to
reach a sync point in a reasonable time, or at all. Although S
has a mechanism in place to deal with delays that become too large,
we did not witness a need for this functionality in practice. Our ex-
periences and results demonstrate that sync points occur frequently
and are useful for enabling deterministic replay.

8. RELATED WORK
Replaying program execution has been of interest for over 40

years [2]. Hardware mechanisms [1, 8, 13, 19, 20, 21, 22, 33] face
a high implementation barrier and do not support record-replay on
commodity hardware. Virtual machine mechanisms [5, 9, 10, 32]
require replaying operating system execution just to replay appli-
cation execution. Almost none of them support replaying multi-
processor virtual machines, and the ones that do incur an order of
magnitude worse overhead for common applications like compila-
tion due to kernel-level sharing, such as writing files to the same
directory [10]. Application and library mechanisms [11, 12, 23,
26] cannot provide transparent record-replay for unmodified appli-
cations. Programming language mechanisms [6, 17, 25] do not
support widely-used applications written in languages that do not
provide record-replay primitives. Unlike these approaches, S
is an operating system mechanism. It works at a higher-level ab-
straction than hardware or virtual machine approaches to reduce
recording overhead. It works at a lower-level abstraction than appli-
cation, library, and programming language approaches to provide
transparent record-replay for unmodified applications.

Other operating system mechanisms have also been proposed [3,
4, 28, 30] that interpose between applications and the operating sys-
tem. None of them provides record-replay for multi-threaded and
multi-process applications. In fact, only TFT [4] shows any record-
replay results for real applications, namely gzip, a single process
application, but overhead was quite high. Unlike S, TFT is
only designed to replay a single process. Debugging using deter-
ministic replay (DUDR) [30] presents only a paper design with no

implementation or evaluation, while Flashback [28] and RR [3] are
largely incomplete with no results beyond those for a single, simple
test program. In contrast, S demonstrates for the first time that
record-replay of real multi-threaded and multi-process applications
is possible using an operating system approach.

A key issue for operating system mechanisms is replaying the
in-kernel side effects of system calls. This must be done for at least
some system calls in all replay systems. Previous approaches do
not solve the important problem of nondeterminism arising from
the order of execution of related system calls. TFT only replays a
single process, so this issue does not arise. DUDR and Flashback
hypothesize counting instructions to know when context switches
occur to track exact scheduling order to know the order of system
call execution among processes. However, they provide no mecha-
nism for obtaining and using the required cycle accurate counters,
and the approach itself does not work for multiprocessors. RR sug-
gests instrumenting the system call interface, but provides no actual
mechanism to do it. In contrast, S provides a new mechanism
using rendezvous points that solves this problem without tracking
exact scheduling order. S’s mechanism does not require hard-
ware support and works for multiprocessor systems.

Record-replay systems must record the exact location in an in-
struction stream at which an asynchronous event occurs. This can
be done by adding hardware support, modifying applications, or
writing applications with new language primitives to record exactly
when the application receives the event. To do this on commod-
ity hardware without application changes, all previous approaches
that deal with this issue [5, 9, 10, 27] rely on the existence of a
cycle accurate instruction counter. To deal with interrupt lag [29],
replay is done by interrupting execution some time before the asyn-
chronous event should occur, setting a breakpoint on the instruction
at which it should occur, then stopping at every breakpoint to see
if the instruction counter matches the recorded value. When they
match, the asynchronous event is delivered. In contrast, S in-
troduces a fundamentally different mechanism based on sync points
that does not rely on hardware performance counters.

TFT [4] proposed recording in periodic epochs for fault toler-
ance, and then deferring the delivery of signals sent in each epoch
until the respective epoch ends. Epochs are created by instrument-
ing applications to use counters to periodically return control to
TFT. This also makes it easier to determine when signals are deliv-
ered since they are delivered at well-defined epoch boundaries. The
idea is similar to S’s notion of deferring signal delivery until
sync points. But, unlike TFT, S does not require instrumenting
applications and does not define sync points based on any measure
of time or instruction counts. Instead, sync points are based on
system calls, page faults, and traps that occur as part of normal ap-
plication execution. Unlike TFT which only supports replaying a
single process, S uses sync points to enable replay of multi-
process and multi-threaded applications on multiprocessors.

Besides S, only SMP-ReVirt [10] can transparently replay
multiprocessor workloads that use shared memory. SMP-ReVirt
replays multiprocessor virtual machines where multiple CPUs may
access shared memory. It uses standard page protection to detect
memory races, and the concurrent read, exclusive write (CREW)
protocol [7, 17]. To record exactly when page access permissions
switch from one CPU to another, SMP-ReVirt records counter val-
ues in the same manner as it does for handling other asynchronous
events. RR [3] proposes a mechanism similar to SMP-ReVirt, but
notes problems with inaccuracy of hardware counters on modern
CPUs and has no record-replay results for any applications. In
contrast, S avoids counter inaccuracies and introduces sync
points based on the assumption that real applications perform fre-
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quent system activities that involve the kernel. This assumption
is the antithesis of SMP-ReVirt’s virtual machine approach which
must also record kernel execution. For example, SMP-ReVirt in-
curs an order of magnitude worse overhead than S for kernel
compilation due to frequent system activities that result in kernel-
level sharing. While SMP-ReVirt can provide whole system replay,
S can provide much more efficient application replay.

9. CONCLUSIONS AND FUTURE WORK
S is the first operating system mechanism to provide trans-

parent, deterministic execution record and replay of multi-threaded
and multi-process applications on commodity multiprocessors and
operating systems. S records and replays multiple processes
by accounting for nondeterministic interactions among processes
and their execution environment. S introduces rendezvous
points to ensure correct partial ordering of execution based on sys-
tem call dependencies, and sync points to convert asynchronous in-
teractions that can occur at arbitrary times into synchronous events
that are much easier to record and replay. S can transition
an application to running live at any time, and use checkpoints to
record and replay from any point in time.

We have implemented S without changing, relinking, or re-
compiling applications, libraries, or operating system kernels, and
without any specialized hardware support. It works on commodity
Linux operating systems, and commodity multi-core and multipro-
cessor hardware. Our evaluation shows for the first time that an op-
erating system mechanism can correctly and transparently record
and replay multi-process and multi-threaded applications on multi-
processors. The evaluation also provides strong empirical evidence
that real server and desktop applications perform frequent operating
system activities which can serve as sync points. S recording
overhead is modest for server applications including Apache and
MySQL, and for desktop applications including Firefox, Acrobat,
OpenOffice, parallel kernel compilation, and movie playback. Fu-
ture work will explore the utility of sync points for record-replay
of large-scale parallel applications.
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