
Structured Linux Kernel Projects for Teaching
Operating Systems Concepts

Oren Laadan
Dept of Computer Science

Columbia University
New York, NY 10027

orenl@cs.columbia.edu

Jason Nieh
Dept of Computer Science

Columbia University
New York, NY 10027

nieh@cs.columbia.edu

Nicolas Viennot
Dept of Computer Science

Columbia University
New York, NY 10027

nviennot@cs.columbia.edu

ABSTRACT
Linux has emerged as a widely-used platform for enabling
hands-on kernel programming experience to learn about op-
erating system concepts. However, developing pedagogically-
effective programming projects in the context of a complex,
production operating system can be a challenge. We present
a structured series of five Linux kernel programming projects
suitable for a one semester introductory operating systems
course to address this issue. Each assignment introduces stu-
dents to a core topic and major component of an operating
system while implicitly teaching them about various aspects
of a real-world operating system. Projects are of modest
coding complexity, but require students to understand and
leverage core components of the Linux operating system.
The learning benefits for students from this approach include
learning from real-world operating system code examples by
expert kernel designers and gaining software engineering ex-
perience managing production code complexity. We have
successfully used these structured Linux kernel projects to
teach over a thousand students in the introductory operating
systems course at Columbia University.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; K.3.2 [Computers
and Education]: Computer and Information Science Edu-
cation—computer science education

General Terms
Design, Experimentation, Human Factors

Keywords
Operating systems, computer science education, open-source

1. INTRODUCTION
Kernel programming projects provide crucial hands-on ex-

perience for helping students to understand operating sys-
tem concepts. Linux has emerged as a widely-used platform

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

for teaching operating systems because of its many advan-
tages. Its open-source software base and widely available
development tools make it easy for students to access its
internals. It provides students the ability to explore a real
production operating system, not just a toy system, thereby
also enhancing skills that can be immediately applied in the
workforce after graduation. It is already maintained by real
developers for real users, so there is no need to invest any ef-
fort maintaining a separate pedagogical operating system. It
provides real code examples by real developers for students
to learn from by example.

However, developing effective programming projects that
teach students systematically about real-world operating sys-
tem design and implementation in the context of a produc-
tion operating system can be a challenge. Production oper-
ating systems are large, complex pieces of software. To gain
a broad understanding of operating systems, it is useful to
have hands-on experience with several different major com-
ponents of an operating system. However, the sheer size of
these systems makes them difficult to understand. It may be
tempting to create projects that only touch on fringe aspects
of a production operating system to avoid its complexity.
However, fringe projects do not provide the opportunity to
learn about the core functionality of the kernel. Production
operating systems are also not primarily designed as teach-
ing tools, but instead to be used in commercial deployment.
Such operating systems are already fully functional and do
not have major missing subsystems that students can de-
sign and implement. Redesigning several major subsystems
of a production kernel may also not be feasible in the time
constraints of a course.

We present our efforts at Columbia University over the
past decade to leverage the benefits of Linux and address
the challenges of designing kernel programming projects that
provide educational value for an operating systems course.
We have developed a structured series of five Linux kernel
programming projects that exposes students to core compo-
nents of a production operating system with modest coding
complexity. These projects start with the basics of writ-
ing system calls and understanding the structure of pro-
cesses, progress into synchronization which is necessary for
understanding other aspects of operating system design and
implementation, then explore three core operating system
components in processor scheduling, virtual memory, and
file systems.

Our projects are designed to require students to read and
understand core components of the operating system to make
the modifications necessary to complete the projects. At

287

the same time, the coding complexity is modest enough for
groups of students with no previous operating systems back-
ground to successfully complete the projects in less than a
few hundred lines of code. In addition to learning about
the operating system components themselves, the projects
are designed to implicitly teach students about various as-
pects of operating system structure and understanding how
to modify a large code base and manage its complexity.

We have successfully used these structured Linux kernel
projects to teach over a thousand students in the introduc-
tory operating systems course at Columbia University. We
describe our experiences using these projects and analyze
various aspects of students’ submitted solutions. We demon-
strate that the designed coding complexity of the projects
is achieved as example project solutions are each under 400
lines of code and students’ submitted solutions on average
fall within the same range. We also demonstrate that com-
mon programming errors in students’ submitted solutions
become notably less frequent in subsequent projects as later
projects reinforce the concepts taught in earlier projects,
demonstrating that the projects provide an effective frame-
work for progressive learning.

2. KERNEL PROGRAMMING PROJECTS
The kernel programming projects focus on five core topics

in operating systems: system calls and processes, synchro-
nization mechanisms, processor scheduling, virtual memory,
and file systems. The topics and order of topics are in-
tentionally chosen as they introduce key operating system
concepts and build on one another. In particular, system
calls and processes start with less complex components of
the operating system and introduce students to basic kernel
structures. Synchronization is next as understanding proper
use of synchronization mechanisms is a prerequisite for be-
ing able to design and implement all other operating system
components. Processor scheduling builds on the knowledge
students have gained on the structure of processes from the
first assignment and the use of synchronization on the sec-
ond assignment. Virtual memory is deferred until the fourth
assignment to only then focus on one of the most complex
aspects of a production operating system. File systems is
last among the assignments to follow the ordering of topics
reflected in most common textbooks.

The assignments are carefully designed so that a group
of students with no previous operating systems background
can implement a correct solution in a few hundred lines of
code. We accomplish this by choosing specific, scope-limited
assignments that require intimate understanding of how the
existing operating system kernel operates. It is not uncom-
mon for students to spend at least as much time studying
and understanding existing kernel code as they do imple-
menting their solutions. Once students understand the rel-
evant mechanisms in the stock kernel well, the implementa-
tion itself is fairly straightforward in terms of kernel code.

For the assignments, we direct students to pay careful at-
tention to the handling of errors and unexpected conditions,
including resource unavailability, security restrictions, and
invalid inputs. While this is important for programming in
general, this is particularly important for kernel code. Un-
like user-space programs, the operating system kernel may
not simply give up and terminate when it encounters an
error. For example, when user-space programs terminate,
their memory is implicitly freed, but the kernel must explic-

itly clean up all used resources such as locks held and mem-
ory allocated when an operation fails. Furthermore, given
the increasing dominance of multicore systems, we require
that students generate code in a manner that is SMP-safe.
To do proper testing, students must generate test programs
in user-space that demonstrate the correctness of their ker-
nel code, including identifying corner cases.

2.1 System Calls and Processes
System calls lay the foundation for the interface between

processes and the operating system. Processes are the main
abstraction for application programs and the most impor-
tant entity managed by the operating system. The first ker-
nel project teaches students about basic concepts related to
system calls and processes by adding a new system call. We
design the project to acclimate students to Linux kernel pro-
gramming including the development environment such as
how to compile and install a new kernel and how to apply
debugging techniques.

Both system calls and processes are good topics for a first
kernel assignment because of their simplicity. Adding a new
system call does not require in-depth knowledge of any ker-
nel subsystem, and accessing process data is fairly straight-
forward. Moreover, both are fundamental notions that will
be used in all of the remaining assignments.

To teach students about the basics of processes, the sys-
tem call should perform a task that requires access to the
kernel process data so that students can learn about the in-
ternal representation of processes in the kernel. We focus
on process relationships, creation and termination of pro-
cesses, and how process properties are inherited. Because
in this assignment the students are not yet familiar with
synchronization methods, we provide template code to han-
dle synchronization and instruct the students to configure a
uniprocessor kernel.

While there are many choices about what a system call
might perform, we suggest designing the assignment to teach
students about two key concepts in addition to the technical
details of adding a new system call. First, the system call
should involve data transfer to or from the calling program
to illustrate the kernel-space versus the user-space view of
memory. Second, to exercise handling of unexpected con-
ditions in the kernel, we ask students to identify possible
error conditions and select meaningful values to return in
response. This also teaches how errors are propagated to the
calling program. These two concepts exemplify important
differences between implementing system calls and standard
library calls in user-space.

Example assignment: system calls (1). One exam-
ple assignment is to have students write a new system call
that outputs records about descendant processes of a given
process in DFS order. Each process record consists of some
information about the process, such as its process identifier
(PID), state and runtime statistics, and the PIDs of its par-
ent, first child, and next sibling. The system call takes three
arguments: the PID of the top process, a buffer to store the
data, and an integer that indicates the size of the buffer.

Pedagogically, this assignment helps students develop a
useful mix of skills. Students learn to traverse the process
hierarchy and collect data about individual processes. They
learn how to copy data back to user-space. They learn how
to use basic kernel data structures, especially kernel linked
list structures, which are used throughout the core compo-

288

nents of the kernel. They learn how to handle bad input
(e.g., invalid PID) or failed memory allocations in a graceful
manner. Finally, in testing the code, students need to pro-
duce process trees of specific forms, e.g. flat, deep, or very
large trees, which improves their knowledge about process
creation mechanisms and process relationships.

Example assignment: system calls (2). Another ex-
ample assignment is to have students write two different
types of system calls, one that modifies the behavior of exist-
ing system calls and the other to understand how processes
run. The first system call accepts two integer arguments
used to set a maximum limit on the number of bytes that
can be read or written in a single invocation of the read
and write system calls. This can be useful for testing the
correctness of a user-space program in handling unexpected
behavior of read and write system calls. The second system
call accepts two arguments–a buffer and its size–and fills the
buffer with a sequence of records describing when the caller
was scheduled to run. Each record indicates the start-time
and end-time of a scheduling period. Records are reported
only once, and data older than one minute is discarded to
avoid memory pressure.

While the first example assignment provides more experi-
ence with manipulating process list structures, this assign-
ment provides experience with modifying the kernel process
structure. In this example assignment, both system calls
require adding a new field to the process structure in the
kernel. Students need to adjust process creation code to cor-
rectly inherit (or not) the new fields by a child process. The
second system call also requires adjusting process termina-
tion for proper cleanup and provides students some insight
into the notion of context-switches.

2.2 Synchronization
Synchronization mechanisms are at the heart of an oper-

ating system’s ability to function safely and correctly in the
presence of concurrent or interleaving access to shared state.
The second kernel project teaches students about synchro-
nization and race conditions by implementing new kernel
synchronization primitives. Students are assumed to be able
to write system calls and use kernel list structures from their
experience with the first project.

The new primitive is a high level primitive to be imple-
mented using Linux’s basic synchronization building blocks.
We aim to achieve two learning objectives. First, students
will learn about and gain first-hand experience with the na-
tive basic kernel synchronization primitives such as spin-
locks, atomic counters, and wait queues. This is useful not
only for this assignment, but also for all of the following
assignments. Second, students will become familiar with
higher level synchronization concepts such as fairness and
the thundering herd, instead of re-implementing an already
existing mechanism in the kernel.

To further deepen students’ understanding of the topic, we
introduce in the assignments three additional twists that we
feel are often overlooked in operating systems classes. First,
we introduce the notion of reference counting for shared re-
sources by designing the new synchronization primitive to
have global scope so that it is visible to all processes. To
protect the validity of the new primitive in the presence of
concurrent create, access, and destroy operations, a solution
must maintain a reference count for the primitive and al-
low an object to be released only by the last user. Second,

we direct students to select appropriate kernel primitives to
produce a solution that is correct and efficient, in this or-
der. For instance, students should prefer a spinlock over
a semaphore if and only if they do not expect the process
that holds it to block (sleep) on it. Finally, on occasion it
is useful to forbid the use of certain synchronization primi-
tives, either to avoid trivializing the assignment, or to guide
students toward a path to a solution.

Example assignment: synchronization (1). One ex-
ample assignment is to have students implement a synchro-
nization barrier primitive that allows multiple processes to
block on an event until some other process triggers the event.
When a process triggers the event, all processes that are
blocked on the event are unblocked; the operation has no
effect if no processes are blocked. This is accomplished with
four new system calls: eventopen to create a new event and
return an event identifier; evenclose to destroy an event
and notify all blocked processes; eventwait to block on an
event; and eventsig to unblock all processes waiting on an
event. The scope of an event is system wide so that any
process may access an event by its identifier.

In this assignment we encourage students to leverage the
kernel wait queue primitive and to learn from the many ex-
isting examples in the kernel that show how to use it prop-
erly. We also remind students that a reference count must
be used to protect against concurrent access, using either
explicit synchronization or atomic types. Finally, students
are required to write a test program for their code. The test
program should show that the kernel functions work for the
usual cases, for example, with one process waiting, and also
for corner cases such as a call to eventsig with no processes
or multiple processes waiting, multiple concurrent calls to
create a new event, a call to eventclose when processes are
waiting, and a call to eventclose that coincides with an
eventsig or eventwait call to the same event instance.

Example assignment: synchronization (2). Another
example assignment is to have students implement a user-
space policy mutex mechanism. The mutex primitive is pro-
vided by the kernel, but the policy for deciding which task
to run in case of contention is determined by a user-space
daemon that picks the task that gets the mutex when avail-
able. This is accomplished with six new system calls: mu-

tex_open to create a new mutex and return its identifier;
mutex_close to close a mutex; mutex_down and mutex_up

to grab and release the mutex, possibly blocking if already
taken; mutex_list to fill a buffer with the list of all mu-
texes in the system and their waiters; and mutex_grant to
grant a given task that waits for a mutex access. The latter
two system calls are intended to be used by the user-space
daemon. The scope of a mutex is system wide so that any
process may open it by its name, but each task has its own
set of mutex identifiers.

This example assignment introduces three additional el-
ements compared to the previous example. First, because
mutex identifiers are per process, the students learn about
the idea of a descriptor table, conceptually similar to the file
descriptor table. Furthermore, they combine skills from the
assignment on system calls to implement this table as an ex-
tension to the in-kernel process structure, which reinforces
their knowledge. Second, we restrict students to use only
spinlocks and atomic counters, as using the native mutex
primitive would trivialize the assignment. Finally, moving
some functionality to user-space (specifically, the policy that

289

determines the order in which waiting tasks gain access to
a mutex) is useful for two reasons. First, working in user-
space makes it easier to debug and experiment with different
policies, e.g., to avoid the thundering herd effect. Second,
through this split of functionality, students learn about the
tradeoffs and possibilities in designing operating system in-
terfaces and deciding on the boundary between the kernel
and user-space.

2.3 Scheduling
Scheduling is a key concept crucial for an operating system

to provide time-sharing and multitasking, while consider-
ing metrics such as throughput, response time, and fairness.
The third kernel project teaches students about scheduling
by having them modify the existing Linux kernel scheduler
to add a new scheduling policy. Recent Linux kernels are
particularly amenable to this approach because they provide
a framework designed for adding new scheduling policies, as
well as several existing scheduling policies which can be used
as examples for implementing new scheduling policies.

The new scheduling policy can be any new policy, but we
have several learning objectives to achieve. Students will
learn about and gain first-hand experience with the struc-
ture of a kernel scheduler and how scheduling algorithms fit
within the context of that structure. Students will learn how
processes switch among different states of execution, such as
sleeping, runnable, and running, and how those state tran-
sitions are handled as part of scheduler functions. Students
will learn how multiple scheduling policies are typically sup-
ported by a common scheduling mechanism. Students will
learn about what scheduling parameters can affect schedul-
ing and how they are set or modified over time.

This is the first assignment that requires students to deal
with a more substantial kernel subsystem, but the scheduler
code is localized to just a few files and the assignment still
only involves modification of only a relatively modest num-
ber of lines of kernel code. For simplicity, one can focus on
uniprocessor scheduling policies to avoid the additional mul-
tiprocessor scheduling complexity of managing distributed
processor queues and load balancing among them. The as-
signment builds on the previous two kernel programming
projects as students need to write new system calls to con-
trol the scheduler and they need to be careful to protect
kernel data structures with proper locking mechanisms.

Example assignment: scheduling (1). One example
assignment is to have students implement a User-Weighted-
Round-Robin (UWRR) scheduling policy. It operates by
switching, round-robin, among users with runnable processes,
giving each user a share of the CPU when it is that user’s
turn. The scheduler uses a hierarchical scheme to choose
which process to run: first, a user is chosen, then, a process
associated with that user is chosen. Each user has an asso-
ciated weight that determines the proportional share alloca-
tion of that user. This scheduler was chosen both because it
is easy to understand and implement, and because students
can easily see why such a scheduling policy might be useful.
It also does not cause starvation of processes if implemented
correctly, making it easier for students to debug.

Example assignment: scheduling (2). Another ex-
ample assignment is to have students implement a Container-
Weighted-Round-Robin (CWRR) scheduling policy. It op-
erates in a manner similiar to the UWRR scheduling pol-
icy, but with Linux containers being used as the grouping

mechanism for processes instead of user identifiers. Process
containers are a powerful isolation mechanism that is in-
creasingly being included in production operating systems,
so this assignment provides an opportunity for students to
learn about this mechanism in the context of scheduling.

2.4 Virtual Memory
Virtual memory is another fundamental concept in oper-

ating systems. The fourth kernel project teaches students in
detail about virtual memory and the paging system by hav-
ing them implement mechanisms to measure and visualize
how memory pages are managed and used, and then create
programs that produce different memory access patterns.

We focus on measuring and visualizing how memory pages
are managed and used, as opposed to implementing new
virtual memory mechanisms. Because the virtual memory
subsystem is typically the most complex part of the oper-
ating system, it can be difficult to cover any portion of it
in any reasonable depth. We chose not to focus on rela-
tively isolated parts of the virtual memory subsystem, such
as memory allocators or the page replacement policy. In-
stead, we focus on mechanisms related to memory pages to
cover a wider range of topics central to virtual memory in-
cluding page table management, page faults, copy-on-write,
and address translation as just a few examples. Implement-
ing new virtual memory management mechanisms that cover
these topics would be difficult for students to do in a rea-
sonable amount of time for a production operating system.
Our measurement mechanism approach focuses on students
gaining working knowledge of the kernel’s memory subsys-
tem. Once students understand the stock kernel well, the
implementation itself is fairly straightforward and requires
under a few hundreds lines of new kernel code.

Example assignment: virtual memory (1). One ex-
ample assignment is to have students implement a mecha-
nism to visualize how memory pages are used by modifying
the kernel so that the /proc/[PID]/maps file show additional
information about pages in each memory region. For each
memory region displayed we add a string that represents all
the pages of that region, such that each page is denoted by
a ’.’ if not present, a ’1-9’ for the page reference count if less
than 10 if the page is present, or ’x’ otherwise.

This assignment is useful because it helps students be-
come thoroughly familiar with virtual memory concepts like
the page table and paging, and process memory layout. To
test their solutions, students must write user-space programs
that generate memory regions with specific patterns, such as
only not present pages (’......’), all pages with a given refer-
ence count (’222222’), and even arbitrary valid strings. By
writing test programs that produce different memory usage
behaviors, students gain further insight into virtual memory
internals. Finally, we reinforce the knowledge by also requir-
ing students to examine the output of /proc/[PID]/maps for
common programs and explain the role of each region dis-
played (e.g., code, stack, heap), its page table mappings,
and how that data differs between different programs.

Example assignment: virtual memory (2). Another
example assignment is to have students implement a frame-
work to track the working set of processes, and then add a
new system call to report to user-space the data collected.
The system call fills a user supplied buffer with records.
Each record describes a single memory region and carries a
bitmap of the pages accessed recently in that region. Re-

290

gions without recently accessed pages are not reported. The
system call then resets the monitored state to start collect-
ing only new data.

One way to approach this assignment is to use the hard-
ware access bit of the page table as an indication to whether
a page was accessed. Because this flag is also used and re-
set by other functions in the kernel, students must study
the related code and understand the implications of changes
they introduce. For simplicity, students are allowed to ig-
nore changes to address space layout such as due to mapping
new memory regions, as long as their code does not crash.
However, we do require students to identify the respective
system calls and discuss the changes required to accommo-
date their effects, to raise students’ awareness to this caveat.

Example assignment: virtual memory (3). Another
example assignment is to have students implement a frame-
work to track the modified set of processes. This is a varia-
tion of the previous example. The modified set is similar to
the working set, but includes only pages that were modified,
not just accessed. As before, students also add a system
call to report the data collected to user-space and reset the
monitored state.

Unlike before, using the hardware access bit of the page
table is insufficient to track the modified set as it does not
indicate whether a page is modified when accessed. Rather,
students need to alter the page table of the process and
convert all writable pages to be write-protected so that write
accesses are intercepted. When a write-fault occurs, the
kernel records the page address and restores the original
protection of said page. By implementing this mechanism
and writing test programs that produce write-faults, read-
faults followed by writes, writes without faults, and copy-
on-write faults, students experiment with and demonstrate
knowledge about the page fault handler mechanism.

2.5 File Systems
Files are the other main abstraction other than processes

that are managed by operating systems. As a fifth kernel
project, we have students implement extensions to an exist-
ing file system code. This assignment requires students to
gain practical understanding of how the virtual file system
(VFS) infrastructure is designed, which is the key file sys-
tem abstraction layer that every file system designer needs
to understand. The project also gives students an opportu-
nity to learn about the underlying file system realization of
some VFS methods.

Disk-based file systems can be very complex, so we fo-
cus on implementing pseudo file systems. Pseudo file sys-
tems do not represent real, physical storage, but instead re-
side entirely in main memory and store files and directories
that represent runtime information, such as procfs, sysfs,
ramfs, and devpts, to name a few. Pseudo file systems make
good candidates for pedagogic purposes: not only are they
an effective platform to practice file system development,
but they are also often used to report other kernel state and
thus expose students to additional kernel mechanisms. To
ease students into a successful solution we provide a skele-
ton implementation of a pseudo file system, saving the gory
details of developing one from scratch.

Example assignment: file systems (1). One exam-
ple assignment is to have students implement a pseudo file
system to show the users currently running on a system,
and the processes that they own. When mounted, the top

level directory contains subdirectories that correspond to
active users and are named after the respective user iden-
tifier. Each subdirectory holds two files: “proc” lists the
processes of that user, and “signal” provides a way to signal
all the processes of a given user in an atomic manner. In
this way, students learn not only about file system princi-
ples, but also about users and groups. Moreover, a correct
solution requires students to apply skills acquired from the
second project on synchronization to manage race free access
to shared objects.

Example assignment: file systems (2). Another ex-
ample assignment is to have students implement a pseudo
file system that gives information about the process hierar-
chy, by mirroring the tree structure. In this file system, di-
rectories correspond to processes and are named after the re-
spective process’s PID. Each directory holds one file “status”
which contains select information about the process, and as
many subdirectories as it has children. An advantage of this
variation on the previous example is that it builds directly
on skills and code developed in the first project on system
calls and processes. By presenting an alternative mechanism
to achieve the same goal, we illustrate the design options
available to operating system builders, and foster compar-
isons between the two approaches in terms of usability and
implementation difficulty.

3. EXPERIENCES
We have taught the introductory operating systems course

at Columbia University using these Linux kernel projects for
about a decade. Over a thousand students have taken this
course. We assign five projects for a semester course, one
project for each of the core topics: system calls and pro-
cesses, synchronization, scheduling, virtual memory, and file
systems. Students work in teams of two or three and are
given two weeks to complete each project. We currently
provide a VMware virtual appliance for doing the kernel
project assignments, which can be easily deployed and run
on students’ personal computers without interfering with
any existing software already on the students’ computers.
A distributed version control system is used to provide re-
liable storage for students’ homework assignments, support
students working together on group homework assignments,
and manage the submission and grading of homework as-
signments. The experience of both students and instructors
has been quite positive [4, 7].

An important consideration in designing the projects was
to keep the coding complexity modest enough for groups of
students with no prior experience with operating systems to
successfully complete the projects with reasonable effort. To
assess our approach in this aspect, we compared the size of
our example solutions for a representative set of projects, to
the average size of the students’ solutions. The results are
given in Table 1 in lines of code after stripping comments
and blank lines. The results show that in all the projects,

Project Example Students’
solution solutions

System calls and processes 146 164
Synchronization 353 465
Scheduling 399 389
Virtual Memory 66 63
File System 132 120

Table 1: Projects solutions sizes in lines-of-code

291

our proposed solution requires under 400 lines of code, and
in nearly all cases students produce solutions of compara-
ble size. The exception is the assignment on synchroniza-
tion, where students produced more complicated solutions
for the problem, with approximately 30% more lines of code
on average. Producing an example solution in advance was
an important step in the process of designing the specifics
of assignments to estimate the expected complexity, and in-
strumental to ensure that it would be possible for students to
complete with a reasonable limited amount of time coding.

It is also noteworthy to examine common errors encoun-
tered in the students’ solutions as an indication to how stu-
dents’ knowledge and skills evolve as they proceed from one
project to the next. For instance, two common mistakes in
the first assignment on system calls were lack of input ar-
gument validation and incomplete error handling. However,
they became notably less frequent in subsequent projects
in which students had to repeatedly code additional system
calls. Similarly, two common mistakes in the second assign-
ment on synchronization were omitted locking around access
to shared data and allowing a process to sleep while holding
a spinlock. These errors became increasingly scarce later
on, even though virtually all subsequent projects required
repeated use of similar synchronization techniques. In this
context, arranging the order of projects according to their
dependencies is crucial to produce an effective framework
for progressive learning.

Finally, although many students find kernel-level program-
ming very difficult at first, they often say the work invest-
ment is warranted because they are learning a useful and
applicable skill. We have received many comments from
alumni who say the course turned out to be most useful
course to them after graduation.

4. RELATED WORK
Courses that involve kernel-level projects with production

operating systems have gained popularity in recent years; in
2005, 14% of the top 100 computer science schools reported
using the Linux kernel in some form in their undergraduate
operating systems course [1]. Nieh et al [6, 7] presents some
early work on teaching operating systems by programming
directly with the Linux kernel. Our work builds on this prior
work and experience by describing a new, more structured
series of Linux kernel projects with extensive examples for
teaching core operating system concepts. Our work also
leverages this prior work by using virtual machines to pro-
vide the necessary infrastructure to enable students to do
kernel-level development.

Other Linux kernel projects have also been used for teach-
ing. The SOFTICE [2] project advocates Linux Kernel Mod-
ules (LKM) to enhance students’ hands-on experience. How-
ever, LKMs provide a narrow view of the kernel with a lim-
ited set of interfaces, and thus severely restrict the potential
scope of projects. Lawson et al [5] describe one project
in which students modify a custom Linux kernel designed
to run on the iPod. Hess et al [3] describe some projects
taught during six terms, with a course assessment. How-
ever, these projects lack structure and are suboptimal in
that they may oversimplify a topic or focus on a simpler but
tangential kernel component, degrading the utility of the as-
signment. We address these issues by providing guidelines
and rationale for designing new projects to achieve specific
learning objectives, as well as multiple examples from five

core topics of operating system concepts. The examples are
carefully chosen to meet the objectives and ease students
incrementally into the world of kernel programming.

5. CONCLUSIONS
We have developed a structured series of Linux kernel

projects for teaching operating system concepts. The projects
progressively introduce students to core topics and major
components of operating systems, namely system calls and
processes, synchronization, scheduling, virtual memory, and
file systems. At the same time, they implicitly teach stu-
dents about various aspects of a real-world operating system
and managing the code complexity of a large software sys-
tem. The projects require students to understand and lever-
age core components of the operating system while keep-
ing the coding complexity modest. We presented guidelines
and rationale for designing new projects to achieve specific
learning objectives, and provide examples of eleven different
projects that can be used.

Our experiences teaching over a thousand students in the
introductory operating systems course at Columbia Uni-
versity demonstrate the pedagogical value of these kernel
projects in practice. We have shown that the designed cod-
ing complexity of the projects is achieved as example project
solutions are each under 400 lines of code and students’ sub-
mitted solutions on average fall within the same range. We
have also shown that common programming errors in stu-
dents’ submitted solutions become notably less frequent in
subsequent projects as later projects reinforce the concepts
taught in earlier projects, demonstrating that the projects
provide an effective framework for progressive learning.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-

0905246, CNS-0914845, and CNS-1018355.

7. REFERENCES
[1] C. L. Anderson and M. Nguyen. A Survey of

Contemporary Instructional Operating Systems for Use
in Undergraduate Courses. Journal of Computing
Sciences in Colleges, 21(1):183–190, 2005.

[2] A. Gaspar and C. Godwin. Root-kits & Loadable
Kernel Modules: Exploiting the Linux Kernel for Fun
and (Educational) Profit. Journal of Computer
Sciences in Colleges, 22(2):244–250, 2006.

[3] R. Hess and P. Paulson. Linux Kernel Projects for an
Undergraduate Operating Systems Course. In
Proceedings of SIGCSE 2010, Milwaukee, WI, Mar.
2010.

[4] O. Laadan, J. Nieh, and N. Viennot. Teaching
Operating Systems Using Virtual Appliances and
Distributed Version Control. In Proceedings of SIGCSE
2010, Milwaukee, WI, Mar. 2010.

[5] B. Lawson and L. Barnett. Using iPodLinux in an
Introductory OS Course. In Proceedings of SIGCSE
2008, Portland, OR, Mar. 2008.

[6] J. Nieh and Özgür Can Leonard. Examining VMware.
Dr. Dobb’s Journal, pages 70–76, Aug. 2000.

[7] J. Nieh and C. Vaill. Experiences Teaching Operating
Systems Using Virtual Platforms and Linux. In
Proceedings of SIGCSE 2005, St. Louis, MO, Feb. 2005.

292

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

