
Appeared in The Linux Symposium 2010, Ottawa, July 2010

Linux-CR: Transparent Application Checkpoint-Restart in Linux

Oren Laadan
Columbia University

orenl@cs.columbia.edu

Serge E. Hallyn
IBM

serge@hallyn.com

Abstract

Application checkpoint-restart is the ability to save the
state of a running application so that it can later resume
its execution from the time of the checkpoint. Applica-
tion checkpoint-restart provides many useful benefits in-
cluding fault recovery, advanced resources sharing, dy-
namic load balancing and improved service availability.
For several years the Linux kernel has been gaining the
necessary groundwork for such functionality, and now
support for kernel based transparent checkpoint-restart
is also maturing. In this paper we present the imple-
mentation of Linux checkpoint-restart, which aims for
inclusion in Linux mainline. We explain the usage model
and describe the user interfaces and some key kernel in-
terfaces. Finally, we present preliminary performance
results of the implementation.

1 Introduction

Application checkpoint-restart can provide many ben-
efits, including fault recovery by rolling back applica-
tions to a previous checkpoint, better response time by
restarting applications from checkpoints instead of from
scratch, and better system utilization by suspending jobs
on demand. Application migration is useful for dynamic
load balancing by moving applications to less loaded
hosts, fault resilience by migrating applications off of
faulty hosts, and improved availability by evacuating ap-
plications before host maintenance so that they continue
to run with minimal downtime.

While application checkpoint-restart can be performed
at different levels, choosing the correct level to transpar-
ently support unmodified applications is crucial in prac-
tice to enable deployment and widespread use. The two
main approaches for providing application checkpoint-
restart are in userspace or in the operating system kernel.

Userspace approaches are simple to implement and use,
but lack transparency and severely limit the types of ap-
plications that can be supported. In contrast, kernel ap-
proaches utilize operating system support to provide full
application transparency, without requiring any changes
to applications.

Given the benefits of the kernel level approach, it has
been the focus of several projects that aim to provide ap-
plication checkpoint-restart for Linux [5, 9, 12, 14, 16,
20]. However, none of them is integrated into the main-
stream Linux—they are implemented as kernel modules
or sets of kernel patches instead. As such, they incur a
burden both on users because they are cumbersome to
install, and on developers because maintaining them on
top of quickly changing upstream kernels is a sisyphean
task and they quickly fall behind.

We present Linux-CR, an implementation of transpar-
ent application checkpoint-restart in Linux, which aims
for inclusion in the Linux mainline kernel. Linux-CR
builds on the experience garnered through the previous
out-of-mainstream projects. It benefits from many of the
supporting features needed for checkpoint and restart
that are available upstream today, including the ability
to isolate applications inside containers using names-
paces, and to selectively freeze applications using the
freezer control group. Linux-CR’s checkpoint-restart is
transparent, secure, reliable, and efficient, and does not
adversely impact the performance or code quality of the
rest of the Linux kernel.

The remainder of the paper is organized as follows. Sec-
tion 2 describes Linux checkpoint-restart usage model
from a user’s point of view. Section 3 presents in detail
the checkpoint-restart architecture. Section 4 provides
an overview of the in-kernel API for checkpoint-restart.
Section 5 presents experimental results. Section 6 dis-
cusses related work. Finally, we present some conclud-
ing remarks.

1

Appeared in The Linux Symposium 2010, Ottawa, July 2010

2 Usage

The granularity of checkpoint-restart is a process hier-
archy. A checkpoint begins at a task which is the root
of the hierarchy, and proceeds recursively to include all
the descendant processes. It generates a checkpoint im-
age which represents the state of the process hierarchy.
A restart takes a checkpoint image as input to create an
equivalent process hierarchy and restore the state of the
processes accordingly.

Before a checkpoint begins, and for the duration of the
entire checkpoint, all processes in the hierarchy must be
frozen. This is necessary to prevent them from modi-
fying system state while a checkpoint is underway, and
thus avoid inconsistencies from occurring in the check-
point image. Freezing the processes also puts them in
a known state–just before returning to userspace–which
is useful because it is a state with only a trivial kernel
stack to save and restore.

Linux-CR supports two main forms of checkpoint: con-
tainer checkpoint and subtree checkpoint. The distinc-
tion between them depends on whether the checkpointed
hierarchy is “self contained” and “isolated”. The term
“self contained” refers to a hierarchy that includes all
the processes that are referenced in it. In particular, it
must include all parent, child, and sibling processes, and
also orphan processes that were re-parented. The term
“isolated” refers to a hierarchy whose resources are only
referenced by processes that belong to the hierarchy. For
example, open file handles held by processes in the hi-
erarchy may not be shared by processes not in the hi-
erarchy. A key property of hierarchies that satisfy both
conditions is that their checkpoints are consistent and
reliable, and therefore guarantee a successful restart.

Container checkpoint operates on process hierarchies
that are both isolated and self contained. In Linux, iso-
lated and self-contained hierarchies are created using
namespaces [4], which facilitate the provision of pri-
vate sets of resources for groups of processes. In par-
ticular, the PID-namespace can be used to generate a
sub-hierarchy that is self contained. A useful manage-
ment tool for this is Linux Containers [13], which lever-
ages namespaces to encapsulate applications inside vir-
tual execution environments to give them the illusion of
running privately.

Checkpointing an entire container ensures that pro-
cesses inside the container do not depend on processes

from the outside. To ensure also that the checkpoint is
consistent, the state of shared resources in use by pro-
cesses in the container must remain unmodified for the
duration the checkpoint. Because the processes in the
container are frozen they may not alter the state. Thus
it suffices to require that, at checkpoint time, none of
the resources are referenced by processes from the out-
side. Combined, these properties guarantee that a future
restart from a container checkpoint will always succeed.
Note that to leverage container checkpoint, users must
launch those application that they wish to checkpoint
inside containers.

Subtree checkpoint operates on arbitrary hierarchies.
Subtree checkpoints are especially handy since they do
not require users to launch their applications in a spe-
cific way. For example, casual users that execute long-
running computations can simply checkpoint their jobs
periodically. However, subtree checkpoints cannot pro-
vide the same guarantees as container checkpoints. For
instance, because checkpoint iterates the hierarchy from
the top down, it will not reach orphan processes unless it
begins with the init(1) process, so orphan processes
will not be recreated and restored at restart. Instead, it
is the user’s responsibility to ensure that dependencies
on processes outside the hierarchy and resource sharing
from outside the hierarchy either do not exist or can be
safely ignored. For example, a parent process may re-
main outside the hierarchy if we know that the child pro-
cess will never attempt to access it. In addition, if out-
side processes share state with the container, they must
not modify that state while checkpoint takes place.

We support a third form of checkpoint: self-checkpoint.
Self-checkpoint allows a running process to checkpoint
itself and save its own state, so that it can restart from
that state at a later time. It does not capture the relation-
ships of the process with other processes, or any sharing
of resources. It is most useful for standalone processes
wishing to be able to save and restore their state. Self-
checkpoint occurs by an explicit system call and always
takes place in the context of the calling process. The
process need not be frozen for the duration of the check-
point. This form of checkpoint is analogous to the fork
system call in that the system call may return in two dif-
ferent contexts: one when the checkpoint completes and
another following a successful restart. The process can
use the return value from the system call to distinguish
between the two cases: a successful checkpoint opera-
tion will return a “checkpoint ID” which is a non-zero

2

Appeared in The Linux Symposium 2010, Ottawa, July 2010

positive integer, while a successful restart operation al-
ways returns zero.

2.1 Userspace Tools

The userspace tools consist of three programs: check-
point to take a checkpoint of a process hierarchy, restart
to restart a process hierarchy from a checkpoint image,
and ckptinfo to provide information on the contents of
a checkpoint image. A fourth utility, nsexec, allows
users to execute applications inside a container by creat-
ing an isolated namespace environment for them. These
tools provide the most basic userspace layer on top of
the bare kernel functionality. Higher level abstractions
for container management and related functionality are
provided by packages like lxc [3] (of Linux Containers)
and libvirt [2].

Figure 1 provides a practical example that illustrates the
steps involved to launch an application inside a con-
tainer, then checkpoint it, and finally restart it in another
container. In the example, the user launches a session
with an sshd daemon and a screen server inside a new
container.

Lines 1–3 create a freezer control group to encapsulate
the process hierarchy to be checkpointed. Lines 5–13
create a script to start the processes, and the script is
executed in line 15. In line 7 the script joins the freezer
control group. Descendant processes will also belong
there by inheritance, so that later it will be possible to
freeze the entire process hierarchy. Lines 8–10 close
the standard input, output and error to decouple the new
container from the current environment and ensure that
it does not depend on tty devices.

In line 15, nsexec launches the script inside a new pri-
vate set of namespaces. Lines 18–21 show how the ap-
plication is checkpointed. First, in line 18 we freeze
the processes in the container using the freezer control
group. We use the checkpoint utility in line 19 to check-
point the container, using the script’s PID to indicate the
root of the target process hierarchy. In the example, we
kill the application once the checkpoint is completed,
and thaw the (now empty) control group. We restart the
application in line 23. Finally, in line 25 we show how
to examine the contents of the checkpoint image using
the ckptinfo utility.

The log files provided to both the checkpoint and restart
commands are used for status and error reports. Should

1 $ mkdir -p /cgroup
$ mount -t cgroup -o freezer cgroup /cgroup
$ mkdir /cgroup/1

5 $ cat > myscript.sh << EOF
#!/bin/sh
echo $$ > /cgroup/1/tasks
exec 0>&-
exec 1>&-

10 exec 2>&-
/usr/sbin/sshd -p 999
screen -A -d -m -S mysession somejob.sh
EOF

15 $ nohup nsexec -tgcmpiUP pid myscript.sh &

$ PID=‘cat pid‘
$ echo FROZEN > /cgroup/1/freezer.state
$ checkpoint $PID -l clog -o image.out

20 $ kill -9 $PID
$ echo THAWED > /cgroup/1/freezer.state

$ restart -l rlog -i image.out

25 $ ckptinfo -ve < image.out

Figure 1: A simple checkpoint-restart example

a failure occur during either operation, the log file will
contain error messages from the kernel that carry more
detailed information about the nature of the error. Fur-
ther debugging information can be gained from the
checkpoint image itself with the ckptinfo command, and
from the restart program by using the “-vd” switches.

2.2 System Calls

The userspace API consists of two new system calls for
checkpoint and restart, as follows:

• long checkpoint(pid, fd, flags, logfd)

This system call serves to request a checkpoint of a pro-
cess hierarchy whose root task is identified by @pid, and
pass the output to the open file indicated by the file de-
scriptor @fd. If @logfd is not -1, it indicates an open
file to which error and debug messages are written. Fi-
nally, @flags determines how the checkpoint is taken,
and may hold one or more of the values listed in Table 1.

On success the system call returns a positive checkpoint
identifier. In the future, a checkpoint image may op-
tionally be briefly preserved in kernel memory. In such
cases, the identifier would serve to reference that image.
On failure the return value is -1, and errno indicates a
suitable error value.

In self-checkpoint, where a process checkpoints itself, it
is necessary to distinguish between the first return from

3

Appeared in The Linux Symposium 2010, Ottawa, July 2010

Operation Flags Flag description

Checkpoint
CHECKPOINT_SUBTREE perform a subtree checkpoint
CHECKPOINT_NETNS include network namespace state

Restart

RESTART_TASKSELF perform a self-restart
RESTART_FROZEN freeze all the restored tasks after restart
RESTART_GHOST indicate a process that is a place-holder
RESTART_KEEP_LSM restore checkpointed MAC labels (if permitted)
RESTART_CONN_RESET force open sockets to a closed state

Table 1: System call flags (checkpoint and restart)

a successful checkpoint, and a subsequent return from
the same system call but following a successful restart.
This distinction is achieved using the return value, simi-
larly to sys_fork. Specifically, the system call returns
plain 0 if it came from a successful restart. In either
case, when the operation fails the return value is -1, and
errno indicates a suitable error value.

• long sys_restart(pid, fd, flags, logfd)

This system call serves to restore a process hierarchy
from a checkpoint image stored in the open file indi-
cated by the file descriptor @fd. It is intended to be
called by all the restarting tasks in the hierarchy, and by
a special process that coordinates the restart operation.
When called by the coordinator, @pid indicates the root
task of the hierarchy (as seen in the coordinator’s PID-
namespace). The root task must be a child of the coor-
dinator. When not called by the coordinator, @pid must
remain 0. If @logfd is not -1, it indicates an open file
to which error and debug messages are written. Finally,
@flags determines how the checkpoint is taken, and
may hold one or more of the values listed in Table 1.

On success the system call returns in the context of
the process as it was saved at the time of the check-
point. The exact behavior depends on how and when
the checkpoint was taken. If the process was executing
in userspace prior to the checkpoint, then the restart will
arrange for it to resume execution in userspace exactly
where it was interrupted. If the process was executing
a system call, then the return value will be set to the re-
turn value of that system call whether it completed or
was interrupted. For a self-checkpoint, the restart will
arrange for the process to resume execution at the first
instruction after the original call to sys_checkpoint,
with the system call’s return value set to 0 to indicate
that this is the result of a restart. On failure the return
value is -1 and errno indicates a suitable error value.

3 Architecture

The crux of checkpoint-restart is a mechanism to se-
rialize the execution state of a process hierarchy, and
to restore the process hierarchy and its state from the
saved state. For checkpoint-restart of multi-process ap-
plications, not only must the state associated with each
process be saved and restored, but the state saved and
restored must be globally consistent and preserve pro-
cess dependencies. Furthermore, for checkpoint-restart
to be useful in practice, it is crucial that it transparently
support existing applications.

To guarantee that the state saved is globally consistent
among all processes in a hierarchy, we must satisfy two
requirements. First, the processes must be frozen for the
duration of the checkpoint. Second, the resources that
they use must not be modified by processes not in the
hierarchy. These requirements ensure that the state will
not be modified by processes in or outside the hierarchy
while the execution state is being saved.

To guarantee that the operation is transparent to appli-
cations, we must satisfy two more requirements. First,
the state must include all the resources in use by pro-
cesses. Second, resource identifiers in use at the time
of the checkpoint must be available when the state is re-
stored. These requirements ensure not only that all the
necessary state exists when restart completes, but also
that it is visible to the application as it was before the
checkpoint, so that the application remains unaware.

Linux-CR builds on the freezer subsystem to achieve
quiescence of processes. This subsystem was created
to allow the kernel to freeze all userspace processes
in preparation for a full system suspend to disk. To
accommodate checkpoint-restart, the freezer subsystem
was recently re-purposed to enable freezing of groups
of processes, with the introduction of the freezer control
group.

4

Appeared in The Linux Symposium 2010, Ottawa, July 2010

Linux-CR leverages namespaces [4] to encapsulate pro-
cesses in a self-contained unit that isolates them from
other processes in the system and decouples them from
the underlying host. Namespaces provide virtual private
resource names: resource identifiers within a names-
pace are localized to the namespace. Not only are they
invisible to processes outside that namespace, but they
do not collide with resource identifiers in other names-
paces. Thus, resource identifiers, such as PIDs, can re-
main constant throughout the life of a process even if
the process is checkpointed and later restarted, possi-
bly on a different machine. Without it, identifiers may
in fact be in use by other processes in the system. To
accommodate checkpoint-restart, namespaces were ex-
tended to allow restarting processes to select predeter-
mined identifiers upon the allocation of their resources,
so that those processes can reclaim the same set of iden-
tifiers they had used prior to the checkpoint.

For simplicity, we describe the checkpoint-restart mech-
anism assuming container checkpoint. We also assume
a shared storage (across participating machines), and
that the filesystem remains unmodified between check-
point and restart. In this case, the filesystem state is
not generally saved and restored as part of the check-
point image, to reduce checkpoint image size. Available
filesystem snapshot functionality [6, 10, 15] can be used
to also provide a checkpointed filesystem image. We fo-
cus only on checkpointing process state; details on how
to checkpoint filesystem, network, and device state are
beyond the scope of this paper.

3.1 Kernel vs. Userspace

Previous approaches to checkpoint-restart have run the
gamut from fully in-kernel to hybrid to fully userspace
implementations. While many properties of processes
and resources can be recorded and restored in userspace,
some state exists that cannot be recorded or restarted
from userspace. To provide application transparency
and allow applications to use the full range of operat-
ing system services, we chose to implement checkpoint-
restart in the kernel. In addition, an in-kernel implemen-
tation is not limited to user visible APIs such as system
calls–it can use the full range of kernel APIs. This not
only simplifies the implementation, but also allows use
of native locking mechanisms to ensure atomicity at the
desired granularity.

Checkpoint is performed entirely in the kernel. Restart
is also done in the kernel, however, for simplicity and

flexibility, the creation of the process hierarchy is done
in userspace. Moving some portion of the restart to
userspace is an exception, which is permitted under two
conditions: first, it must be straightforward and leverage
existing userspace APIs (i.e. not introduce specialized
APIs). Second, doing so in userspace should bring sig-
nificant added value, such as improved flexibility. Also,
all userspace work must occur before entering the ker-
nel, to avoid transitions in and out of the kernel.

For instance, the incentive to do process creation in
userspace is because it is simple to use the clone sys-
tem call to do so, and because it allows for great flexi-
bility for restarting processes to do useful work after the
process hierarchy is created and before the rest of the
restart takes place. Indeed, the entire hierarchy is cre-
ated before in-kernel restart is performed. Likewise, it is
desirable to restore network namespaces in userspace1.
Doing so will allow reuse of existing userspace network
setup tools that are well understood instead of repli-
cating their high-level functionality inside the kernel.
Moreover, it will allow users to easily adjust network
settings at restart time, e.g. change the network device
or its setup, or add a firewall to the configuration.

3.2 Checkpoint

A checkpoint is performed in the following steps (steps
2–4 are done by the checkpoint system call):

1. Freeze the process hierarchy to ensure that the
checkpoint is globally consistent.

2. Record global data, including configuration and
state that are global to the container.

3. Record the process hierarchy as a list of all check-
pointed processes, their PIDs, and relationships.

4. Record the state of individual processes, including
credentials, blocked and pending signals, CPU reg-
isters, open files, virtual memory, etc.

5. Thaw the processes to allow them to continue exe-
cuting, or terminate the processes in case of migra-
tion. (If a filesystem snapshot is desired, it is taken
prior to this step.)

Checkpoint is done by an auxiliary process, and does
not require the collaboration of processes being check-
pointed. This is important since processes that are not
runnable, e.g. stopped or traced, would not be able to

1However, as of the writing of this paper, this is yet undecided.

5

Appeared in The Linux Symposium 2010, Ottawa, July 2010

perform their own checkpoint. Moreover, this can be ex-
tended in the future to multiple auxiliary processes for
faster checkpoint times of large process hierarchies.

Much effort was put to make checkpoint robust in the
sense that if a checkpoint succeeds then, given a suitable
environment, restart will succeed too. The implementa-
tion goes to great extents to be able to detect whether
checkpointed processes are “non-restartable”. This can
happen, for example, when a process uses a resource
that is unsupported for checkpoint-restart, therefore it
will not be saved at all. Even if a resource is supported,
it may be temporarily in an unsupported state. For ex-
ample, a socket that is in the process of establishing a
connection is currently unsupported.

3.3 Restart

A restart is performed in the following steps (step 3 is
done by the restart system call):

1. Create a new container for the process hierarchy,
and restore its configuration and state.

2. Create the process hierarchy as prescribed in the
checkpoint image.

3. Restore the state of individual processes in the
same order as they were checkpoint.

4. Allow the processes to continue execution2.

Restart is managed by a special coordinator process,
which supervises the operation but is not a part of the
restarted process hierarchy. The coordinator process
creates and configures a new container, and then gen-
erates the new process hierarchy in it. Once the hierar-
chy is ready, all the processes execute a system call to
complete the restart of each process in-kernel.

To produce the process hierarchy, it is necessary to pre-
serve process dependencies, such as parent-child rela-
tionships, threads, process groups, and sessions. The
restored hierarchy must satisfy the same constraints im-
posed by process dependencies at checkpoint. Because
the process hierarchy is constructed in userspace, these
dependencies must be established at process creation
time (to leverage the existing system calls semantics).
The order in which processes are created is important,
because some dependencies are not reflected directly
from the hierarchical structure. For instance, an orphan

2It is also possible to freeze the restarted processes, which is use-
ful for, e.g., debugging.

process must be recreated by a process that belongs to
the correct session group to correctly inherit that group.

Linux-CR builds on two algorithms introduced by
Zap [12] to reconstruct the process hierarchy. The algo-
rithms are designed to create a hierarchy that is equiv-
alent to the original one at checkpoint. The first algo-
rithm, DumpForest, analyzes the state of a process hi-
erarchy. It runs in linear time with the number of PIDs
in use in the hierarchy. The output is a table with an
entry for each PID; The table encodes the order and the
manner in which processes should be restarted. The sec-
ond algorithm, MakeForest, reconstructs the hierarchy.
It works in a recursive manner by following the instruc-
tions set forth by the table. It begins with a single pro-
cess that will be used as the root of the hierarchy to fork
its children, then each process creates its own children,
and so on. For a detailed discussion of these algorithms
refer to [12].

In rebuilding the process hierarchy, there are two spe-
cial cases of PIDs referring to terminated processes that
require additional attention. One case is when a PID

of a dead process is used as a PGID of another pro-
cess. In this case, the restart algorithm creates a “ghost”
process–a placeholder that lives long enough so that its
PID can be used as the PGID of another process, but
terminates once the restart completes (and before the hi-
erarchy may resume its execution, to avoid races). An-
other case is when a PID represents a zombie process
that has exited but whose state has not been cleaned up
yet. In this case, the restart algorithm creates a process,
restores only minimal state such as its exit code, and fi-
nally the process exits to become a zombie.

Because the process hierarchy is created in userspace,
the restarting processes have the flexibility to do use-
ful work before eventually proceeding with in-kernel
restart. For instance, they might wish to create a new
custom networking route or filtering rule, create a vir-
tual device which existed at the host at the time of check-
point, or massage the mounts tree to mask changes since
checkpoint.

Once the process hierarchy is created, all the processes
invoke the restart system call and the remainder of
the restart takes place in the kernel. Restart is done in
the same order that processes were checkpointed. The
restarting processes now wait for their turn to restore
their own state, while the coordinator orchestrates the
restart.

6

Appeared in The Linux Symposium 2010, Ottawa, July 2010

Restart is done within the context of the process that
is restarted. Doing so allows us to leverage the avail-
able kernel functionality that can only be invoked from
within that context. Unlike checkpoint, which requires
observing process state, restart is more complicated as
it must create the necessary resources and reinstate their
desired state. Being able to run in process context
and leverage available kernel functionality to perform
these operations during restart significantly simplifies
the restart mechanism.

In the kernel, the restart system call depends on the
caller. The coordinator first creates a common restart
context data structure to share with all the restarting pro-
cess, and waits for them to become properly initialized.
It then notifies the first process to start the restart, and
waits for all the restarting tasks to finish. Finally, the
coordinator notifies the restarting tasks to resume nor-
mal execution, and then returns from the system call.

Correspondingly, restarting processes first wait for a no-
tification from the coordinator that indicates that the
restart context is ready, and then initialize their state.
Then, each process waits for its turn to run, restores
the state from the checkpoint image, notifies the next
restarting process to run, and waits for another signal
from the coordinator indicating that it may resume nor-
mal execution. Thus, processes may only resume exe-
cution after all the processes have successfully restored
their state (or fail if an error has occurred), to prevent
processes from returning to userspace prematurely be-
fore the entire restart completes.

3.4 The Checkpoint Image

The checkpoint image is an opaque blob of data, which
is generated by the checkpoint system call and con-
sumed by the restart system call. The blob contains
data that describes the state of select portions of ker-
nel structures, as well as process execution state such as
CPU registers and memory contents. The image format
is expected to evolve over time as more features are sup-
ported, or as existing features change in the kernel and
require to adjust their representation. Any changes in
the blob’s format between kernel revisions will be ad-
dressed by userspace conversion tools, rather than at-
tempting to maintain backward compatibility inside the
restart system call.

Internally, the blob consists of a sequence of records that
correspond to relevant kernel data structures and repre-

sent their state. For example, there are records for pro-
cess data, memory layout, open files, pending signals,
to name a few. Each record in the image consists of
a header that describes the type and the length of the
record, followed by a payload that depends on the record
type. This format allow userspace tools to easily parse
and skim through the image without requiring intimate
knowledge of the data. Keeping the data in self con-
tained records will also be suitable for parallel check-
pointing in the future, where multiple threads may inter-
leave data from multiple processes into a single stream.

Records do not simply duplicate the native format of
the respective kernel data structures. Instead, they pro-
vide a representation of the state by copying those in-
dividual elements that are important. One justification
is that during restart, one already needs to inspect, vali-
date and restore individual input elements before copy-
ing them into kernel data structures. However, the ap-
proach offers three additional benefits. First, it improves
image format compatibility across kernel revisions, be-
ing agnostic to data structure changes such as reorder-
ing of elements, addition or deletion of elements that
are unimportant for checkpoint-restart, or even moving
elements to other data structures. Second, it reduces the
total amount of state saved since many elements may be
safely ignored. Per process variables that keep sched-
uler state are one such example. Third, it allows a uni-
fied format for architectures that support both 32-bit and
64-bit execution, which simplifies process migration be-
tween them.

The checkpoint image is organized in five sections: a
header, followed by global data, process hierarchy, the
state of individual processes, and a finally a trailer. The
header includes a magic number (to identify the blob as
a checkpoint image), an architecture identifier in little-
endian format, a version number, and some information
about the kernel configuration. It also saves the time of
the checkpoint and the flags given to the system call. It
is followed by an architecture dependent header that de-
scribes hardware specific capabilities and configuration.

The global data section describes configuration and state
that are global to the container being checkpointed. Ex-
amples include Linux Security Modules (LSM) and net-
work devices and filters. In the future container-wide
mounts may also go here. The process hierarchy section
that follows provides the list of all checkpointed pro-
cesses, their PIDs and their relationships, e.g., parent-
child, siblings, threads, and zombies. These two section

7

Appeared in The Linux Symposium 2010, Ottawa, July 2010

are strategically placed early in the image for two rea-
sons: first, it allows restart to create a suitable environ-
ment for the rest of the restart early on, and second, it
allows to do so in userspace.

The remainder of the checkpoint image contains the
state of all of the tasks and the shared resources, in the
order that they were reached by the process hierarchy
traversal. For each task, this includes state like the task
structure, namespaces, open files, memory layout, mem-
ory contents, CPU state, signals and signal handlers, etc.
Finally, the trailer that concludes the entire image serves
as a sanity check.

The checkpoint-restart logic is designed for streaming
to support operation using a sequential access device.
Process state is saved during checkpoint in the order in
which it needs to be used during restart. An important
benefit of this design is that the checkpoint image can be
directly streamed from one machine to another across
the network and then restarted, to accomplish process
migration. Using a streaming model provides the abil-
ity to pass checkpoint data through filters, resulting in
a flexible and extensible architecture. Example filters
include encryption, signature/validation, compression,
and conversion between formats of different kernel ver-
sions.

3.5 Shared Resources

Shared resources may be referenced multiple times, e.g.
by multiple processes or even by other resources. Ex-
amples of resources that may be shared include files de-
scriptors, memory address spaces, signal handlers and
namespaces. During checkpoint, shared resources will
be considered several times as the process hierarchy is
traversed, but their state need only be saved once.

To ensure that shared resources are saved exactly once,
we need to be able to uniquely identify each resource,
and keep track of resources that have been saved already.
More specifically, when a resource is first discovered, it
is assigned a unique identifier (tag) and registered in a
hash-table using its kernel address (at checkpoint) or its
tag (at restart) as a key. The hash-table is consulted to
decide whether a given resource is a new instance or
merely a reference to one already registered. Note that
the hash-table itself is not saved as part of the check-
point image; instead, it is rebuilt dynamically during
both checkpoint and restart, and discarded when they
complete.

During checkpoint, shared resources are examined by
looking up their kernel addresses in the hash-table. If an
entry is not found, then it is a new resource–we assign a
new tag and add it to the hash-table, and then record its
state. Otherwise, the resource has been saved before, so
it suffices to save only the tag for later reference.

During restart the state is restored in the same order as
has been saved originally, ensuring that the first appear-
ance of each resource is accompanied with its actual
recorded state. As with checkpoint, saved resource tags
are examined by looking them up in the hash-table, and
if not found, we create a new instance of the required re-
source, restore its state from the checkpoint image, and
add it to the hash-table. If an entry is found, it points to
the corresponding (already restored) resource instance,
which is reused instead of creating a new one.

3.6 Leak Detection
In order to guarantee that a container checkpoint is con-
sistent and reliable, we must ensure that the container
is isolated and that its resources are not referenced by
other processes from outside the container. When con-
tainer shared resources are referenced from outside, we
say that they leak; the ability to detect leaks is a prereq-
uisite for container checkpoint to succeed.

Because the shared objects hash-table already tracks
shared resources, it also plays a crucial role in detecting
resource leaks that may obstruct a future restart. The
key idea behind leak detection is to explicitly count the
total number of references to each shared object inside
the container, and compare them to the global reference
counts maintained by the kernel. If for a certain resource
the two counts differ, it must be because of an external
(outside the container) reference.

Leak detection begins in a pre-pass that takes place prior
to the actual checkpoint, to ensure that there are no ex-
ternal references to container shared objects. In this
pass we traverse the process hierarchy like in the actual
checkpoint but do not save the state. Instead, we col-
lect the shared resources into the hash-table and main-
tain their reference counts. When this phase ends, the
reference count of each object in the hash-table reflects
the number of in-container references to it. We now iter-
ate through all the objects and compare that count to the
one maintained by the kernel. The two counts match3 if
and only if there are no external references.

3Actually, the hash-table count should be one less, because it
does not count the reference that the hash-table itself takes.

8

Appeared in The Linux Symposium 2010, Ottawa, July 2010

This procedure is non-atomic in the sense that the refer-
ence counts from the hash-table and the kernel are com-
pared only after all the resources have been collected.
This is racy because processes outside the container may
modify the state of shared resources, create new ones or
destroy existing ones before the procedure concludes.
For instance, consider two processes, one inside a con-
tainer and the other not, that share a single file descriptor
table. Suppose that after the pre-pass collects the file ta-
ble and the files in it, the outside process opens a new
file, closes another (existing) file, and then terminates.
At this point, the new file is left out of the hash-table,
while the other (closed) file remains there unnecessarily.
Moreover, when the pre-pass concludes it will not detect
a file table leak because the outside process exited, and
the file table is only referenced inside the container. It
will not detect a file leak even though the new file may
be referenced outside, because the new file had not even
been tracked.

To address these races we employ additional logic for
leak detection during the actual checkpoint. This logic
can detect in-container resources that are not tracked by
the hash-table, or that are tracked but are no longer ref-
erenced in the container. Untracked resources are easy
to detect, because their lookup in the hash-table will fail.
To detect deleted resources, we mark every resource in
the hash-table that we save during the checkpoint, and
then at the end of the checkpoint, we verify that all the
tracked resources are marked. A tracked but unmarked
resource must have been added to the hash-table and
then deleted before being reached by the actual check-
point. In either case, the checkpoint is aborted.

3.7 Error Handling
Both checkpoint and restart operations may fail due to
a variety of reasons. When a failure does occur, they
must provide proper cleanup. For checkpoint this is sim-
ple, because the checkpoint operation is non-intrusive:
the process hierarchy whose state is saved remains un-
affected. For restart, cleanup is performed by the coor-
dinator, which already keeps track of all processes in the
restored hierarchy. More specifically, in case of failure
the coordinator will send a fatal signal to terminate all
the processes before the system call returns. Because
the cleanup is part of the return path from the restart
system call exit path, there is no risk that cleanup be
skipped should the coordinator itself crash.

When a checkpoint or restart fails, it is desirable to com-
municate enough details about the failure details to the

caller to determine the root cause. Using a simple, sin-
gle return value from the system call is insufficient to
report the reason of a failure. For instance, a process
that is not frozen, a process that is traced, an outstand-
ing asynchronous IO transfer, and leakage of shared re-
source leakage, are just a few failure modes that result
all in the error -EBUSY.

To address the need to report detailed information about
a failure, both checkpoint and restart system calls
accept an additional argument: a file descriptor to which
the kernel writes diagnostic and debugging information.
Both the checkpoint and restart userspace utilities have
options to specify a filename to store this log.

In addition, checkpoint stores in the checkpoint image
informative status report upon failure in the form of
(one or more) error objects. An error object consists
of a mandatory pre-header followed by a null character
(’\0’), and then a string that describes the error. By
default, if an error occurs, this will be the last object
written to the checkpoint image. When a failure occurs,
the caller can examine the image and extract the detailed
error message. The leading ’\0’ is useful if one wants
to seek back from the end of the checkpoint image, in-
stead of parsing the entire image separately.

3.8 Security Considerations

The security implications of in-kernel checkpoint-restart
require careful attention. A key concern is whether the
system calls should require privileged or unprivileged
operation. Originally our implementation required tasks
to have the CAP_SYS_ADMIN capability, while we opti-
mistically asserted our intent to eventually remove the
need for privilege and allow all users to safely use
checkpoint and restart. However, it was pointed out that
letting unprivileged users use these system calls is not
only beneficial to users, but also has the useful side ef-
fect of forcing the checkpoint-restart developers to be
more careful with respect to security throughout the de-
sign and development process. In fact, we believe this
approach has succeeded in keeping us more on our toes
and catching ways that users otherwise would have been
able to escalate privileges through carefully manipulated
checkpoint images, for instance bypassing CAP_KILL

requirements by specifying arbitrary userid and sig-
nals for file owners.

At checkpoint, the main security concern is whether the
process that takes a checkpoint of other processes in

9

Appeared in The Linux Symposium 2010, Ottawa, July 2010

some hierarchy has sufficient privileges to access that
state. We address this by drawing an analogy between
checkpointing and debugging processes: in both it is
necessary for an auxiliary process to gain access to in-
ternal state of some target process(es). Therefore, for
checkpoint we require that the caller of the system call
will be privileged enough to trace and debug (using
ptrace) all of the processes in the hierarchy.

For restart, the main concern is that we may allow an
unprivileged user to feed the kernel with random data.
To this end, the restart works in a way that does not skip
the usual security checks. Process credentials, i.e. UID,
EUID, and the security context4 currently come from the
caller, not the checkpoint image. To restore credentials
to values indicated in the checkpoint image, restarting
processes use the standard kernel interface. Thus, the
ability to modify one’s credentials is limited to one’s
privilege level when beginning the restart.

Keeping the restart procedure to operate within the lim-
its of the caller’s credentials means that scenarios con-
sisting of privileged application that reduce their priv-
ilege level cannot be supported. For instance, a “se-
tuid” program that opened a protected log file and then
dropped privileges will fail the restart, because the user
will not have enough credentials to reopen the file.
The only way to securely allow unprivileged users to
restart such applications is to make the checkpoint im-
age tamper-proof.

There are a few ways to ensure the a checkpoint im-
age is authentic. One method is to make the userspace
utilities privileged using “setuid” and use cryptographic
signatures to validate checkpoint images. In particular,
checkpoint will sign the image and restart will first ver-
ify the signature before restoring from it. For instance,
TPM [11] can be used to sign the checkpoint image and
produce a keyed hash using a sealed private key, and to
refuse restart in the absence of the correct hash. Another
method is to create an assured pipeline for the check-
point image, from the invocation of the checkpoint and
restart system calls. Assured pipelines are precisely a
target feature of SELinux, and could be implemented
by using specialized domains for checkpoint and restart.
Note, however, that even with a tamper-proof check-
point image, a concern remains that the checkpoint im-
age amounts to a persistent privileged token, which a
clever user could find ways to exploit in new and inter-
esting ways.

4Security contexts are part of Linux Security Modules (LSM).

4 Kernel Internal API

The kernel API consists of a set of functions for use in
kernel subsystems and modules to provide support for
checkpoint and restart of the state that they manage. All
the kernel API calls accept a pointer to a checkpoint con-
text (ctx), that identifies the operation in progress.

The kernel API can be divided by purpose into several
groups: functions to handle data records; functions to
read and write checkpoint images; functions to output
debugging or error information; and functions to han-
dle shared kernel objects and the hash-table. Table 2
lists the API groups and their naming conventions. Ad-
ditional API exists to abstract away the details about
checkpointing and restoring instances of some objects
types, including memory objects, open files, and LSM
(security) annotations.

The ckpt_hdr_... group provides convenient helper
functions to allocate and deallocate buffers used as in-
termediate store for the state data. During checkpoint
they store the saved state before it is written out. During
restart they store data read from the image before it is
consumed to restore the corresponding kernel object.

The ckpt_write_... and ckpt_read_... groups
provide helper functions to write data to and read data
from the checkpoint image, respectively. These are
wrappers that simplify the handling, for example by
adding and removing record headers, and by provid-
ing shortcuts to handle common data such as strings and
buffers.

The ckpt_msg function writes an error message to the
log file (if provided by the user), and, when debugging
is enabled, also to the system log. The ckpt_err func-
tion is used when checkpoint or restart cannot succeed.
It accepts the error code to be returned to the user, and
a formatted error message which is written to the user-
provided log and the system log. If multiple errors oc-

Group Description
ckpt_hdr_... record handling (alloc/dealloc)
ckpt_write_... write data/objects to image
ckpt_read_... read data/objects from image
ckpt_msg output to the log file
ckpt_err report an error condition
ckpt_obj_... manage objects and hash-table

Table 2: Kernel API by groups

10

Appeared in The Linux Symposium 2010, Ottawa, July 2010

cur, e.g. during restart, only the first error value will be
reported, but all messages will be printed.

The ckpt_obj_... group includes helper functions to
handle shared kernel objects. They simplify the hash-
table management by hiding details such as locking and
memory management. They include functions to add
objects to the hash-table, to find objects by their kernel
address at checkpoint or by their tag at restart, and to
mark objects that are saved (for leak detection).

Dealing with shared kernel objects aims to abstract the
details of how to checkpoint and restart different ob-
ject types, and push the code to do so near the native
code for those objects. For example, code to checkpoint
and restart open files and memory layouts appears in the
file/ and mm/ subdirectories, respectively. The moti-
vation for this is twofold. First, placing the checkpoint-
restart code there improves maintainability because it
make the code more visible to maintainers. Higher
maintainers’ awareness increases the chances that they
will adjust the checkpoint-restart code when they intro-
duce changes to the other native code. Second, it is more
friendly to kernel objects that are implemented in kernel
modules, because it means that the code to checkpoint-
restart such objects is also part of the module.

To abstract the handling of shared kernel objects we as-
sociate a set of operations with each object type (simi-
lar to operations for files, sockets, etc). These include
methods to checkpoint and restore the state of an ob-
ject, methods to take or drop a reference to the objects
so that it can be referenced when in the hash-table, and a
method to read the reference count (in the hash-table) of
an object. The function register_checkpoint_obj

is used to register an operations set for an object type.
It is typically called from kernel initialization code for
the corresponding object, or from module initialization
code as part of loading a new module. Each of the
ckpt_obj_... takes the object type as one of its ar-
gument, which indicates the object-specific set of oper-
ation to use.

During checkpoint, for each shared kernel object the
function checkpoint_obj is called. It first looks up
the object in the hash-table, and, if not found, invokes
the ->checkpointmethod from the corresponding op-
erations set to create a record for the object in the image,
and adds the object to the hash-table. During restart,
records of shared kernel objects in the input stream are
passed to the function restore_obj, which invokes

the ->restore method from the corresponding oper-
ations set to create an instance of the object according
to the saved state, and adds the newly created object to
the hash-table.

Several objects in the Linux kernel are already ab-
stracted using operations set, which contain methods
describing how to handle different versions of objects.
For instance, open files have file_operations, and
seeking in ext3 filesystem is performed using a different
method than in nfs filesystem. Likewise, virtual memory
areas have vm_operations_struct, and the method
to handle page faults is different in an area that corre-
sponds to private anonymous memory than one that cor-
responds to shared mapped memory.

For such objects, we extend the operations to also pro-
vide methods for checkpoint, restore, and object collec-
tion (for leak detection), as follows:

To checkpoint a virtual memory area in a task’s memory
map, the struct vm_operations_struct needs to
provide the method for the ->checkpoint operation:
int checkpoint(ctx, vma)

and at restart, a matching callback to restore the state of
a new virtual memory area object::
int restore(ctx, mm, vma_hdr)

Note that the function to restore cannot be part of the
operations set, because it needs to be known before the
object instance even exists.

To checkpoint an open file, the struct file_
operations needs to provide the methods for the
->checkpoint and ->collect operations:
int checkpoint(ctx, file)
int collect(ctx, file)

and at restart, a matching callback to restore the state of
an opened file:
int restore(ctx, file, file_hdr)

Here, too, the restore function cannot be part of the
operations set. For most filesystems, generic func-
tions are sufficient: generic_file_checkpoint and
generic_file_restore.

To checkpoint a socket, the struct proto_ops

needs to provide the methods for the ->checkpoint,
->collect and ->restore operations:
int checkpoint(ctx, sock);
int collect(ctx, sock);
int restore(ctx, sock, sock_hdr)

11

Appeared in The Linux Symposium 2010, Ottawa, July 2010

Number Image Checkpoint Checkpoint Restart
of processes size time (to file) time (no I/O) time

10 0.87 MB 8 ms 3 ms 10 ms
100 8.0 MB 72 ms 24 ms 72 ms
1000 79.6 MB 834 ms 237 ms 793 ms

Table 3: Checkpoint-restart performance

5 Experimental Results

We evaluated the current version of Linux Checkpoint-
Restart to answer three questions: (a) how long check-
point and restart take; (b) how much storage they re-
quire; and (c) how they scale with the number of pro-
cesses and their memory size.

The measurements were conducted on a Fedora 10 sys-
tem with two dual-core 2 GHz AMD Opteron CPUs
with 1 GB L2 cache, 2 GB RAM, and a 73.4 GB
10025 RPM local disk. We used Linux 2.6.34 with the
Linux-CR v21 patchset, with most debugging disabled
and SELinux disabled. All optional system daemons on
the test system were turned off.

For the measurements we used the makeprocs test from
the checkpoint-restart test-suite [1]. This test program
allows a caller to specify the number of child processes,
a memory size for each task to map, or a memory size
for each task to map and then dirty. We repeated the
tests thirty times, and report average values.

Table 3 presents the results in terms of checkpoint im-
age size, checkpoint time and restart time, for measure-
ments with 10, 100 and 1000 processes. Checkpoint
times were measured once with the output saved to a
local file, and once with the output discarded (techni-
cally, redirected to /dev/null). Restart times were
measured from when the coordinator begins and until
it returns from the kernel after a successful operation.
Restart times were measured reading the checkpoint im-
ages from a warm-cache.

The results show that the checkpoint image size and the
time for checkpoint and restart scale linearly with the
number of processes in the process hierarchy. The av-
erage total checkpoint time is about 0.8 ms per process
when writing the data to the filesystem, and drops to
well under 0.3 ms per process when filesystem access is
skipped. Writing the data to a file triples the checkpoint
time. This suggests that buffering the checkpoint out-
put until the end of a checkpoint is a good candidate for

a future optimization to reduce application downtime at
checkpoint. Average total restart time from warm cache
is about 0.9 ms per process. The total amount of state
that is saved per process is also modest, though it highly
depends on the applications being checkpointed.

To better understand how much of the checkpoint and
restart times is spent for different resources, we instru-
mented the respective system calls to measure a break-
down of the total time. For both checkpoint and restart,
saving and restoring the memory contents of processes
amounted to over 80% of the total time. The total mem-
ory in use within a process hierarchy is also the most
prominent component of the checkpoint image size.

To look more closely at the impact of the process size,
we measured the checkpoint time for ten processes each
with memory sizes increasing from 1 MB to 1 GB that
the process allocated using the mmap system call. We re-
peated the test twice. In one instance the processes only
allocate memory but do not touch it. In the second in-
stance the processes also dirty all the allocated memory.
In both cases, the output was redirected to avoid expen-
sive I/O. The results are given in Table 4. The results
show strong correlation between the memory footprint
of processes and checkpoint times. Even when memory
is untouched, the cost associated with scanning the pro-
cess’s page tables is significant. Checkpoint times in-
crease substantially with dirty memory as it requires the
contents to actually be stored in the checkpoint image.

Task size Checkpoint Checkpoint
time (clean) time (dirty)

1 MB 0.5 ms 1.3 ms
10 MB 0.7 ms 6.4 ms
100 MB 1.7 ms 58 ms

1 GB 10.6 ms 337 ms

Table 4: Checkpoint times and memory sizes

12

Appeared in The Linux Symposium 2010, Ottawa, July 2010

6 Related Work

Checkpoint-restart has been the subject of extensive re-
search [17, 18, 19], spanning all four approaches: ap-
plication level, library mechanisms, operating system
mechanisms, and hardware virtualization; See [12] for
a detailed discussion on these approaches.

Many application checkpoint-restart mechanisms have
been implemented in Linux, some in userspace [7, 8]
and others in the kernel [5, 9, 14, 12, 20]. Ckpt [7]
modifies tasks to let them checkpoint themselves. The
checkpoint images are in the form of executable files
which, when executed, restart the original process. Cry-
oPID [8] also uses an executable file for the checkpoint
image, but relies on /proc information to checkpoint
a task. Userspace approaches do not capture or are un-
able to restore some parts of a process’s system state,
and are limited in which applications they support. In
contrast, Linux-CR is an operating system mechanism
that can save and restore all relevant state, and can do so
completely transparently to the application.

EPCKPT [9] and CRAK [20] provide partial support for
checkpoint-restart for Linux 2.4 series, as a kernel patch
and kernel module respectively. BLCR [5] is aimed pri-
marily at HPC users. It consists of a library and a kernel
module. Applications must be checkpoint-aware so as to
discard unsupported resources. None of these provide
virtualization. Zap [12, 16] and OpenVZ [14] imple-
ment both containers and checkpoint-restart. OpenVZ
consists of an invasive out-of-tree kernel patch, and Zap
is a kernel module.

The Linux-CR project emerged as a unifying frame-
work to provide checkpoint-restart in the Linux kernel.
It builds on Zap, but it is implemented in the kernel.
Linux-CR improves on earlier work in that the design
and implementation are done in a clean way and geared
for inclusion in the mainstream Linux kernel, so that it
will be maintained as part of the kernel.

Linux-CR can detect when resources leak outside of
containers. This leak detection logic was inspired by
OpenVZ, which was the first to propose this mechanism.
However, leak detection in OpenVZ is incomplete be-
cause it does not handle race condition when scanning
for resources, allowing untracked and deleted resources
to remain undetected. Linux-CR addresses this by ex-
tending the mechanism to explicitly discover and handle
resources that escape the initial scan.

7 Conclusions

Previous work on application checkpoint and restart for
Linux does not address the crucial issue of integration
with the mainstream Linux kernel. We present in de-
tail Linux-CR, an implementation of checkpoint-restart,
which aims for inclusion in the mainline Linux kernel.
Linux-CR provides transparent, reliable, flexible, and
efficient application checkpoint-restart. We discuss the
usage model and describe the user interfaces and some
key kernel interfaces of Linux-CR. We present prelimi-
nary performance results of the implementation.

A key ingredient to a successful upstream implementa-
tion is the understanding by the kernel community of
the usefulness of checkpoint-restart. Without this we
would fail to receive from the community the invaluable
review and advice upon which we have relied. That we
have in fact received much such help shows that the use-
fulness of checkpoint-restart is recognized by the com-
munity. We therefore have high hopes that, with the
community’s help, the project will succeed in providing
checkpoint-restart functionality in the upstream kernel.

Legal Statement

This work represents the view of the authors and does
not necessarily represent the view of IBM. IBM is a reg-
istered trademark of International Business Machines
Corporation in the United States and/or other countries.
UNIX is a registered trademark of The Open Group in
the United States and other countries. Linux is a regis-
tered trademark of Linus Torvalds in the United States,
other countries, or both. Other company, product, and
service names may be trademarks or service marks of
others.

Acknowledgments

The Linux-CR project is the result of the hard work
of several developers. Major contributors include Matt
Helsley, Dave Hansen, Sukadev Bhattiprolu, Dan Smith,
and Nathan Lynch. Additional guidance has come from
Arnd Bergmann, Ingo Molnar, Louis Rilling, Alexey
Dobriyan and Andrey Mirkin. Various reviewers gave
countless valuable comments for the patchset. Jason
Nieh provided helpful comments on earlier drafts of this
paper. This work was supported in part by the DARPA
under its Agreement No. HR0011-07-9-0002, by NSF
grants CNS-0914845 and CNS-0905246, and AFOSR
MURI grant FA9550-07-1-0527.

13

Appeared in The Linux Symposium 2010, Ottawa, July 2010

References

[1] Checkpoint/restart testsuite. http://www.
linux-cr.org/git/?p=tests-cr.git;
a=summary.

[2] Libvirt LXC container driver. http://www.
libvir.org/drvlxc.html.

[3] Linux Containers. http://lxc.sf.net.

[4] S. Bhattiprolu, E. W. Biederman, S. E. Hallyn,
and D. Lezcano. Virtual Servers and Check-
point/Restart in Mainstream Linux. SIGOPS Op-
erating Systems Review, 42(5), 2008.

[5] Berkeley Linux Checkpoint/Restart User’s Guide.
http://mantis.lbl.gov/blcr/doc/
html/BLCR_Users_Guide.html.

[6] BTRFS. http://oss.oracle.com/
projects/btrfs.

[7] ckpt. http://pages.cs.wisc.edu/
~zandy/ckpt/.

[8] CryoPID - A Process Freezer for Linux. http:
//cryopid.berlios.de.

[9] EPCKPT. http://www.research.
rutgers.edu/~edpin/epckpt/.

[10] EXT4. ext4.wiki.kernel.org.

[11] T. Group. Tcg tpm specification version 1.2 - part
1 design principles, 2005.

[12] O. Laadan and J. Nieh. Transparent Checkpoint-
Restart of Multiple Processes on Commodity Op-
erating Systems. In Proceedings of the 2007
USENIX Annual Technical Conference, Santa
Clara, CA, June 2007.

[13] LXC: Linux container tools. http:
//www.ibm.com/developerworks/
linux/library/l-lxc-containers.

[14] A. Mirkin, A. Kuznetsov, and K. Kolyshkin. Con-
tainers checkpointing and live migration. In Pro-
ceedings of the 2008 Ottawa Linux Symposium,
July 2008.

[15] Network Appliance, Inc. http://www.
netapp.com.

[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. In Proceed-
ings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI 2002), Boston,
MA, Dec. 2002.

[17] J. S. Plank. An Overview of Checkpointing in
Uniprocessor and Distributed Systems, Focusing
on Implementation and Performance. Technical
Report UT-CS-97-372, Dept. of Computer Sci-
ence, University of Tennessee, July 1997.

[18] E. Roman. A Survey of Checkpoint/Restart Im-
plementations. Technical Report LBNL-54942,
Lawrence Berkeley National Laboratory, July
2002.

[19] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and
S. Jiang. Current Practice and a Direction Forward
in Checkpoint/Restart Implementations for Fault
Tolerance. In Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing Sym-
posium (IPDPS’05) - Workshop 18, Washington,
DC, Apr. 2005.

[20] H. Zhong and J. Nieh. CRAK: Linux Check-
point/Restart As a Kernel Module. Technical Re-
port CUCS-014-01, Columbia University , 2001.

14

http://www.linux-cr.org/git/?p=tests-cr.git;a=summary
http://www.linux-cr.org/git/?p=tests-cr.git;a=summary
http://www.linux-cr.org/git/?p=tests-cr.git;a=summary
http://www.libvir.org/drvlxc.html
http://www.libvir.org/drvlxc.html
http://lxc.sf.net
http://mantis.lbl.gov/blcr/doc/html/BLCR_Users_Guide.html
http://mantis.lbl.gov/blcr/doc/html/BLCR_Users_Guide.html
http://oss.oracle.com/projects/btrfs
http://oss.oracle.com/projects/btrfs
http://pages.cs.wisc.edu/~zandy/ckpt/
http://pages.cs.wisc.edu/~zandy/ckpt/
http://cryopid.berlios.de
http://cryopid.berlios.de
http://www.research.rutgers.edu/~edpin/epckpt/
http://www.research.rutgers.edu/~edpin/epckpt/
ext4.wiki.kernel.org
http://www.ibm.com/developerworks/linux/library/l-lxc-containers
http://www.ibm.com/developerworks/linux/library/l-lxc-containers
http://www.ibm.com/developerworks/linux/library/l-lxc-containers
http://www.netapp.com
http://www.netapp.com

	Introduction
	Usage
	Userspace Tools
	System Calls

	Architecture
	Kernel vs. Userspace
	Checkpoint
	Restart
	The Checkpoint Image
	Shared Resources
	Leak Detection
	Error Handling
	Security Considerations

	Kernel Internal API
	Experimental Results
	Related Work
	Conclusions

