
Scalable Cluster Computing with
MOSIX for LINUX

Amnon Barak
�

Oren La’adan Amnon Shiloh

Institute of Computer Science
The Hebrew University of Jerusalem

Jerusalem 91904, Israel
http://www.mosix.cs.huji.ac.il

ABSTRACT

Mosix is a software tool for supporting cluster
computing. It consists of kernel-level, adaptive
resource sharing algorithms that are geared for
high performance, overhead-free scalability and
ease-of-use of a scalable computing cluster. The
core of the Mosix technology is the capability
of multiple workstations and servers (nodes) to
work cooperatively as if part of a single system.

The algorithms of Mosix are designed to re-
spond to variations in the resource usage among
the nodes by migrating processes from one node
to another, preemptively and transparently, for
load-balancing and to prevent memory deple-
tion at any node. Mosix is scalable and it at-
tempts to improve the overall performance by
dynamic distribution and redistribution of the
workload and the resources among the nodes of
a computing-cluster of any size. Mosix conve-
niently supports a multi-user time-sharing envi-
ronment for the execution of both sequential and
parallel tasks.

So far Mosix was developed 7 times, for dif-
ferent version of Unix, BSD and most recently
for Linux. This paper describes the 7-th version
of Mosix, for Linux.
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1 Introduction

This paper describes the Mosix technology for
Cluster Computing (CC). Mosix [4, 5] is a set
of adaptive resource sharing algorithms that are
geared for performance scalability in a CC of
any size, where the only shared component is
the network. The core of the Mosix technology
is the capability of multiple nodes (workstations
and servers, including SMP’s) to work coopera-
tively as if part of a single system.

In order to understand what Mosix does, let
us compare a Shared Memory (SMP) multicom-
puter and a CC. In an SMP system, several pro-
cessors share the memory. The main advan-
tages are increased processing volume and fast
communication between the processes (via the
shared memory). SMP’s can handle many si-
multaneously running processes, with efficient
resource allocation and sharing. Any time a pro-
cess is started, finished, or changes its computa-
tional profile, the system adapt instantaneously
to the resulting execution environment. The user
is not involved and in most cases does not even
know about such activities.

Unlike SMP’s, Computing Clusters (CC) are
made of collections of share-nothing worksta-
tions and (even SMP) servers (nodes), with
different speeds and memory sizes, possibly



from different generations. Most often, CC’s
are geared for multi-user, time-sharing environ-
ments. In CC systems the user is responsible to
allocate the processes to the nodes and to man-
age the cluster resources. In many CC systems,
even though all the nodes run the same operating
system, cooperation between the nodes is rather
limited because most of the operating system’s
services are locally confined to each node. The
main software packages for process allocation
in CC’s are PVM [8] and MPI [9]. LSF [7] and
Extreme Linux [10] provide similar services.
These packages provide an execution environ-
ment that requires an adaptation of the appli-
cation and the user’s awareness. They include
tools for initial (fixed) assignment of processes
to nodes, which sometimes use load consider-
ations, while ignoring the availability of other
resources, e.g. free memory and I/O overheads.
These packages run at the user level, just like
ordinary applications, thus are incapable to re-
spond to fluctuations of the load or other re-
sources, or to redistribute the workload adap-
tively.

In practice, the resource allocation problem
is much more complex because there are many
(different) kinds of resources, e.g., CPU, mem-
ory, I/O, Inter Process Communication (IPC),
etc, where each resource is used in a different
manner and in most cases its usage is unpre-
dictable. Further complexity results from the
fact that different users do not coordinate their
activities. Thus even if one knows how to op-
timize the allocation of resources to processes,
the activities of other users are most likely to in-
terfere with this optimization.

For the user, SMP systems guarantee effi-
cient, balanced use of the resources among
all the running processes, regardless of the re-
source requirements. SMP’s are easy to use be-
cause they employ adaptive resource manage-
ment, that is completely transparent to the user.

Current CC’s lack such capabilities. They rely
on user’s controlled static allocation, which is
inconvenient and may lead to significant perfor-
mance penalties due to load imbalances.

Mosix is a set of algorithms that support adap-
tive resource sharing in a scalable CC by dy-
namic process migration. It can be viewed as a
tool that takes CC platforms one step closer to-
wards SMP environments. By being able to allo-
cate resources globally, and distribute the work-
load dynamically and efficiently, it simplifies
the use of CC’s by relieving the user from the
burden of managing the cluster-wide resources.
This is particularly evident in a multi-user, time-
sharing environments and in non-uniform CC’s.

2 What is Mosix

Mosix [4, 5] is a tool for a Unix-like ker-
nel, such as Linux, consisting of adaptive re-
source sharing algorithms. It allows multiple
Uni-processors (UP) and SMP’s (nodes) run-
ning the same kernel to work in close coopera-
tion. The resource sharing algorithms of Mosix
are designed to respond on-line to variations in
the resource usage among the nodes. This is
achieved by migrating processes from one node
to another, preemptively and transparently, for
load-balancing and to prevent thrashing due to
memory swapping. The goal is to improve the
overall (cluster-wide) performance and to cre-
ate a convenient multi-user, time-sharing en-
vironment for the execution of both sequen-
tial and parallel applications. The standard run
time environment of Mosix is a CC, in which
the cluster-wide resources are available to each
node. By disabling the automatic process migra-
tion, the user can switch the configuration into a
plain CC, or even an MPP (single-user) mode.

The current implementation of Mosix is de-
signed to run on clusters of X86/Pentium based



workstations, both UP’s and SMP’s that are con-
nected by standard LANs. Possible configura-
tions may range from a small cluster of PC’s
that are connected by Ethernet, to a high perfor-
mance system, with a large number of high-end,
Pentium based SMP servers that are connected
by a Gigabit LAN, e.g. Myrinet [6].

2.1 The technology

The Mosix technology consists of two parts:
a Preemptive Process Migration (PPM) mech-
anism and a set of algorithms for adaptive re-
source sharing. Both parts are implemented at
the kernel level, using a loadable module, such
that the kernel interface remains unmodified.
Thus they are completely transparent to the ap-
plication level.

The PPM can migrate any process, at any
time, to any available node. Usually, migra-
tions are based on information provided by one
of the resource sharing algorithms, but users
may override any automatic system-decisions
and migrate their processes manually. Such a
manual migration can either be initiated by the
process synchronously or by an explicit request
from another process of the same user (or the
super-user). Manual process migration can be
useful to implement a particular policy or to test
different scheduling algorithms. We note that
the super-user has additional privileges regard-
ing the PPM, such as defining general policies,
as well as which nodes are available for migra-
tion.

Each process has a Unique Home-Node
(UHN) where it was created. Normally this
is the node to which the user has logged-in.
In PVM this is the node where the task was
spawned by the PVM daemon. The system im-
age model of Mosix is a CC, in which every
process seems to run at its UHN, and all the
processes of a users’ session share the execu-

tion environment of the UHN. Processes that mi-
grate to other (remote) nodes use local (in the
remote node) resources whenever possible, but
interact with the user’s environment through the
UHN. For example, assume that a user launches
several processes, some of which migrate away
from the UHN. If the user executes “ps”, it will
report the status of all the processes, including
processes that are executing on remote nodes. If
one of the migrated processes reads the current
time, i.e. invokesgettimeofday(), it will get the
current time at the UHN.

The PPM is the main tool for the resource
management algorithms. As long as the require-
ments for resources, such as the CPU or main
memory are below certain threshold, the user’s
processes are confined to the UHN. When the
requirements for resources exceed some thresh-
old levels, then some processes may be migrated
to other nodes, to take advantage of available
remote resources. The overall goal is to maxi-
mize the performance by efficient utilization of
the network-wide resources.

The granularity of the work distribution in
Mosix is the process. Users can run parallel ap-
plications by initiating multiple processes in one
node, then allow the system to assign these pro-
cesses to the best available nodes at that time.
If during the execution of the processes new
resources become available, then the resource
sharing algorithms are designed to utilize these
new resources by possible reassignment of the
processes among the nodes. The ability to as-
sign and reassign processes is particularly im-
portant for “ease-of-use” and to provide an ef-
ficient multi-user, time-sharing execution envi-
ronment.

Mosix has no central control or master-slave
relationship between nodes: each node can op-
erate as an autonomous system, and it makes
all its control decisions independently. This
design allows a dynamic configuration, where



nodes may join or leave the network with min-
imal disruptions. Algorithms for scalability en-
sure that the system runs well on large configu-
rations as it does on small configurations. Scal-
ability is achieved by incorporating randomness
in the system control algorithms, where each
node bases its decisions on partial knowledge
about the state of the other nodes, and does not
even attempt to determine the overall state of the
cluster or any particular node. For example, in
the probabilistic information dissemination al-
gorithm [4], each node sends, at regular inter-
vals, information about its available resources
to a randomly chosen subset of other nodes. At
the same time it maintains a small “window”,
with the most recently arrived information. This
scheme supports scaling, even information dis-
semination and dynamic configurations.

2.2 The resource sharing algorithms

The main resource sharing algorithms of Mosix
are the load-balancing and the memory ush-
ering. The dynamic load-balancing algorithm
continuously attempts to reduce the load differ-
ences between pairs of nodes, by migrating pro-
cesses from higher loaded to less loaded nodes.
This scheme is decentralized – all the nodes ex-
ecute the same algorithms, and the reduction of
the load differences is performed independently
by pairs of nodes. The number of processors
at each node and their speed are important fac-
tors for the load-balancing algorithm. This al-
gorithm responds to changes in the loads of the
nodes or the runtime characteristics of the pro-
cesses. It prevails as long as there is no extreme
shortage of other resources, e.g., free memory or
empty process slots.

The memory ushering (depletion prevention)
algorithm is geared to place the maximal num-
ber of processes in the cluster-wide RAM, to
avoid as much as possible thrashing or the swap-

ping out of processes [2]. The algorithm is trig-
gered when a node starts excessive paging due
to shortage of free memory. In this case the al-
gorithm overrides the load-balancing algorithm
and attempts to migrate a process to a node
which has sufficient free memory, even if this
migration would result in an uneven load distri-
bution.

3 Process migration

Mosix supports preemptive (completely trans-
parent) process migration (PPM). After a migra-
tion, a process continues to interact with its en-
vironment regardless of its location. To imple-
ment the PPM, the migrating process is divided
into two contexts: the user context – that can be
migrated, and the system context – that is UHN
dependent, and may not be migrated.

The user context, called theremote, contains
the program code, stack, data, memory-maps
and registers of the process. Theremoteencap-
sulates the process when it is running in the user
level. The system context, called thedeputy,
contains description of the resources which the
process is attached to, and a kernel-stack for the
execution of system code on behalf of the pro-
cess. Thedeputyencapsulates the process when
it is running in the kernel. It holds the site-
dependent part of the system context of the pro-
cess, hence it must remain in the UHN of the
process. While the process can migrate many
times between different nodes, thedeputy is
never migrated.

The interface between the user-context and
the system context is well defined. Therefore
it is possible to intercept every interaction be-
tween these contexts, and forward this interac-
tion across the network. This is implemented
at the link layer, with a special communication
channel for interaction. Figure 1 shows two
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Figure 1: A local process and a migrated process

processes that share a UHN. In the figure, the
left process is a regular Linux process while the
right process is split, with itsremotepart mi-
grated to another node.

The migration time has a fixed component,
for establishing a new process frame in the new
(remote) site, and a linear component, propor-
tional to the number of memory pages to be
transfered. To minimize the migration overhead,
only the page tables and the process’ dirty pages
are transferred.

In the execution of a process in Mosix, lo-
cation transparency is achieved by forwarding
site dependent system calls to thedeputyat the
UHN. System calls are a synchronous form of
interaction between the two process contexts.
All system calls that are executed by the process
are intercepted by the remote site’s link layer. If
the system call is site independent it is executed
by theremotelocally (at the remote site). Other-
wise, the system call is forwarded to thedeputy,
which executes the system call on behalf of the
process in the UHN. Thedeputyreturns the re-
sult(s) back to the remote site, which then con-
tinues to execute the user’s code.

Other forms of interaction between the two
process contexts are signal delivery and pro-
cess wakeup events, e.g. when network data ar-
rives. These events require that thedeputyasyn-
chronously locate and interact with theremote.

This location requirement is met by the commu-
nication channel between them. In a typical sce-
nario, the kernel at the UHN informs thedeputy
of the event. Thedeputychecks whether any
action needs to be taken, and if so, informs the
remote. The remotemonitors the communica-
tion channel for reports of asynchronous events,
e.g., signals, just before resuming user-level ex-
ecution. We note that this approach is robust,
and is not affected even by major modifications
of the kernel. It relies on almost no machine de-
pendent features of the kernel, and thus does not
hinder porting to different architectures.

One drawback of thedeputyapproach is the
extra overhead in the execution of system calls.
Additional overhead is incurred on file and net-
work access operations. For example, all net-
work links (sockets) are created in the UHN,
thus imposing communication overhead if the
processes migrate away from the UHN. To over-
come this problem we are developing “migrat-
able sockets”, which will move with the process,
and thus allow a direct link between migrated
processes. Currently, this overhead can signifi-
cantly be reduced by initial distribution of com-
municating processes to different nodes, e.g. us-
ing PVM/MPI. Should the system become im-
balanced, the Mosix algorithms will reassign the
processes to improve the performance [3].



4 The implementation

The porting of Mosix for Linux started by a fea-
sibility study. We also developed an interactive
kernel debugger, a pre-requisite for any project
of this scope. The debugger is invoked either by
a user request, or when the kernel crashes. It al-
lows the developer to examine kernel memory,
processes, stack contents, etc. It also allows to
trace system calls and processes from within the
kernel, and even insert break-points in the kernel
code.

In the main part of the project, we imple-
mented the code to support the transparent op-
eration of split processes, with the user-context
running on aremote node, supported by the
deputy, which runs in the UHN. At the same
time, we wrote the communication layer that
connects between the two process contexts and
designed their interaction protocol. The link be-
tween the two contexts was implemented on top
of a simple, but exclusive TCP/IP connection.
After that, we implemented the process migra-
tion mechanism, including migration away from
the UHN, back to the UHN and between two re-
mote sites. Then, the information dissemination
module was ported enabling exchange of sta-
tus information among the nodes. Using this
facility, the algorithms for process-assessment
and automatic migration were also ported. Fi-
nally, we designed and implemented the Mosix
application programming interface (API) via the
/proc.

4.1 Deputy / Remote mechanisms

The deputyis the representative of theremote
process at the UHN. Since the entire user space
memory resides at the remote node, thedeputy
does not hold a memory map of its own. Instead,
it shares the main kernel map similarly to a ker-
nel thread.

In many kernel activities, such as the execu-
tion of system calls, it is necessary to transfer
data between the user space and the kernel. This
is normally done by thecopy to user(),
copy from user() kernel primitives. In
Mosix, any kernel memory operation that in-
volves access to user space, requires thedeputy
to communicate with itsremoteto transfer the
necessary data.

The overhead of the communication due to re-
mote copy operations, which may be repeated
several times within a single system call, could
be quite substantial, mainly due to the network
latency. In order to eliminate excessive re-
mote copies, which are very common, we imple-
mented a special cache that reduces the number
of required interactions by prefetching as much
data as possible during the initial system call re-
quest, while buffering partial data at thedeputy
to be returned to theremoteat the end of the
system call.

To prevent the deletion or overriding of
memory-mapped files (for demand-paging) in
the absence of a memory map, thedeputyholds
a special table of such files that are mapped to
the remotememory. The user registers of mi-
grated processes are normally under the respon-
sibility of the remotecontext. However, each
register or combination of registers, may be-
come temporarily owned for manipulation by
thedeputy.

Remote(guest) processes are not accessible to
the other processes that run at the same node (lo-
cally or originated from other nodes) - and vice
versa. They do not belong to any particular user
(on the remote node, where they run) nor can
they be sent signals or otherwise manipulated by
local processes. Their memory can not be ac-
cessed and they can only be forced, by the local
system administrator, to migrate out.

A process may need to perform some Mosix
functions while logically stopped or sleeping.



Such processes would run Mosix functions “in
their sleep”, then resume sleeping, unless the
event they were waiting for has meanwhile oc-
curred. An example is process migration, pos-
sibly done while the process is sleeping. For
this purpose, Mosix maintains a logical state,
describing how other processes should see the
process, as opposed to its immediate state.

4.2 Migration constraints

Certain functions of the Linux kernel are not
compatible with process context division. Some
obvious examples are direct manipulations of
I/O devices, e.g., direct access to privileged bus-
I/O instructions, or direct access to device mem-
ory. Other examples include writable shared
memory and real time scheduling. The last case
is not allowed because one can not guarantee it
while migrating, as well as being unfair towards
processes of other nodes.

A process that uses any of the above is auto-
matically confined to its UHN. If the process has
already been migrated, it is first migrated back
to the UHN.

4.3 Information collection

Statistics about a process’ behavior are collected
regularly, such as at every system call and ev-
ery time the process accesses user data. This
information is used to assess whether the pro-
cess should be migrated from the UHN. These
statistics decay in time, to adjust for processes
that change their execution profile. They are
also cleared completely on the “execve()” sys-
tem call, since the process is likely to change its
nature.

Each process has some control over the col-
lection and decay of its statistics. For instance,
a process may complete a stage knowing that its
characteristics are about to change, or it may

cyclically alternate between a combination of
computation and I/O.

4.4 The Mosix API

The Mosix API has been traditionally imple-
mented via a set of reserved system calls,
that were used to configure, query and operate
Mosix. In line with the Linux convention, we
modified the API to be interfaced via the/proc
file system. This also prevents possible binary
incompatibilities of user programs between dif-
ferent Linux versions.

The API was implemented by extending the
Linux /proc file system tree with a new di-
rectory /proc/mosix. The calls to Mosix via
/proc include: synchronous and asynchronous
migration requests; locking a process against au-
tomatic migrations; finding where the process
currently runs; finding about migration con-
strains; system setup and administration; con-
trolling statistic collection and decay; informa-
tion about available resources on all configured
nodes, and information about remote processes.

5 Conclusions

Mosix brings the new dimension of scaling to
cluster computing with Linux. It allows the
construction of a high-performance, scalable
CC from commodity components, where scal-
ing does not introduce any performance over-
head. The main advantage of Mosix over other
CC systems is its ability to respond at run-time
to unpredictable and irregular resource require-
ments by many users.

The most noticeable properties of executing
applications on Mosix are its adaptive resource
distribution policy, the symmetry and flexibil-
ity of its configuration. The combined effect of
these properties implies that users do not have to



know the current state of the resource usage of
the various nodes, or even their number. Parallel
applications can be executed by allowing Mosix
to assign and reassign the processes to the best
possible nodes, almost like an SMP.

The Mosix R&D project is expanding in sev-
eral directions. We already completed the de-
sign of migratable sockets, which will reduce
the inter process communication overhead. A
similar optimization ismigratable temporary
files, which will allow a remoteprocess, e.g. a
compiler, to create temporary files in the remote
node. The general concept of these optimization
is to migrate more resources with the process, to
reduce remote access overhead.

In another project, we are developing new
competitive algorithms for adaptive resource
management that can handle different kind of
resources, e.g., CPU, memory, IPC and I/O [1].
We are also researching algorithms for network
RAM, in which a large process can utilize avail-
able memory in several nodes. The idea is to
spread the process’s data among many nodes,
and rather migrate the (usually small) process to
the data than bring the data to the process.

In the future, we consider extending
Mosix to other platforms, e.g., DEC’s Al-
pha or SUN’s Sparc. Details about the
current state of Mosix are available at URL
http://www.mosix.cs.huji.ac.il.
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