
MediaPod: A Personalized Multimedia Desktop In Your Pocket

Shaya Potter Ricardo Baratto Oren Laadan Leonard Kim Jason Nieh
Computer Science Department

Columbia University
{spotter, ricardo, orenl, lnk2101, nieh}@cs.columbia.edu

Abstract—We present MediaPod, a portable system that al-
lows mobile users to maintain the same persistent, personalized
multimedia desktop environment on any available computer.
Regardless of which computer is being used, MediaPod pro-
vides a consistent multimedia desktop session, maintaining all
of a user’s applications, documents and configuration settings.
This is achieved by leveraging rapid improvements in capacity,
cost, and size of portable storage devices. MediaPod provides
a virtualization and checkpoint-restart mechanism that de-
couples a desktop environment and its applications from the
host, enabling multimedia desktop sessions to be suspended to
portable storage, carried around, and resumed from the storage
device on another computer. MediaPod virtualization also
isolates desktop sessions from the host, protecting the privacy of
the user and preventing malicious applications from damaging
the host. We have implemented a Linux MediaPod prototype
and demonstrate its ability to quickly suspend and resume
multimedia desktop sessions, enabling a seamless computing
experience for mobile users as they move among computers.

Keywords-Multimedia computing, Operating system kernels,
Personal computers, Computer peripherals, Virtual computers

I. INTRODUCTION

In today’s world of commodity computers, computer users
are more mobile than ever. Users make use of computers at
home, school and work. Computers are so much a part of
daily life that many pervasive devices, such as cell phones
and PDAs, are assimilating usage patterns, such as web
browsing, e-mail, video and music playing, that were once
limited to desktop computers.

A key problem encountered by mobile users is the in-
convenience of using and managing multiple environments
as they move around. For example, the computer at the
office is configured differently from the computer at home,
which is different from the computer at the library. These
locations can have different sets of software installed, which
can make it difficult for a user to complete a task as the
necessary software might not be available. Beyond regular
applications, such as word processors and spreadsheets,
many users depend on a specific set of multimedia codecs to
be installed on a computer to ensure that they can watch and
listen to video and audio files. Similarly, mobile users seek
consistent access to their files, which is difficult to guarantee
as they move around.

To address these problems, we introduce MediaPod, a
portable system that allows mobile users to obtain the same

persistent, personalized multimedia desktop experience on
any computer. MediaPod leverages the ubiquity of commod-
ity PCs and the rise of commodity storage devices that can
easily fit in a user’s pocket yet store large amounts of data.
Such pocketable storage devices range from flash memory
sticks to Apple iPods that can hold many gigabytes of data.
MediaPod decouples a user’s multimedia desktop session
from one’s computer so that it can be suspended to a portable
storage device, carried around easily, and simply resumed
from the storage device on a completely different computer.
MediaPod provides this functionality by introducing a thin
virtualization layer that operates without modifying, recom-
piling or relinking any desktop or multimedia applications
or the operating system kernel, and with only a negligible
performance overhead.

MediaPod operates by encapsulating a user’s multime-
dia desktop session in a virtualized execution environment
and storing all state associated with the session on the
portable storage device. MediaPod virtualization decouples
multimedia desktop sessions from the operating system
environment by introducing a private virtual namespace
that provides consistent, host-independent naming of system
resources. MediaPod also virtualizes the display and sound
devices so that the multimedia desktop’s applications can
be scaled to different display resolutions and play with
different sound hardware that may be available as a user
moves from one computer to another. This allows a mul-
timedia desktop session to run in the same way on any
host despite differences that may exist among different host
operating system environments, display hardware, and sound
hardware. Furthermore, MediaPod virtualization protects the
underlying host from untrusted software that a user may run,
such as an untrusted download, as part of their multimedia
desktop session. MediaPod virtualization also prevents other
applications from outside of the multimedia desktop session
that may be running on the host from accessing any of the
session’s data, protecting the privacy of the user.

MediaPod virtualization is combined with a checkpoint-
restart mechanism. This allows a user to suspend the entire
multimedia desktop session to the portable storage device
so that it can be migrated between physical computers
by simply moving the storage device to a new computer
and resuming the session there. MediaPod ensures that file
system state, process execution and multimedia device state

2009 11th IEEE International Symposium on Multimedia

978-0-7695-3890-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ISM.2009.86

219

associated with the multimedia desktop session are preserved
on the portable storage device.

The result is that MediaPod allows users to maintain
a single multimedia desktop environment, no matter what
computer they are using. Users can easily carry their mul-
timedia desktop sessions with them without lugging around
a bulky laptop or being restricted to a more portable device
without sufficient display size or sound quality. Since Medi-
aPod does not rely on any of the application resources of the
underlying host machine, any multimedia helper applications
and utilities that users expect to be available will always be
available using MediaPod. Also, because MediaPod provides
a fast checkpoint-restart mechanism, users can quickly save
their entire multimedia desktop environment when they have
to change locations without needing to manually save all the
individual elements of their state. Mobile users can simply
unplug the device from the computer, move onto a new
computer and plug in, and restart their session from the
device to pick up where they left off.

We have implemented a MediaPod prototype for use with
commodity PCs running Linux and measured its perfor-
mance. Our experimental results with real desktop and multi-
media applications demonstrate that MediaPod has very low
virtualization overhead and can migrate multimedia desktop
sessions with very quick checkpoint and restart times. We
show that MediaPod can reconstitute a user’s multimedia
desktop session an order of magnitude faster than if a user
had to restart the same desktop and multimedia applications
without MediaPod. Our results also show that a complete
MediaPod multimedia desktop session including file system
state requires less than 1 GB of storage. MediaPod’s modest
storage requirements lets it be used with small form factor
USB drives available on the market today. These gadgets,
are smaller than a person’s thumb and can be conveniently
carried on a keychain or in a user’s pocket. Users can also
carry larger devices, such as an Apple iPod, letting them
transport around a large amount of multimedia content.

II. MEDIAPOD MODEL

MediaPod is architected as a simple end-user device that
users can carry in their pocket. This device contains a
checkpointable virtual environment that a client PC can host,
allowing users to maintain a single desktop and multimedia
application session as they move between computers as
shown in Figure 1. The session contains a virtual private
environment that can be populated with the complete set
of applications commonly deployed in the user’s day-to-day
multimedia desktop environment. To the user, the session
appears no different than a private computer, even though
the user’s session coexists with the host computer.

A user starts a MediaPod session by plugging in a Media-
Pod storage device into the computer. The computer detects
the device and automatically tries to restart the MediaPod
session. It then attaches a MediaPod viewer to the session

Figure 1. The MediaPod Model allows migrating a multimedia desktop
session between computers running the MediaPod virtualization layer

to make the associated multimedia desktop session available
and visible to the user. Applications running in a MediaPod
session appear to the underlying operating system just like
other applications that may be running on the host machine,
and they make use of selected host resources, such as CPU,
memory, network, sound, and display.

Once MediaPod is started, users can easily commence
using their desktop and multimedia applications. When the
user wants to leave the computer, the user simply closes the
MediaPod viewer. This causes the MediaPod session to be
quickly checkpointed to the MediaPod storage device, which
can then be unplugged and carried around by the user. When
another computer is ready to be used, the user simply plugs
in the MediaPod device and the session is restarted right
where it left off. With MediaPod, there is no need for a
user to manually launch their desktop or multimedia applica-
tions and reload their content. MediaPod’s checkpoint-restart
functionality maintains a user’s multimedia desktop session
persistently as a user moves from one computer to another.

MediaPod is simpler than a traditional computer in that
it only provides a single multimedia desktop application
environment, not an entire operating system environment.
There is no operating system installed on the MediaPod
device. MediaPod instead makes use of the operating system
environment available on the host computer into which it
is plugged in. This provides two important benefits for
MediaPod users in terms of startup speed and management
complexity. Since there is no operating system on the Media-
Pod device, there is no need to boot a new operating system
environment to use MediaPod or attempt to configure an
operating system to operate on the particular host machine

220

that is being used. Since only applications on the MediaPod
need to be restarted, this minimizes startup costs for using
MediaPod and ensures that the MediaPod can be used on any
machine on which a compatible operating system is running.
Furthermore, since MediaPod does not provide an operating
system there is no need for MediaPod users to maintain
and manage an operating system environment, reducing
management complexity. MediaPod also protects multimedia
desktop sessions by isolating each session in its own private
execution environment. Other user-level applications running
on the same machine are not able to access any state
associated with the MediaPod session.

To provide a private and mobile environment for the
MediaPod session, MediaPod virtualizes two key resources:
underlying devices and the operating system. MediaPod
virtualization is designed to work with existing unmod-
ified applications, operating system kernels, and network
infrastructure and protocols. The two components work in
concert to create a completely virtualized environment for
multimedia desktop sessions.

MediaPod virtualizes devices by providing a set of virtual
device drivers. Explicitly, MediaPod provides the session’s
display by providing a virtual display driver. The display
driver intercepts drawing commands from user’s applica-
tions, and translates the commands into a display protocol
between the host and the MediaPod session. MediaPod also
lets application make use of the sound device by virtualizing
access to it to ensure that applications can have a common
set of abilities as it moves between machines.

MediaPod operating system virtualization provides a vir-
tual private namespace for the MediaPod session. For exam-
ple, the MediaPod session contains its own host independent
view of OS resources, such as PID/GID, IPC, memory, file
system, and devices. MediaPod virtualization operates at a
finer granularity than virtual machine approaches such as
VMware [1] by virtualizing individual computing sessions
instead of complete operating system environments. As a
result, MediaPod sessions can be decoupled from the un-
derlying operating system and migrated to other computers.
This improves user mobility in a chaotic world.

III. MEDIAPOD VIRTUALIZATION

To provide a private and mobile execution environment
for multimedia desktop sessions, MediaPod virtualizes the
underlying host operating system, display and sound card.
MediaPod virtualization is necessary to let MediaPod mul-
timedia desktop computing sessions be decoupled from the
underlying host on which it is being executed. This isolates
the applications running within MediaPod from the under-
lying system and other applications on the same machine.
It also allows the applications to be checkpointed on one
machine and restarted on another. Given the large existing
base of desktop and multimedia applications, MediaPod
virtualization is designed to be completely transparent to

work with existing unmodified desktop and multimedia
applications as well as operating system kernels.

A. Operating System Virtualization

MediaPod virtualizes the underlying host operating sys-
tem by encapsulating gaming sessions within a host in-
dependent, virtualized view of the operating system. This
virtualization approach builds upon our previous work on
Zap [2]–[4].

MediaPod virtualization provides each multimedia desk-
top session with its own virtual private namespace. The
namespace is private in that only processes within the
namespace can see the namespace and that it masks out
resources that are not contained within it. It is virtual in that
all kernel resources are accessed through virtual identifiers
within the namespace that are distinct from the identifiers
used by the kernel itself. For example, a MediaPod session
contains its own host independent view of operating system
resources, such as Process IDs (PIDs), IPC, memory, file
system, and devices. The namespace is the only means for
the processes associated with a running application within
a MediaPod to access the underlying operating system.
MediaPod introduces this namespace to decouple processes
associated with applications running in MediaPod sessions
from the underlying host operating system enabling Media-
Pod sessions to be migrated from one machine to another.

MediaPod virtualizes the operating system instance by
using mechanisms that translate between the session’s vir-
tual resource identifiers and the operating system resource
identifiers. For every resource accessed by a process in a
session, the virtualization layer associates a virtual name
to an appropriate operating system physical name. When
an operating system resource is created for a process in
a session, the physical name returned by the system is
caught, and a corresponding private virtual name is created
and returned to the process. Similarly, every time a pro-
cess passes a virtual name to the operating system, it is
intercepted by the virtualization layer, which substitutes it
with the corresponding physical name. The key virtualization
mechanisms used are a system call interposition mechanism
and the chroot utility with file system stacking for file
system resources.

MediaPod virtualization uses system call interposition
to virtualize operating system resources, including process
identifiers, keys and identifiers for IPC mechanisms such
as semaphores, shared memory, and message queues, and
network addresses. System call interposition wraps existing
system calls to check and replace arguments that take virtual
names with the corresponding physical names, before calling
the original system call. Similarly, wrappers are used to
capture physical name identifiers that the original system
calls return, and return corresponding virtual names to the
calling process running inside the session. Session virtual
names are maintained consistently as a session migrates

221

from one machine to another and are remapped appropriately
to underlying physical names that may change as a result of
migration. Session system call interposition also masks out
processes inside of a session from processes outside of the
session to prevent any interprocess host dependencies across
the session boundary.

B. Display Virtualization

MediaPod virtualizes the display associated with a multi-
media session so that it can be viewed on different hosts that
may have different display systems available. This display
virtualization approach builds upon our previous work on
MobiDesk [5] and THINC [6].

MediaPod virtualizes the display associated with a multi-
media desktop session so that it can be viewed on different
hosts that may have different display systems available.
MediaPod virtualization provides each multimedia desktop
computing session with its own virtual display server and
virtual device driver, thus decoupling the display of the
session from the display subsystem of the host. The virtual
display server provides a MediaPod session with its own
window system separate from the window system on the
host, thereby isolating the MediaPod’s application display
state from other applications running on the host outside of
the session. The display server is considered to be part of
the MediaPod session and is checkpointed when the session
is suspended and restarted when the session is resumed.

Instead of rendering display commands to a real device
driver associated with a physical device on the host, the
virtual display server directs its commands to a user-level,
virtual device driver, which is not associated to any particular
display hardware. This approach abstracts away the specific
implementation of video card features into a higher level
view that is applicable to all video cards. Since the device
state is not in the physical device but in the virtualized
MediaPod session, this simplifies display state management
during checkpoint and restart. As a result, checkpointing the
MediaPod’s display state can be done by simply saving the
user-level virtual driver state, instead of extracting display
state from the host-specific framebuffer.

Rather than sending display commands to local display
hardware, the MediaPod virtual video driver packages up
display commands associated with a user’s computing ses-
sion, writes them to memory, and lets them to viewed using
a MediaPod viewer application that runs in the context
of the window system on the host. The viewer is com-
pletely decoupled from the rest of the MediaPod display
system, thus providing the connection between the fully-
virtualized MediaPod environment and the hosting computer.
The viewer’s functionality consists of nothing more than
reading the persistent display state managed by the Media-
Pod display system, and passing it on to the local computer.
The viewer can be disconnected and reconnected to the

MediaPod session at any time without loss of information
since it does not maintain any persistent display state.

MediaPod provides support for full-screen, full-framerate
video playback by natively implementing standard hardware
video playback interfaces. These interfaces leverage alterna-
tive YUV video formats, natively supported by almost all
off-the-shelf video cards available today. Video data from an
application is simply transferred from the MediaPod’s virtual
display driver to the host’s video hardware, through the
viewer application, which automatically does inexpensive,
high speed, color space conversion, and scaling.

C. Sound Virtualization

To understand the need for audio virtualization, we briefly
discuss how applications typically interact with the audio
subsystem of a machine. Audio players, such as a video
or mp3 player, initialize the sound device by configuring
it to accept a specific type of audio stream. This audio
stream is defined by its bitwise encoding representation,
how many channels of output are contained within the
stream as well as the sampling rate of the stream, which
defines the quality of the stream. Once an application has
configured the device, it simply writes out packets of data,
samples, to the device that correspond to this configuration.
The sound card then outputs the audio stream, doing an
appropriate demultiplexing of the sound channels to the
appropriate speakers as well as a digital to analog conversion
if appropriate.

As opposed to the video subsystem, modern multimedia
applications use sound devices in a fairly stateless manner.
These applications just care about writing a continuous
stream of sample data to the card and each sample is
independent from those that came before it. However, when
a multimedia application is moved from one computer to an-
other, it is important that all of the configuration state of the
sound device be captured, such as what type of sample data
is being streamed to the card. This lets MediaPod configure
the sound device on the new host computer exactly as it was
configured before, and allows the application to continue
sending its samples to the sound device and have them
play as expected. One can simply capture this configuration
state because modern operating systems provide a consistent
kernel based API for its sound subsystem. Applications use
this API to configure the sound devices and write samples to
them. Therefore, applications are not tied to any particular
physical sound device.

MediaPod provides two types of sound support. First,
MediaPod has the ability to restrict the configuration settings
that an application can set on the MediaPod’s sound device.
For example, MediaPod can restrict the settings that are
allowed to the subset that are available on almost all sound
cards in use today, such as 44 and 48 KHz sound, 16 bit
audio and stereo channels. This allows users to migrate a
MediaPod session between computers without being con-

222

cerned about underlying hardware support on their target
machines. Second, MediaPod can allow full access to the
capabilities of the underlying host sound card. For example,
to play a DVD in full 5.1 surround sound. However, users
who migrate their MediaPods to machines that don’t have
support for such a feature will not be able to restart their
MediaPod session and will have to re-launch that DVD
player application.

IV. MEDIAPOD CHECKPOINT-RESTART

MediaPod virtualization and checkpoint-restart mecha-
nisms lets a session instance continue execution across
many disparate computers that are separately managed.
Checkpoint-restart provides the glue that permits a Medi-
aPod device to be checkpointed, transported and restarted
across distinct computers with distinct hardware and operat-
ing system kernels. Migration is limited between machines
with a common CPU architecture, and that run “compatible”
operating systems.

Compatibility is determined by the extent to which they
differ in their API and their internal semantics. Minor
versions are normally limited to maintenance and security
patches, without affecting the kernel’s API. Major ver-
sions carry significant changes that may break application
compatibility. In particular, they may modify the applica-
tion’s execution semantics, or introduce new functionality,
nevertheless they usually maintain backward compatibility.
For instance the Linux kernel has two major versions, 2.4
and 2.6, each with over 30 minor versions respectively.
Linux 2.6 significantly differs in how threads behave, and
also introduces various new system calls. This implies that
migration across minor versions in general is not restricted,
whereas migration between major versions is only feasible
from older to newer.

MediaPod’s checkpoint-restart mechanism relies on an
intermediate abstract format to represent the state that needs
to be saved. Although the low-level details as maintained by
the operating system may change radically between different
kernels, the high-level properties are unlikely to change since
they reflect the actual semantics upon which the application
rely. MediaPod describes the state of a process in terms
of this higher-level semantic information rather than the
kernel specific data. To illustrate this, let us consider the
data that describes inter-process relationships, e.g. parent,
child, siblings, threads etc. The operating system normally
optimizes for speed by keeping multiple data structures to
reflect these relationships. However this format is of limited
portability across different kernels, and in Linux the exact
technique indeed changed between 2.4 and 2.6. Instead,
MediaPod captures a high-level representation of the rela-
tionships that mirrors its semantics. In particular, it simply
keeps a tree structure to describe these relationships. The
same holds for other resources, e.g. communication sockets,
pipes, open files, system timers, etc: MediaPod extracts the

relevant state the way it is encapsulated in the operating
system’s API, rather than the details of its implementation.
Doing so maximizes portability across kernel versions by
adopting properties that are considered highly stable.

To accommodate semantic differences that occur occa-
sionally between kernel versions, MediaPod uses specialized
conversion filters. The checkpointed state data is saved and
restored as a stream. The conversion filters operate on this
stream and manipulate its contents. Although typically they
are designed to translate between different representations,
they can be used to perform other operations such as
compression, encryption etc. Their main advantages are their
flexibility, and the fact that they are executed like regular
helper applications. Building on the example above, since
the thread model changes between Linux 2.4 and 2.6, a filter
can easily be designed to upgrade the former abstract data to
adhere to the new semantics. Additional filters can be built
should semantics changes occur in the future. The outcome
is a robust and powerful solution.

MediaPod leverages high-level native kernel services to
transform the intermediate representation of the check-
pointed image into the complete internal state required by
the target kernel during restart. Continuing with the previous
example, MediaPod restores the structure of the process tree
by exploiting the native fork system call. In accordance
to the abstract process tree data, a determined sequence of
fork calls is issued to replicate the original relationships.
The main benefit is voiding the need to deal with any
internal kernel details. Furthermore, high level primitives of
this sort remain virtually unchanged across minor or major
kernel changes. Finally, these services are available for use
by loadable kernel modules, enabling MediaPod to perform
cross-kernel migration without requiring modifications to the
kernel.

Finally, we must ensure that changes in the system call
interfaces are properly handled. MediaPod has a virtualiza-
tion layer that employs system call interposition to maintain
namespace consistency. It follows that a change in the
semantics for any system call that is intercepted could raise
an issue in migrating across such differences. Fortunately,
such changes are rare, and when they occur, they are hidden
by standard libraries from the application level lest they
break the applications. Consequently, MediaPod is protected
the same way legacy applications are protected. On the
other hand, the addition of new system calls to the kernel
requires that the encapsulation be extended to support them.
Moreover, it restricts the possibility of migration back to
older versions. For instance, an application that invokes the
new waitid system call in Linux 2.6 cannot be migrated
back to 2.4, unless an emulation layer exists there.

V. EXPERIMENTAL RESULTS

We implemented MediaPod as three components, a viewer
application for accessing a MediaPod session, an unmodified

223

XFree86 4.3 display server with a MediaPod virtual display
device driver, and a loadable kernel module that provides
the MediaPod virtualization layer in Linux that requires no
changes to the Linux kernel. We present some experimental
results using our Linux prototype to quantify the overhead
of using the MediaPod environment on various applications.

We conducted experiments on two platforms. Virtualiza-
tion overhead benchmarks were run on an IBM Netfinity
4500R machine with dual 933Mhz Intel Pentium-III CPU,
512MB RAM and a 9.1 GB SCSI HD running Debian
GNU/Linux with a 2.6.8.1 kernel to show MediaPod’s
ability to run in single and multiprocessor environments.
To measure the actual application scenarios’ checkpoint and
restart times we used an IBM T42p Thinkpad which is
indicative of a consumer level machine to which a MediaPod
is transported. The laptop has a 1.8GHz Pentium-M CPU
with 1 GB RAM, a 60 GB 7200 RPM hard disk, and an ATI
FireGL Mobility T2 video card with 128 MB of Ram and
an Intel Gigabit Ethernet controller. The host laptop ran the
Ubuntu 5.04 Linux distribution, while the MediaPod itself
was based on Debian GNU/Linux 4.0.

We used a 40 GB Apple iPod as the MediaPod portable
storage device, though a much smaller USB memory drive
could have been used. Each PC machine provided a USB
connection which could be used to connect to the iPod. We
built an unoptimized MediaPod file system by bootstrapping
a Debian GNU/Linux installation onto the iPod and in-
stalling the appropriate packages needed for a regular multi-
media desktop environment. We removed the extra packages
needed to boot a full Linux system as MediaPod is just
a lightweight multimedia desktop computing environment,
not a full operating system. This resulted in a 633 MB file
system image. This easily fits in the iPod with plenty of
storage capacity to spare, and also easily fits in common
USB memory drives that can store 1 GB. Our unoptimized
MediaPod file system could be even smaller if the file system
was built from scratch instead by just installing the exact
programs and libraries that are needed.

To measure the cost of MediaPod virtualization, we used
a range of benchmarks listed in Table I that represent
various kernel operations that we virtualize and that occur
in a multimedia and desktop applications. We measured
the performance on both our Linux MediaPod prototype
and a vanilla Linux systems. Additionally, the system call
micro-benchmarks directly used the TSC register available
on Pentium CPUs to record timestamps at the significant

Name Description
getpid runtime for returning process identifier
getppid runtime for returning parent process identifier
getpgid runtime for returning process group identifer
fork runtime for creating a new process
msgget runtime for creation of IPC message queue
msgsnd runtime for sending messages to IPC message queue

Table I
KERNEL VIRTUALIZATION BENCHMARKS

Figure 2. MediaPod Virtualization Overhead

Figure 3. MediaPod Checkpoint/Restart vs. Regular Startup Latency

measurement events. Figure 2 summarizes the overhead
imposed by MediaPod on regular applications running on
a system with MediaPod (/with pod) as well as applications
running within MediaPod itself (/in pod). Figure 2 shows
that MediaPod virtualization overhead is small. MediaPod
incur less than 10% overhead for most of the micro-
benchmarks, this is due to the fact that for the majority of
system calls MediaPod just has to perform a simple identifier
translation. On the other hand, one system call, msgget is
significantly larger due to its use of keys for interprocess
communication. MediaPod has to perform multiple internal
kernel calls to ensure that processes in different pods do
not end up with the same underlying physical key. This
would allow them to directly communicate and therefore
break MediaPod’s isolation model. However, this system
call and the other illustrate the fact that MediaPod’s kernel
virtualization inserts very little overhead for regular appli-
cations because the large majority of an application’s time
is not spent doing system calls that MediaPod virtualizes.
For example, a process only runs the msgget system call
when its sets up its access to the queue. This is only done
once per message queue for the process’ life time.

To measure the cost of checkpointing and restarting
MediaPod sessions as well as demonstrating MediaPod’s

224

ability to improve the way a user make use of their multime-
dia desktop environments, we migrated multiple MediaPod
sessions containing different sets of running desktop and
multimedia applications between reboots on the machine
described above. We migrated two multimedia video ses-
sions to demonstrate that MediaPod can play files encoded
in different ways. We used the Totem media player to play
an XviD encoded version of a DVD, while Ogle was used
to play a straight DVD image copied to the MediaPod.
We similarly migrated a MediaPod KDE desktop that was
playing an mp3 file using the mpg123 program, as well as
a regular user’s KDE desktop containing the KWord word
processor, KSpread spreadsheet, Konqueror web browser
and a PDF file viewer all with content loaded. In all
cases, MediaPod was able to checkpoint its complete state
and resume it exactly as it was after migration. Figure 3
shows how long it took to checkpoint and restart MediaPod
sessions containing the different multimedia and desktop
applications. We compared the performance against the time
it takes to simply restart the applications.

Figure 3 shows that it is significantly faster to checkpoint
and restart a MediaPod multimedia desktop session than
it is to have to start the same kind of desktop and multi-
media application session from scratch. Checkpointing and
restarting a MediaPod even with complex applications, such
as an entire KDE desktop and a DVD player, is very fast
compared to regular startup. This allows a MediaPod user
to very quickly disconnect from a machine and plug-in to
another machine and immediately start using his applications
again. Although the mpg123 application appears to start
faster than MediaPod, this is because it’s not an apple to
apple comparison. MediaPod restarts an entire KDE desktop
environment, and its many megabytes of code, whereas the
plain mpg123 test simply measures how long it takes to start
the simple 136 KB mpg123 program.

In general, Figure 3 shows that starting applications the
traditional way is much slower, even when installed on a
7200 RPM hard disk as opposed to a slow USB storage
device. Part of this reason is that to start an environment
from fresh involves a lot of runtime overhead as it parses
what hardware and services are available. For instance,
the totem media player checks to see if there is network
connectivity, if the system has a CROM drive and if it
can hook into the system’s hardware abstraction layer to be
notified of hardware events such as compact disk insertion.
On the other hand, programs like DVD players take a while
to start up because of filler, such as the FBI warning, trailers
and the DVD menu, that are inserted at the beginning of the
film and can not be skipped. In Figure 3 we show the times
it takes for the Ogle DVD player to startup and reach the
point where one can start watching.

Table II shows the amount of storage needed to store the
checkpointed multimedia desktop sessions using MediaPod
for each of three separate MediaPod environments. The

Totem Ogle mpg123 KDE
Checkpoint 44 MB 27 MB 17 MB 81 MB
File System 633 MB 633 MB 633 MB 633 MB
Total 677 MB 660 MB 650 MB 714 MB

Table II
MEDIAPOD STORAGE REQUIREMENTS

results reported show checkpointed image sizes without
applying any compression techniques to reduce the image
size. These results show that the checkpointed state that
needs to be saved is very modest and easy to store on
any portable storage device. Given the modest size of the
checkpointed images, there is no need for any additional
compression which would reduce the minimal storage de-
mands but add additional latency due to the need to compress
and decompress the checkpointed images. The checkpointed
image size in all cases was less than 90 MB. Our results
show that total MediaPod storage requirement, including
both the checkpointed image size and the file system size,
is much less than what can fit in a small 1 GB USB drive.

VI. RELATED WORK

The emergence of cheap, portable storage devices has led
to the many interesting applications. Portable multimedia
systems such as the Apple iPod [7] are very popular as their
small form factor allows them to be easily carried anywhere.
Unlike MediaPod, these devices are self-contained and can
play multimedia content directly. However, unlike MediaPod
which takes advantage of whatever hardware is available,
these devices limit you to a system with a small screen,
limited battery life and inferior sound.

Various applications run from USB drives have been
created. Portable Firefox [8] can run a Web browser from a
USB drive, but does not provide a generic environment for
running desktop and multimedia applications. The Collec-
tive [9], Moka5 [10], and SoulPad [11] allow suspending
and resuming a virtual machine stored on a USB drive.
Unlike MediaPod, SoulPad does not rely on any software
installed on the host as it uses Knoppix Linux to boot the
host from the USB drive. However, it requires minutes to
start up given the need to boot and configure an entire
operating system for the specific host being used. It does not
fully support saving multimedia device state and therefore
cannot suspend and resume audio and video applications
correctly. MediaPod is designed specifically for a user’s
multimedia desktop applications, which lets it be much
more lightweight. MediaPod requires less storage so that it
can operate on smaller USB drives and does not require
rebooting the host into another operating system so that
it starts up much faster. We build on our previous work
providing portable, persistent computing using USB drives
for Web browsing [12] and desktop computing [13], but
extend it in MediaPod to support more general multimedia
applications and multimedia devices such as audio which
are crucial for migrating persistent multimedia applications
between machines.

225

Thin clients, such as Sun’s SunRay [14] and Microsoft’s
Windows Terminal Services [15], provide some of the bene-
fits of MediaPod, leveraging a common environment every-
where. More recent thin clients such as THINC [6] support
multimedia applications as well. These approaches require
persistent network connectivity to a thin-client server. Unlike
thin clients, since MediaPod moves the applications to
the machine where the user is located, it can provide its
functionality even when network connectivity is intermittent
or not available.

VII. CONCLUSIONS

We have introduced MediaPod, a portable system that
enhances user’s desktop and multimedia experience by pro-
viding them with a persistent application session wherever
they are located and on whatever computer they are using.
MediaPod allows an entire desktop and multimedia applica-
tion session to be stored on a small portable storage device
that can be easily carried on a key chain or in a user’s pocket.

MediaPod provides its functionality by virtualizing op-
erating system, display and sound resources, decoupling a
desktop and multimedia application session from the host
on which it is currently running. MediaPod virtualization
works together with a checkpoint-restart mechanism to allow
MediaPod users to suspend their sessions, move around,
and resume their respective sessions at a later time on
any computer right where they left off. MediaPod’s ability
to migrate desktop and multimedia application sessions
between differently configured and administered computers
provides improved end user mobility.

We have implemented and evaluated the performance
of a MediaPod prototype in Linux. Our implementation
demonstrates that MediaPod supports regular desktop and
multimedia applications without any changes to the appli-
cations or the underlying host operating systems kernels.
Our experimental results with real applications shows that
MediaPod has low virtualization overhead and can migrate
desktop and multimedia application sessions with very fast
checkpoint-restart times. MediaPod is unique in it’s ability
to provide a complete, persistent, and consistent multimedia
desktop environment that is not limited to a single machine.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CNS-
0426623, CNS-0717544, and CNS-0914845.

REFERENCES

[1] VMware, Inc., http://www.vmware.com.

[2] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The Design and
Implementation of Zap: A System for Migrating Computing
Environments,” in Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI 2002),
Boston, MA, Dec. 2002.

[3] O. Laadan and J. Nieh, “Transparent Checkpoint- Restart of
Multiple Processes on Commodity Operating Systems,” in
Proceedings of the 2007 USENIX Annual Technical Confer-
ence, Jun. 2007.

[4] O. Laadan, R. Baratto, D. Phung, S. Potter, and J. Nieh,
“DejaView: A Personal Virtual Computer Recorder,” in Pro-
ceedings of the 21th ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2007.

[5] R. Baratto, S. Potter, G. Su, and J. Nieh, “MobiDesk: Mobile
Virtual Desktop Computing,” in Proceedings of the Tenth
Annual ACM International Conference on Mobile Computing
and Networking (MobiCom 2004), Philadelphia, PA, Sep.
2004.

[6] R. A. Baratto, L. N. Kim, and J. Nieh, “THINC: A Virtual
Display Architecture for Thin-Client Computing,” in Pro-
ceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2005.

[7] Apple Computer, Inc., “iPod,” http://www.apple.com/ipod/.

[8] “PortableApps.com,” http://portableapps.com/.

[9] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam,
“The Collective: A Cache-Based System Management Ar-
chitecture,” in 2nd conference on Symposium on Networked
Systems Design and Implementation, Apr. 2005, pp. 259–272.

[10] Moka5, “Moka5 Technology Overview,” http://www.moka5.
com/node/381, November 2006.

[11] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath,
“Reincarnating pcs with portable soulpads,” in MobiSys ’05:
Proceedings of the 3rd international conference on Mobile
systems, applications, and services. New York, NY, USA:
ACM, 2005, pp. 65–78.

[12] S. Potter and J. Nieh, “WebPod: Persistent Web Browsing
Sessions with Pocketable Storage Devices,” in Proceedings
of the 14th International World Wide Web Conference (WWW
2005), Chiba, Japan, May 2005.

[13] ——, “Highly Reliable Mobile Desktop Computing in Your
Pocket,” in Proceedings of the IEEE Computer Society Sig-
nature Conference on Software Technology and Applications
(COMPSAC), Sep. 2006.

[14] “Sun Ray Clients,” http://www.sun.com/sunray.

[15] B. Cumberland, G. Carius, and A. Muir, Microsoft Windows
NT Server 4.0, Terminal Server Edition: Technical Reference.
Redmond, WA: Microsoft Press, Aug. 1999.

226

