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Abstract

We have created ZapC, a novel system for transparent
coordinated checkpoint-restart of distributed network ap-
plications on commodity clusters. ZapC provides a thin
virtualization layer on top of the operating system that de-
couples a distributed application from dependencies on the
cluster nodes on which it is executing. This decoupling en-
ables ZapC to checkpoint an entire distributed application
across all nodes in a coordinated manner such that it can
be restarted from the checkpoint on a different set of cluster
nodes at a later time. ZapC checkpoint-restart operations
execute in parallel across different cluster nodes, provid-
ing faster checkpoint-restart performance. ZapC uniquely
supports network state in a transport protocol independent
manner, including correctly saving and restoring socket and
protocol state for both TCP and UDP connections. We have
implemented a ZapC Linux prototype and demonstrate that
it provides low virtualization overhead and fast checkpoint-
restart times for distributed network applications without
any application, library, kernel, or network protocol modi-
fications.

1 Introduction

Application checkpoint-restart is the ability to save a
running application at a given point in time such that it can
be restored at a later time at the exact same point at which
it was saved. Checkpoint-restart has tremendous poten-
tial benefits for cluster computing environments, including
fault resilience by migrating applications off of faulty clus-
ter nodes, fault recovery by restarting from the last check-
point instead of from scratch, improved resource utilization
by being able to checkpoint resource-intensive jobs when
load is high and restarting such jobs again later when the
load is lower, dynamic load balancing by migrating appli-
cation processes to less loaded cluster nodes, and improved

service availability and administration by checkpointing ap-
plications processes before cluster node maintenance and
restarting them on other cluster nodes so that applications
can continue to run with minimal downtime.

Many important applications are distributed and run on
multiple nodes in a cluster, especially resource-intensive
scientific applications. For these applications, a checkpoint-
restart mechanism needs to not only save and restore the ap-
plication state associated with each cluster node, but it must
ensure that the state saved and restored across all partici-
pating nodes is globally consistent. Checkpoint and restart
must be coordinated across all participating nodes to ensure
that application processes running on each node are syn-
chronized correctly. In particular, the network state of com-
munication links among application processes on different
nodes must be checkpointed and restarted such that nodes
properly agree on the state of messages being delivered. If a
node’s state reflects a message receipt, then the state of the
corresponding sender should reflect having sent that mes-
sage [14]. Although coordinated checkpoint-restart of dis-
tributed applications provides substantial potential benefits,
existing approaches [7, 12, 13, 15, 17, 27, 30, 35] have been
unable to provide this functionality transparently on clusters
running commodity operating systems and hardware.

We have created ZapC, a novel system that extends our
previous work on Zap [24] to provide transparent coordi-
nated checkpoint-restart of distributed network applications
on commodity clusters. ZapC provides a thin virtualiza-
tion layer on top of the operating system that decouples a
distributed application from the operating system instances
running on a set of cluster nodes. This frees the applica-
tion from dependencies on the cluster nodes on which it is
executing. ZapC virtualization also exposes the underlying
host operating system functionality directly to applications,
enabling parallel applications to efficiently utilize existing
multiprocessor operating system functionality.

By decoupling applications from the operating system
instances running on a set of cluster nodes, ZapC can check-
point an entire distributed application across all nodes in a
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coordinated manner so that it can be restarted at the check-
point on a different set of cluster nodes at a later time. In
checkpointing and restarting a distributed application, ZapC
separates the processing of network state from per node
application state. ZapC only requires synchronized oper-
ation in checkpointing the network state, which represents
a small fraction of the overall checkpoint time. Checkpoint-
restart operations on per node application state are designed
to proceed in parallel with minimal synchronization re-
quirements among nodes, resulting in faster checkpoint and
restart times. ZapC can also directly stream checkpoint data
from one set of nodes to another, enabling direct migration
of a distributed application to a new set of nodes without
saving and restoring state from secondary storage.

ZapC uniquely supports complete checkpoint-restart of
network state in a transport protocol independent manner
without application or library support. It leverages the
socket abstraction and correctly saves and restores all socket
state, including socket parameters, socket data queues, and
minimal protocol specific state. ZapC accomplishes this in
a portable manner using the standard socket interface with-
out detailed knowledge of the underlying network protocol
data structures. ZapC accounts for network state in a proto-
col independent manner for reliable and unreliable network
protocols, including TCP, UDP and raw IP.

We have implemented a ZapC prototype that runs across
multiple Linux operating system versions, including both
Linux 2.4 and 2.6 kernels, and demonstrated its effective-
ness on cluster systems in checkpointing and restarting a
number of real distributed application workloads, includ-
ing both MPI and PVM applications. Our results show
that ZapC imposes very low virtualization overhead and
provides fast checkpoint-restart times for unmodified dis-
tributed network applications. We show that ZapC uniquely
provides distributed checkpoint-restart functionality with-
out any application, library, kernel, or network protocol
modifications.

This paper focuses on the design and implementation
of the ZapC checkpoint-restart mechanism for distributed
applications. Section 2 describes related work. Section 3
provides an overview of the ZapC system architecture.
Section 4 presents the ZapC distributed checkpoint-restart
scheme. Section 5 discusses ZapC support for checkpoint-
restart of network state. Section 6 presents performance re-
sults using ZapC on a number of distributed network appli-
cations. Finally, we present some concluding remarks.

2 Related Work

Many application checkpoint-restart mechanisms have
been proposed [25, 28]. Application-level checkpoint-
restart mechanisms are directly incorporated into the ap-
plications, often with the help of languages, libraries, and

preprocessors [11, 20]. These approaches are generally the
most efficient, but they are not transparent, place a major
burden on the application developer, may require the use of
nonstandard programming languages, and cannot be used
for unmodified or binary-only applications.

Library checkpoint-restart mechanisms [26, 36] reduce
the burden on the application developer by only requiring
that applications be compiled or relinked against special li-
braries. However, such approaches do not capture important
parts of the system state, such as interprocess communica-
tion, network sockets and threading.

Library-level distributed checkpoint-restart mechanisms
resort to substituting standard message-passing middle-
ware, such as MPI [5] and PVM [6], with specialized
checkpoint-aware middleware versions. [29] provides a
good survey. To perform a checkpoint they flush all the data
communication channels to prevent loss of in-flight mes-
sages. Upon restart they reconstruct the network connec-
tivity among the processes, and remap location information
according to how the network addresses have changed. Ex-
amples include MPVM (MIST) [13], CoCheck [27], LAM-
MPI [30], FT-MPI [17],C3 [12], Starfish [7], PM2 [35] and
CLIP [15]. These library-level approaches require that ap-
plications be well-behaved. They cannot use common oper-
ating system services as system identifiers such as process
identifiers cannot be preserved after a restart. As a result,
these approaches can only be used for a narrow range of
applications.

Operating system checkpoint-restart mechanisms utilize
kernel-level support to provide greater application trans-
parency. They do not require modification to the appli-
cation source code nor relinking of the application object
code, and typically allow a checkpoint at any time. Ear-
lier approaches [22, 23, 31] required specialized operating
systems or invasive kernel modifications. More recent ap-
proaches such as CRAK [37] and its successor Zap [24]
have been designed as loadable kernel modules that can
be used with unmodified commodity operating systems.
These systems provide checkpoint-restart only for applica-
tions running on a single node. ZapC builds on our previ-
ous work on Zap to provide general coordinated checkpoint-
restart of distributed network applications running on com-
modity multiprocessor clusters.

Unlike other operating system checkpoint-restart mech-
anisms, BLCR [16] and Cruz [21] provide support for coor-
dinated checkpoint-restart of distributed applications. How-
ever, BLCR does not support checkpoint-restart of socket
state and relies on modifying applications to cooperate
with checkpoint-aware message passing middleware [16].
BLCR also cannot restart successfully if a resource identi-
fier is required for the restart, such as a process identifier, is
already in use.

Cruz [21] also builds on Zap, but is based on an out-
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dated and incomplete Linux 2.4 implementation. It restricts
applications to being moved within the same subnet and re-
quires unique, constant network addresses for each appli-
cation endpoint. It cannot support different network trans-
port protocols but instead uses low-level details of the Linux
TCP implementation to attempt to save and restore network
state to provide checkpoint-restart of distributed network
applications in a transparent manner. This is done in part by
peeking at the data in the receive queue. This technique is
incomplete and will fail to capture all of the data in the net-
work queues with TCP, including crucial out-of-band, ur-
gent, and backlog queue data. No quantitative results have
been reported to show that Cruz can restart distributed ap-
plications correctly.

3 Architecture Overview and Pods

ZapC is designed to checkpoint-restart an entire dis-
tributed network application running on a set of cluster
nodes. It can be thought of in terms of three logical com-
ponents: a standalone checkpoint-restart mechanism based
on Zap that saves and restores non-network per-node appli-
cation state, a manager that coordinates a set of agents each
using the standalone checkpoint-restart mechanism to save
and restore a distributed application across a set of cluster
nodes in a consistent manner, and a network checkpoint-
restart mechanism that saves and restores all the necessary
network state to enable the application processes running
on different nodes to communicate. For simplicity, we de-
scribe these ZapC components assuming a commodity clus-
ter in which the cluster nodes are running independent com-
modity operating system instances and the nodes all have
access to a shared storage infrastructure. For example, a
common configuration would be a set of blade servers or
rackmounted 1U servers running standard Linux and con-
nected to a common SAN or a NAS storage infrastructure.

ZapC’s standalone checkpoint-restart mechanism uses
the pod (PrOcess Domain) virtual machine abstraction pre-
viously introduced in Zap. To execute a distributed applica-
tion across a set of cluster nodes, ZapC encapsulates the ap-
plication processes running on each node in a pod to decou-
ple those processes from the underlying host. Unlike a tradi-
tional operating system, each pod provides a self-contained
unit that can be isolated from the system, checkpointed to
secondary storage, migrated to another machine, and trans-
parently restarted. This is made possible because each pod
has its own virtual private namespace, which provides the
only means for processes to access the underlying operat-
ing system. To guarantee correct operation of unmodified
applications, the pod namespace provides a traditional en-
vironment with unchanged application interfaces and access
to operating system services and resources.

Operating system resource identifiers, such as process

IDs (PIDs), must remain constant throughout the life of a
process to ensure its correct operation. However, when a
process is moved from one operating system instance to an-
other, there is no guarantee that the destination system will
provide the same identifiers to the migrated process; those
identifiers may in fact be in use by other processes in the
system. The pod namespace addresses these issues by pro-
viding consistent, virtual resource names. Names within a
pod are trivially assigned in a unique manner in the same
way that traditional operating systems assign names, but
such names are localized to the pod. Since the namespace
is virtual, there is no need for it to change when the pod is
migrated, ensuring that identifiers remain constant through-
out the life of the process, as required by applications that
use such identifiers. Since the namespace is private to a
given pod, processes within the pod can be migrated as
a group, while avoiding resource naming conflicts among
processes in different pods. ZapC transparently remaps pod
virtual resources to real operating system resources as a
pod migrate from one node to another. For example, ZapC
only allows applications in pods to see virtual network ad-
dresses which are transparently remapped to underlying real
network addresses as a pod migrates among different ma-
chines. This enables ZapC to migrate distributed applica-
tions to any cluster regardless of its IP subnet or addresses.

Pod namespaces are supported using a thin virtualization
layer based on system call interposition mechanism and the
chroot utility with file system stacking to provide each
pod with its own file system namespace. ZapC’s pod vir-
tualization layer is designed to be implemented entirely in
a dynamically loadable kernel module. A key issue that is
addressed is the lack of atomicity of system call interposi-
tion when implemented in a kernel module separate from
the base kernel. To provide multiprocessor support for vir-
tualization, ZapC provides a set of low overhead reference
counts to address potential race conditions that can occur in
multiprocessor systems.

ZapC combines pod virtualization with a pod
checkpoint-restart mechanism that employs higher-
level semantic information specified in an intermediate
format rather than kernel specific data in native format to
keep the format portable across different kernels. ZapC
by default assumes a shared storage infrastructure across
cluster nodes and does not generally save and restore file
system state as part of the pod checkpoint image to reduce
checkpoint image size. Instead, ZapC can be used with
already available file system snapshot functionality [2, 19]
to also provide a checkpointed file system image. Further
details on the pod virtualization and checkpoint-restart
mechanisms are discussed elsewhere [10, 24, 34].

With ZapC, a distributed application is executed in a
manner that is analogous to a regular cluster, ideally plac-
ing each application endpoint in a separate pod. For exam-
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ple, on multiprocessor nodes that run multiple application
endpoints, each endpoint can be encapsulated in a separate
pod. To leverage mobility, it is advantageous to divide the
application into many independent pods, since the pod is the
minimal unit of migration. This allows for maximum flex-
ibility when migrating the application. ZapC can migrate a
distributed application running onN cluster nodes to run on
M cluster nodes, where generallyN 6= M . For instance,
a dual-CPU node may host two application endpoints en-
capsulated in two separate pods. Each pod can thereafter be
relocated to a distinct node; they do not need to be migrated
together to the same node.

4 Distributed Checkpoint/Restart

To checkpoint-restart a distributed network application,
ZapC provides a coordinated checkpoint-restart algorithm
that uses the pod checkpoint-restart mechanism and a novel
network state checkpoint-restart mechanism described in
Section 5. We assume that all the network connections are
internal among the participating nodes that compose the dis-
tributed application; connections going outside of the clus-
ter are beyond the scope of this paper. Although ZapC
allows multiple pods to execute concurrently on the same
node, for simplicity, we describe ZapC operation below as-
suming one pod per node.

Our coordinated checkpointing scheme consists of a
Managerclient that orchestrates the operation and a set of
Agents, one on each node. The Manager is the front-end
client invoked by the user and can be run from anywhere,
inside or outside the cluster. It accepts a user’s checkpoint
or restart request and translates it into a set of commands to
the Agents. The Agents receive these commands and carry
them out on their local nodes.

The Manager maintains reliable network connections
with the Agents throughout the entire operation. Therefore
an Agent failure will be readily detected by the Manager as
soon as the connection becomes broken. Similarly a fail-
ure of the Manager itself will be noted by the Agents. In
both cases, the operation will be gracefully aborted, and the
application will resume its execution.

A checkpoint is initiated by invoking the Manager with
a list of tuples of the form¿node, pod, URIÀ. This list
specifies the nodes and the pods that compose the dis-
tributed application, as well as the destination for the check-
pointed data (URI). The destination can be either a file
name or a network address of a receiving Agent. This fa-
cilitates direct migration of an application from one set of
nodes to another without requiring that the checkpoint data
first be written to some intermediary storage.

The Manager and the Agents execute the checkpoint al-
gorithms given in Figure 1. Given a checkpoint request,
the Manager begins with broadcasting acheckpoint

command to all participating nodes. Upon receiving the
command, each Agent initiates the local checkpoint proce-
dure, that is divided into four steps: suspending the des-
ignated pod, invoking the network-state checkpoint, pro-
ceeding with the standalone pod checkpoint, and finalizing
the checkpoint. The Agent also performs three companion
steps,2a , 3a , and4a in Figure 1, which are not directly
related to the local checkpoint procedure, but rather to its
interaction with the Manager.3a and4a both test the same
condition, ensuring that the Agent only finishes after hav-
ing satisfied two conditions: it has reported “done”, and it
received thecontinuemessage from the Manager.

Each Agent first suspends its respective pod by send-
ing a SIGSTOP signal to all the processes in the pod to
prevent those processes from being altered during check-
point. To prevent the network state from changing, the
Agent disables all network activity to and from the pod.
This is done by leveraging a standard network filtering ser-
vice to block the links listed in the table; Netfilter [3] comes
standard with Linux and provides this functionality. The
Agent then obtains the networkmeta-dataof the node, a ta-
ble of¿state, source, targetÀ tuples showing all net-
work connections of the pod. This is the first information
saved by the Agent as part of the checkpoint and is used
by the restart procedure to correctly reconstruct the net-
work state. Thesource and target fields describe the
connection endpoint IP addresses and port numbers. The
state field reflects the state of the connection, which may
be full-duplex, half-duplex, closed (in which case there may
still be unread data), or connecting. The first three states are
for established connections while the last state is a transient
state for a not yet fully established connection.

Checkpoint Manager:
1 Send ’checkpoint’ to Agents
2 Receive meta-data from Agents
3 Send ’continue’ to Agents
4 Receive status from Agents

Checkpoint Agent:
1 Suspend pod, block network
2 Take network checkpoint
2a Report meta-data to Manager
3 Take standalone checkpoint
3a If received ’continue’ then

unblock network
4 Report ’done’
4a While not received ’continue’

wait for Manager

Figure 1. Coordinated checkpoint algorithms

Once the pod’s network is frozen, the Agent checkpoints
the network state. When finished, the Agent notifies the
Manager that it has concluded its network state checkpoint,
and reports itsmeta-data. It then proceeds to perform the
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standalone pod checkpoint. The Agent cannot complete
the standalone pod checkpoint until the Manager has re-
ceived themeta-datafrom all participating Agents, at which
point the Manager tells the Agents they can continue. ZapC
checkpoints the network state before the other pod state to
enable more concurrent checkpoint operation by overlap-
ping the standalone pod checkpoint time with the time it
takes for the Manager to receive themeta-datafrom all par-
ticipating Agents and indicate that they can continue.

In the last step, the action taken by the Agent depends on
the context of the checkpoint. If the application should con-
tinue to run on the same node after the checkpoint (i.e. tak-
ing a snapshot), the pod is allowed to resume execution by
sending aSIGCONTto all the processes. However, should
the application processes migrate to another location, the
Agent will destroy the pod locally and create a new one at
the destination site. In both cases, a file-system snapshot (if
desired) may be taken immediately prior to reactivating the
pod.

3.   continue               unblock network

2.   send meta−data           barrier 4.   report                   done

1.   checkpoint                 stop, block network

Standalone checkpointNormal execution Network checkpoint

Node 1

Node N
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Figure 2. Coordinated checkpoint timeline

To provide a better understanding of the checkpoint tim-
ing requirements, Figure 2 illustrates a typical checkpoint
timeline. The timeline is labeled with numbers that cor-
respond to the steps of the checkpoint algorithm as de-
scribed in Figure 1. The timeline shows that the that the en-
tire checkpoint procedure executes concurrently in an asyn-
chronous manner on all participating node for nearly its en-
tire duration. Figure 2 shows the only synchronization point
is the “sync” at the Manager after step 2 and during step 3.

This single synchronization is necessary and sufficient
for the checkpoint procedure to be coherent and correct. It
is necessary for the Agents to synchronize at the Manager
before completing their standalone pod checkpoints and un-
blocking their networks. Otherwise it would be possible
for one node to resume operation, re-engage in network ac-
tivity, and deliver data to another node that had not begun
its checkpoint. This would result in an inconsistent global

state, as the state of the latter node will contain data that is
not marked as sent in the already-saved state of the former.

The single synchronization is sufficient since every pod
ensures consistency by blocking its connections indepen-
dently of other pods. Once a pod has blocked its connec-
tions, there is no interaction with any other pod even if the
network of other pods is not yet blocked. The pod is already
isolated and does not need to wait for all other pods to block
their connections. By not having to wait for other pods ini-
tially, the network activity is only blocked for the minimal
required time.

A restart is initiated by invoking the Manager with a list
of tuples of the form¿node, pod, URIÀ. This list de-
scribes the mapping of the application to nodes and pods,
whereURI indicates the location of the checkpoint data. A
key requirement of the restart is to restore the network con-
nections of the distributed application. A naive approach
would be to manually create the internal kernel data struc-
tures and crowd them with the relevant data, but this is not
easy and requires intimate knowledge of the protocol imple-
mentation, tight cooperation between the peers, and care-
ful adjustments of protocol-dependent parameters. Since
ZapC is restarting the entire distributed application, it con-
trols both ends of each network connection. This makes
it straightforward to reconstruct the communicating sockets
on both sides of each connection using a pair ofconnect
and accept system calls. This leverages the standard
socket interface for creating network connections and re-
sults in a robust, easy to implement and highly portable ap-
proach.

Using this approach, the Manager and the Agents exe-
cute the restart algorithms given in Figure 3, which are sim-
ilar to the checkpoint counterparts. Given a restart request,
the Manager begins sending arestart command to all
the Agents accompanied by a modified version of themeta-
data. Themeta-datais used to derive a new network con-
nectivity map by substituting the destination network ad-
dresses in place of the original addresses. This will outline
the desired mapping of the application to nodes/pods pairs.
In the case of a restart on the same set of nodes (e.g. recov-
ering from a crash), the mapping is likely to remain unmod-
ified. In the case of migration, the mapping will reflect the
settings of the alternate execution environment, particularly
the network addresses at the target cluster.

As part of the modifiedmeta-data, the Manager provides
a schedule that indicates for each connection which peer
will initiate and which peer will accept. This is done by tag-
ging each entry as either aconnector accepttype. This is
normally determined arbitrarily, except when multiple con-
nections share the same source port number. Source port
numbers can be set by the application if not already taken
or assigned automatically by the kernel; specifically when
a TCP connection is accepted, it inherits the source port
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Restart Manager:
1 Send ’restart’ and

meta-data to Agents
2 Receive status from Agents

Restart Agent:
1 Create a new pod
2 Restore network connections
3 Invoke network restart
4 Invoke standalone restart
5 Report ’done’

Figure 3. Coordinated restart algorithms

number from the “listening” socket. To correctly preserve
the source port number when shared by multiple connec-
tions, these connections must be created in a manner that re-
sembles their original creation, as determined by the above
schedule.

The Agents respond to the Manager’s commands by cre-
ating an empty pod into which the application will be re-
stored. It then engages the local restart procedure, which
consists of three steps: recovering the network connectiv-
ity, restoring the network state, and executing the applica-
tion standalone restart. Once completed, the pod will be
allowed to resume execution without further delay.

The recovery of the network connectivity is performed
in user space and is fairly straight forward. Themeta-data
that the Agent received from the Manager completely de-
scribes the connectivity of the pod, and can be effectively
used as a set of instructions to re-establish the desired con-
nections. The Agent simply loops over all the entries (each
of type connector accept), and performs the suitable ac-
tion. If the statefield is other than full-duplex, the status
of the connection is adjusted accordingly. For example, a
closed connection would have theshutdown system call
executed after the rest of its state has been recovered.

Generally, these connections cannot be executed in any
arbitrary order, or a deadlock may occur. Consider for in-
stance an application connected in a ring topology (each
node has two connections - one at each side): a deadlock oc-
curs if every node first attempts to accept a connection from
the next node. To prevent such deadlocks, rather than us-
ing sophisticated methods to create a deadlock-free sched-
ule, we simply divide the work between two threads of ex-
ecution. One thread handles requests for incoming connec-
tions, and the other establishes connections to remote pods.
Hence, there is no specific order at which connections re-
quests should arrive at the Agent. The result is a simple and
efficient connectivity recovery scheme, which is trivial to
implement in a portable way.

Once the network connectivity has been re-established,
the Agent initiates the restart of the network-state. This en-
sures that we reinstate the exact previous state of all net-

work connections, namely connection status, receive queue,
send queue and protocol specific state. Similarly to the dis-
tributed checkpoint, the motivation for this order of actions
is to avoid forced synchronization points between the nodes
at later stages. In turn, this prevents unnecessary idle time,
and increases concurrency by hiding associated latencies.
With this framework, the only synchronization that is re-
quired is indirect and is induced by the creation of network
connections. As demonstrated in Section 6, the standalone
restore time greatly dominates the total restore time, and
fluctuates considerably. Positioning it as the first to exe-
cute may lead to imbalances and wasted idle time due to the
synchronization that follows. Instead, our scheme manages
to both minimize the loss by doing it early, and enable the
pods continue their execution as soon as they conclude their
standalone restart.

A key observation about our restart scheme is that it does
not require that the network be disabled for any intermediate
period. Recall that with checkpoint, the network was shut
off to ensure a consistent state. The challenge was to capture
the state of live connections that already carry data in the
queues, and are likely to be transient. Conversely the re-
established network connections are entirely controlled by
out restart code. It is guaranteed that no data, but that which
we choose to explicitly send, will be transmitted through the
connection, until the application resumes execution (which
will only occur at the end of the restart).

The final notch of the procedure is the standalone restart,
invoked locally by each Agent after the network state has
been successfully restored. To conclude the entire opera-
tion, each Agent sends a summary message to the Manager,
specifying the completion status (failure or success) and the
name of the new pod that has been created. The Manager
collects this data from all the Agents and reports it back to
the user.

5 Network-State Checkpoint/Restart

The network-stateof an application is defined by the
collection of the network-states of its communication end-
points. From the application’s standing point, the primary
abstraction of a communication endpoint is asocket. A
socket is associated with a network protocol upon creation.
The application can bind a socket to an address, connect to
an address, accept a connection, as well as exchange data.
The operating system in turn, keeps a certain amount of
state for each socket. The network-state checkpoint-restart
is responsible for capturing and restoring this state.

The state of a socket has three components: socket pa-
rameters, socket data queues and protocol specific state.
The socket parameters describe socket properties related to
its state, e.g. connected or not, and to its behavior, e.g.
blocking or non-blocking I/O. The data queues - specifi-
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cally send and receive queues, hold incoming and outgoing
data respectively, that is handle by the network layer. Proto-
col specific data describes internal state held by the protocol
itself. For instance, TCP connection state and TCP timers
are part of its state.

Saving the state of the socket parameters is fairly
straightforward. Recall that while taking a network-state
checkpoint, the processes in the pod are suspended and can-
not alter the socket state. Also, the network is blocked and
is only restarted later on after all the applications involved
in the checkpoint have terminated their local network-state
checkpoint. That given, the socket parameters can be safely
extracted at this point. Furthermore, these properties are
user-accessible via a standard interface provided by the op-
erating system, namelygetsockopt andsetsockopt
system calls. We build on this interface to save the socket
parameters during checkpoint and restore it during restart.
For correctness, the entire set of the parameters is included
in the saved state (for a comprehensive list of such options,
refer to [33]).

The socket’s receive and send queues are stored in the
kernel. They hold intermediate data that has been received
by the network layer but not yet delivered to (read by) the
application, as well as data issued by the application that
has not yet been transmitted over the network.

With unreliable protocols, it is normally not required to
save the state of the queue. Packet loss is an expected be-
havior and should be accounted for by the application. If
the restart does not restore a specific segment of data it can
be interpreted as a legitimate packet loss. One exception,
however, is if the application has already “peeked” at (that
is, examined but not consumed) the receive queue. This is
a standard feature in most operating system and is regularly
used. To preserve the expected semantics, the data in the
queue must be restored upon restart, since its existence is
already part of the application’s state. With reliable proto-
cols, on the other hand, the queues are clearly an integral
part of the socket state and cannot be dispensed of. Conse-
quently we chose to have our scheme always save the data
in the queues, regardless of the protocol in question. The
advantage is that it prevents causing artificial packets loss
that would otherwise slowdown the application shortly af-
ter its restart, the amount of time it lingers until it detects
the loss and fixes it by retransmission.

In both cases (reliable and unreliable protocols) in-flight
data can be safely ignored. Such data will either be dropped
(for incoming packets) or blocked (for outgoing packets)
by the network layer, since the pod’s network is blocked
for the duration of the checkpoint. With unreliable protocol
this is obviously an expected behavior. Reliable protocols
will eventually detect the loss of the data and consequently
retransmit it.

Saving the state of the receive queue and the send queue

necessitates a method to obtain their contents. It is criti-
cal that the method be transparent and not entail any side-
effects that may alter the contents of the queue. Should the
state of the queue be altered, it would be impossible to per-
form error recovery in case the checkpoint operation is to be
rolled back due to an error in a posterior stage. Moreover,
if the intent is to simply take a snapshot of the system, a de-
structive method is entirely inadequate as it will adversely
affect the application’s execution after the snapshot is taken.

One method to obtain the contents of the receive queue is
to use theread system call in a similar way as applications,
leveraging the native kernel interface to read directly from a
socket. To avoid altering the contents of the queue by drain-
ing the data off, this can be done in “peek” mode, that only
examines the data but does not drain the queue. Unfortu-
nately, this technique is incomplete and will fail to capture
all of the data in the network queues with TCP, including
crucial out-of-band, urgent, and backlog queue data.

Another approach is to examine the socket directly and
read the relevant data by traversing the socket buffers at a
low level. However, the receive queue is of asynchronous
nature and is tightly integrated with the implementation of
the TCP/IP protocol stack. Reading the chain of buffers
requires deep understanding of the relevant kernel mecha-
nisms as well as interpretation of protocol specific informa-
tion. The result is a prohibitively intricate and non-portable
approach.

To get around this we adopt the approach described be-
low, that handles the restore of a socket’s receive queue. In
particular, we read the data off the socket using the standard
read system call, while at the same time injecting it back
into the socket. The data ends up attached to the socket as
if it has just been restored. Effectively this means that even
though the receive queue was modified, the application is
still guaranteed to read this data prior to any new data arriv-
ing on the network, similar to other restored data.

The kernel does not provide interface to insert data into
the receive queue, and doing so requires intimate knowl-
edge of the underlying network protocol. This difficulty
is overcome by observing that it is sufficient that the ap-
plication consumes the restart data before any newer data
that arrives to the socket. We therefore allocate an alter-
nate receive queue in which this data is deposited. We then
interpose on the socket interface calls to ensure that future
application requests will be satisfied with this data first, be-
fore access is made to the main receive queue. Clearly, the
checkpoint procedure must save the state of the alternate
queue, if applicable (e.g. if a second checkpoint is taken
before the application reads its pending data).

Technically, interposition is realized by altering the
socket’s dispatch vector. The dispatch vector determines
which kernel function is called for each application inter-
face invocation (e.g.open , write , read and so on).

7
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Specifically we interpose on the three methods that may in-
volve the data in the receive queue:recvmsg , poll and
release . Interposition only persists as long as the alter-
nate queue contains data; when the data becomes depleted,
the original methods are reinstalled to avoid incurring over-
head for regular socket operation.

Interposing onrecvmsg is required in order to use the
alternate queue as the source for the data, rather than the
original queue. Thepoll method is included since it pro-
vides asynchronous notification and probing functionality
by examination of the receive queue. Finally, therelease
method is important to properly handle cleanup (in case the
data has not been entirely consumed before the process ter-
minates).

Extracting the contents of the send queue is more in-
volved than the receive queue, as there does not exist a stan-
dard interface from which we can leverage, that provides
access to that data. Instead the data is accessed by inspect-
ing the socket’s send queue using standard in-kernel inter-
face to the socket layer (normally used by protocol code
and device drivers). This is accomplished without altering
the state of the send queue itself. While the receive queue is
tightly coupled to the protocol specifics and roughly reflects
the random manner in which the packets arrived, the send
queue is more well organized according to the sequence of
data send operations issued by the application. For this rea-
son, unlike with the receive queue, reading the contents of
the send queue directly from the socket buffers remains rel-
atively a simple and portable operation.

Finally, restoring the state of the send queue is almost
trivial: given the re-established connection, the data is re-
sent by means of the standardwrite system call. The un-
derlying network layer will take care of delivering the data
safely to the peer socket. In the case of migration, a clever
optimization is to redirect the contents of the send queue
to the receiving pod and merge it with (or append to) the
peer’s stream of checkpoint data. Later during restart, the
data will be concatenated to the alternate receive queue (of
course, only after the latter has been restored). This will
eliminate the need to transmit the data twice over the net-
work: once when migrating the original pod, and then again
when the send queue is processed after the pod resumes ex-
ecution. Instead it will merge both into a single transfer,
from the source pod to the destination pod.

We now discuss how the protocol specific state is saved
and restored. The portion of this state that records the pro-
tocol properties is exported to the socket layer and can be
accessed by the applications. TCP options that activate
and deactivate keep-alive timers (TCP_KEEPALIVE), and
semantics of urgent data interpretation (TCP_STDURG) are
two such examples. The saved state includes the entire set
of these options, and they are handled in a similar way to
the socket options, as discussed before. ([33] contains a

representative list of such options).
The remaining of the state is internal, and holds dynamic

operational data. Unlike accessing the socket layer which is
a common practice in kernel modules, access to the pro-
tocol’s state requires intimate knowledge of its internals.
Restoring such a state entails carefully handcrafted imita-
tion of the protocol’s behavior. If a portable solution is
sought, it is notably desirable to identify the minimal state
that must be extracted. As discussed before, the minimal
state for unreliable protocols is nil, inherently to their na-
ture. We now discuss reliable protocols.

With reliable protocols, the internal state typically keeps
track of the dynamics of the connection to guarantee deliv-
ery of messages. Data elements are tagged with a sequence
numbers, and the protocol records the sequence number of
data that has been transmitted but not yet acknowledged.
Timers are deployed to trigger resubmission of unacknowl-
edged data (on the presumption that it had been lost), and to
detect broken connections. Each peer in a connection tracks
three sequence numbers: last data sent (sent ), last data re-
ceived (recv ) and last data acknowledged by the other peer
(acked ).

recv

send

begin
recv

Receive

(A) Non overlapping queues

Queue
acked

queue

Send

...

send

begin
recv

queue

Queue

Receive

Send

acked

recv

3631 32 33 34 35 37 38 39 40 41 43 44 45 46 47 48 ...49

(B)  Overlapping queues

36... 31 32 33 34 35 37 38 39 40 41 43 44 45 46 47 48 ...49

Figure 4. Non-overlapping and overlapping
data queues

An important property of reliable protocols is the follow-
ing invariant: recv1 ≥ acked2 (where the subindices 1 and 2
designate the peers of connection). The reason is that upon
receiving data, a peer updates itsrecv value, and sends an
acknowledgment. If the acknowledgment is not lost, it will
arrive with some small delay, and then the other peer will
update itsacked value. It follows that a send queue always
holds data betweenacked and sent —that is the unac-
knowledged data. The receive queue holds data from some
point back in time untilrecv . If recv1 > acked2 there will
be some overlap between the two queues. This settings is
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depicted in Figure 4. The overlap must be fixed during the
restart operation, before the application consumes duplicate
data. This can be done by discarding extraneous data from
either queue. It is more advantageous to discard that of the
send queue to avoid transferring it over the network.

We claim that a necessary and sufficient condition to en-
sure correct restart of a connection, is to capturerecv and
acked values on both peers. This data, along with addi-
tional protocol specific information, is located in a protocol-
control-block (PCB) data structure that is associated with
every TCP socket. The concept of a PCB is ubiquitous
to the TCP stack, although the details of its layout differ
between distinct implementations. It follows that the need
to access these fields does not impair the portability of our
scheme, but merely requires a trivial adjustment per imple-
mentation.

We now show that the minimal state that we need to
extract sums up to the aforementioned sequence numbers.
Given the discussion above, these values are necessary in
order to calculate the extent of the redundant data to be dis-
carded. They are sufficient since the remainder of the data
is in the socket queues, and is already handled as described
above. It follows that our approach results in a network state
checkpoint/restart solution that is almost entirely indepen-
dent of transport layer protocol. It is optimal in the sense
that it requires no state from unreliable protocols, and the
minimal state from transport protocols - that portion of the
state the reflects the overlap between a send queue and the
corresponding receive queue.

Some applications employ timeout mechanism on top of
the native protocol, as a common technique to detect soft
faults and dead locks, or to expire idle connections. It is also
used to implement reliable protocols on top of unreliable
ones (e.g. over UDP). The application typically maintains
a time-stamp for each connection, updating its value when-
ever there is activity involving the connection. Time-stamps
are inspected periodically, and the appropriate action is trig-
gered if the value is older than a predefined threshold.

It follows that if there is sufficient delay between the
checkpoint and the restart, certain applications may ex-
perience undesired effect if the timer value exceeds the
threshold and expires. We resolve this by virtualizing those
system calls that report time. During restart we compute
the delta between the current time and the current time as
recorded during checkpoint. Responses to subsequent in-
quiries of the time are then biased by that delay. Standard
operating system timers owned by the application are also
virtualized. At restart, their expiry time is set in a similar
manner by calculating the delta between the original clock
and the current one. We note that this sort of virtualization is
optional, and can be turned on or off per application as nec-
essary (so that application that strictly require knowledge of
the absolute time can operate normally).

ZapC can transparently checkpoint-restart the network
state of TCP, UDP and IP protocols, and therefore any dis-
tributed application that leverages these widely-used pro-
tocols. However, some high performance clusters employ
MPI implementations based on specialized high-speed net-
works where it is typical for the applications to bypass
the operating system kernel and directly access the actual
device using a dedicated communication library. Myrinet
combined with the GM library [1] is one such example.
The ZapC approach can be extended to work in such en-
vironments if two key requirements are met. First, the li-
brary must be decoupled from the device driver instance,
by virtualizing the relevant interface (e.g. interposing on
theioctl system call and device-dependent memory map-
ping). Second, there must be some method to extract the
state kept by the device driver, as well as reinstate this state
on another such device driver.

6 Experimental Results

We have implemented a ZapC prototype as a Linux ker-
nel module and associated user-level tools. Our prototype
runs on multiple Linux operating system versions, includ-
ing the Linux 2.4 and 2.6 series kernels which represent the
two major versions of Linux still in use today. We present
some experimental results on various size clusters with both
uniprocessor and multiprocessor nodes running real appli-
cations to quantify ZapC’s virtualization overhead, check-
point and restart latencies, and the resulting checkpoint im-
age sizes.

To measure ZapC performance, we used four distributed
applications that use MPI (version MPICH-2 [18]) and
PVM (version 3.4), representing a range of different com-
munication and computational requirements typical of sci-
entific applications. One of the applications used PVM
while the rest used MPI. Each pod is seen as an individ-
ual node so each pod runs one of the respective daemons
(mpd or pvmd). The configuration detail needed to do this
for more than one pod on a physical machine, is to specify a
ssh port default for each pod in .ssh/config that the daemon
will use to initiate contact with other pods. The applications
tested were:

1. CPI — parallel calculation of Pi provided with the
MPICH-2 library that uses basic MPI primitives and
is mostly computationally bound.

2. BT/NAS[8] — the Block-Tridiagonal systems (BT)
from the NAS parallel benchmark that involves sub-
stantial network communication along the computa-
tion.

3. PETSc[9] — a scalable package of PDE solvers that is
commonly used by large-scale applications, in partic-
ular the Bratu (SFI - solid fuel ignition) example, that
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Figure 5. Application completion times on vanilla Linux and ZapC

uses distributed arrays to partition the problem grid
with a moderate level of communication.

4. POV-Ray[4] (PVM version) — a CPU-intensive ray-
tracing application that fully exploits cluster paral-
lelism to render three-dimensional graphics.

The measurements were conducted on an IBM HS20 eS-
erver BladeCenter, a modest-sized cluster with ten blades
available. Each blade had dual 3.06 GHz Intel XeonTM

CPUs, 2.5 GB RAM, a 40 GB local disk, and Q-Logic Fi-
bre Channel 2312 host bus adapters. The blades were in-
terconnected with a Gigabit Ethernet switch and connected
through Fibre Channel to an IBM FastT500 SAN controller
with an Exp500 storage unit with ten 70 GB IBM Fibre hard
drives. Each blade used the GFS cluster file system [32] to
access the shared SAN.

We measured the applications running across a range of
cluster configurations. We ran the ZapC Manager on one
of the blades and used the remaining nine blades as clus-
ter nodes for running the applications. We configured each
cluster node as a uniprocessor node and ran each application
except BT/NAS on 1, 2, 4, 8 and 16 nodes. We ran BT/NAS
on 1, 4, 9 and 16 nodes because it required a square number
of nodes to execute. We also configured each cluster node
as a dual-processor node and ran each of the applications
on eight of the nodes. Since each processor was effectively
treated as a separate node, we refer to this as the sixteen
node configuration. Results are presented with each blade
running Linux 2.6, specifically Debian Linux with a 2.6.8.1
kernel. Linux 2.4 results were similar and are omitted due
to space constraints.

6.1 Virtualization Measurements

We measured ZapC virtualization overhead by compar-
ing the completion times of the applications running on two
configurations, which we refer to asBaseandZapC. Base
was running each application using vanilla Linux with-
out ZapC, thereby measuring baseline system performance.

ZapCwas running each application inside ZapC pods. Each
execution was repeated five times and the results were aver-
aged over these runs.

Figure 5 shows the average completion times of the dif-
ferent benchmarks for different numbers of nodes. The re-
sults show that the completion times using ZapC are almost
indistinguishable from those using vanilla Linux. Results
for larger cluster systems were not available due to the lim-
ited hardware that was available at the time of the experi-
ments. However, the results on a modest cluster size show
that ZapC does not impact the performance scalability of
the applications as the relative speedup of the applications
running on larger clusters is essentially the same for both
vanilla Linux and ZapC.

ZapC virtualization overhead was in all cases much
smaller than even the variation in completion times for each
configuration across different runs. This further validates
that ZapC’s thin virtualization layer imposes negligible run-
time overhead on real applications. The standard deviation
in the completion times for each configuration was gener-
ally small, but increased with the number of nodes up to
roughly 5%. The variations were largely due to differences
in how much work the applications allocated to each node
from one execution to another.

6.2 Checkpoint-Restart Measurements

We measured ZapC checkpoint-restart performance by
running each of the four distributed applications and tak-
ing ten checkpoints evenly distributed during each applica-
tion execution. We measured checkpoint and restart times
for each application as well as the checkpoint image sizes
for each application. Due to the limited number of nodes
available, restarts were done using the same set of blades
on which the checkpoints were performed. These results
are shown in Figure 6.

Figure 6a shows the average checkpoint times for each
application as measured by taking the average time across
all ten checkpoints. This is the time from the invocation of
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Figure 6. Application checkpoint-restart measurements using ZapC

the Manager by the user until all pods have reported “done”,
as measured by the Manager. The time includes the time
to write the checkpoint image of each pod to memory and
represents the time that the application needs to be stopped
for the checkpoint to occur, which provides an indication of
how frequently checkpoints can be done with minimal im-
pact on application completion time. This does not include
the time to flush the checkpoint image to disk, which can be
done after the application resumes execution and is largely
dependent on the bandwidth available to secondary storage.

Figure 6a shows that checkpoint times are all subsecond,
ranging between 100 ms and 300 ms across all four appli-
cations. For a given application and a given cluster size, the
standard deviation in the checkpoint times ranged from 10%
to 60% of the average checkpoint time. For all applications,
the maximum checkpoint time was no more than 200 ms of
the respective average checkpoint time. For all checkpoints,
the time due to checkpointing the network state as seen by
the respective Agent was less than 10 ms, which was only
3% to 10% of the average checkpoint time for any applica-
tion. The small network-state checkpoint time supports the
motivation for saving the network state as the first step of
the distributed checkpoint, as discussed in Section 4.

Figure 6b shows the restart times for each application as
measured based on the time it took to restart the respective
application from its checkpoint image. This is the time from
the invocation of the Manager by the user until all pods have
reported “done”, as measured by the Manager. The time as-
sumes that the checkpoint image has already been preloaded
into memory and does not include the time to read the im-
age directly from secondary storage. To provide a conserva-
tive measure of restart time, we restarted from a checkpoint
image taken in the middle of the respective application’s
execution during which the most extensive application pro-
cessing is taking place.

Figure 6b shows that restart times are all subsecond,
ranging between 200 ms and 700 ms across all four appli-
cations. The restart times are longer than the checkpoint

times, particularly POV-Ray which takes the longest time
to restart. Restart times are longer than checkpoint times
in part because additional work is required to reconstruct
the network connections of the participating pods. The
network-state restart time in most cases ranges between 10
ms and 200 ms.

Figure 6c shows the size of the checkpoint data for each
application running with different numbers of cluster nodes.
For a given application and cluster configuration, the check-
point image size shown is the average over all the ten check-
points of the largest image size among all participating
pods. Since the checkpoints of each pod largely proceed
in parallel, the checkpoint size of the largest pod provides
a more useful measure than the total checkpoint size across
all pods. In most cases, the checkpoint size of the largest
pod decreases as the number of nodes increases since the
workload assigned to each node also decreases. The check-
point size for CPI goes from 16 MB on 1 node to 7 MB
on 16 nodes, the checkpoint size for PETSc goes from 145
MB on 1 node to 24 MB on 16 nodes, and the checkpoint
size for BT/NAS goes from 340 MB to 35 MB on 16 nodes,
an order of magnitude decrease. Only POV-Ray has a rela-
tively constant checkpoint size of roughly 10 MB. These re-
sults suggest that the maximum pod checkpoint image size
scales down effectively as the size of the cluster increases.
This provides good performance scalability for larger clus-
ters since checkpoint size can be an important factor in the
time it takes to read and write the checkpoint image to disk.

For the applications we measured, the checkpoint size
of the largest pod was much larger than the portion of the
checkpoint size due to network-state data. The size of the
network-state data was only a few kilobytes for all of the
applications. For instance in the case of CPI, the network-
state data saved as part of the checkpoint ranged from 216
bytes to 2 KB. Most parallel applications are designed to
spend significantly more time computing than communicat-
ing given that communication costs are usually much higher
than computation costs. Therefore, at any particular point
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in time, it is most likely that an application has no pending
data in its network queues as it is likely to have already been
delivered. It follows that the application data largely dom-
inates the total checkpoint data size. Our results show that
application data in a checkpoint image can be many orders
of magnitude more than the network data.

7 Conclusions

We have designed, implemented and evaluated ZapC, a
system that provides transparent coordinated checkpoint-
restart for distributed applications on commodity clusters.
ZapC achieves this functionality without modifying, recom-
piling, or relinking applications, libraries, operating system
kernels, or network protocols. ZapC provides three key
mechanisms. First, it utilizes a thin virtualization layer to
decouple applications from the underlying operating system
instances, enabling them to migrate across different clusters
while utilizing available commodity multiprocessor operat-
ing system services. Second, it introduces a coordinated,
parallel checkpoint-restart mechanism that minimizes syn-
chronization requirements among different cluster nodes to
efficiently perform checkpoint and restart operations. Third,
it integrates a network state checkpoint-restart mechanism
that leverages standard operating system interfaces as much
as possible to uniquely support complete checkpoint-restart
of network state in a transport protocol independent manner,
for both reliable and unreliable protocols.

We have implemented ZapC across multiple versions of
Linux and evaluated its performance on a broad range of
distributed scientific applications. Our results demonstrate
that ZapC incurs negligible overhead and does not impact
application scalability. Furthermore, they show that ZapC
can provide fast, subsecond checkpoint and restart times
of distributed applications. Our results show that network-
state checkpoint and restart account for a very small part of
the overall time, suggesting that our approach can scale to
many nodes.
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