

3rd International Symposium on Impact Engineering ’98, 7-9 December 1998, Singapore

A PARALLEL ALGORITHM FOR THE DEFORMATION AND INTERACTION
OF STRUCTURES MODELED WITH LAGRANGE MESHES IN AUTODYN-3D

M. S. Cowler, T. Wilson
Century Dynamics Inc. 2333 San Ramon Valley Blvd. San Ramon, CA 94583, USA

(E-mail: msc@autodyn.com)

O. La’adan
Institute of Computer Science, Hebrew University of Jerusalem,
Givat Ram, Jerusalem, 91904, Israel (E-mail: orenl@cs.huji.ac.il)

Abstract

A parallel algorithm for treating the deformation of structures modeled with Lagrange meshes and
their impact and interaction with each other has been implemented in the AUTODYN-3D program. The
algorithm, which uses separate parallel decompositions for the structural deformation calculation and the
contact detection / interaction computation, allows efficient processing on both Massively Parallel
Processors (MPP) and Scalable Computing Clusters (SCC), including clusters of PC's. This allows many
simulations including impacts, explosions and fluid-structure interactions to take advantage of the high-
speed computing capabilities of modern parallel processing systems.

In this paper we describe the novel parallel algorithm and its dynamic load-balancing scheme for

contact detection. We also analyze the performance of impact calculations using this algorithm in terms
of timing and scalability on two computer systems:

• A four-workstation cluster using an Ethernet network (10 Mb/s)

• A Linux cluster utilizing 16 PCs with a fast Ethernet network (100 Mb/s).

Keywords: parallel processing, Lagrange, impact, AUTODYN.

1. Introduction

AUTODYN-3D is a general-purpose non-linear solid, fluid and gas dynamics program that is

routinely used to calculate a wide variety of impact problems [1]. These calculations can be highly
computationally intensive if large numbers of elements are employed and extensive surface areas exist,
that require testing for impact. To allow such calculations to be performed in more practical time frames,
a new parallel domain decomposition and contact detection algorithm have been implemented in
AUTODYN-3D for Lagrange grids. It was developed for message-passing MIMD parallel architectures,
such as Massively Parallel Processors (MPP) and Scalable Computing Clusters (SCC).

The approach that has been adopted is straightforward domain decomposition whereby each Lagrange

grid is statically partitioned into smaller grids called sub-domains. These sub-domains are distributed
amongst the processors of the parallel machine so as to minimize inter-processor communications and
balance the computational load. Contacts occur when a surface element of one grid interpenetrates
another surface element, necessitating a global search of Cartesian space to find possible contacts. Since

contacts can occur between sub-domains owned by different processors, a second, dynamic domain
decomposition of Cartesian space is used for the contact calculations.

2. The Serial Contact Algorithm

The Lagrange computation used for each time step in AUTODYN-3D is described in the AUTODYN

Theory Manual [2]. At the end of this computation, the tentative new positions of surface nodes have
been computed, but there is a possibility that these surfaces may have interpenetrated. A contact
algorithm has been implemented to test for, and deal with such cases.

In principal, any two surface elements anywhere in the simulation can come in contact with each other
during some timestep, even those that belong to the same object (self-interaction). Checking for all such
contacts requires a global search in Cartesian space, and in practice can take 50% of the overall CPU
time. For efficiency, the contact nodes and faces are spatially sorted to speed this computation and avoid
unnecessary tests of distant elements. Thus, the algorithm can be considered in two parts. Firstly, a
calculation is performed to identify neighboring nodes/faces that require to be checked for interaction.
Secondly, a detailed interaction calculation is performed for all these identified nodes/faces.

Determining which nodes/faces require to be checked for interactions is achieved by a bucket-sort. A grid
of virtual work units is defined in Cartesian space. Each work unit is a cube, with sides twice the smallest
face dimension of all interacting faces. In tests, this cube size was found to not only yield the most
efficient computing times (due to the fine sort), but also to generate sufficient work units to allow
efficient load-balancing for the parallelization (described later). These work units are virtual because
storage for a particular work unit is only allocated when it is determined that the work unit contains
nodes/faces that are to be tested for interaction.

The bucket-sort loops over all the surface nodes and faces of a problem, and constructs a linked list of the
actual work units required for a particular analysis. The sort is performed in two passes, in which all the
nodes are sorted, and then the faces are sorted.

First, each node is added to the work unit, which contains it. A hash table is used to achieve fast access
time to the virtual work units, effectively speeding the entire sort. If the work unit does not exist, it is
created at that stage.

Next, looping over all surface faces of the problem, each face is added to all work units, which contain
nodes that might interact with the face. This is determined by checking each node of the face to see if it is
contained within, or is in close proximity to, a work unit’s domain. At this stage, only work units that
already contain surface nodes are considered. The proximity test is based on the size of the contact
detection zone used for the interaction logic and the amount of “slack” allowed to enable the calculations
described here to be performed less frequently than every cycle.

Finally, the node and face tables built for each work unit in the linked list are examined to determine the
total number of node/face interactions that will be required to be computed for the work unit (this number
is used to facilitate load-balancing in the parallel version). In general, this will equal the total number of
nodes in the work unit times the total number of faces. However, this can be reduced if, for example, self-
interaction of a subgrid with itself is not permitted, or two subgrids have been specified not to interact
with each other. If the total number of interactions required to be computed for a work unit is found to be
zero, then the work unit is removed from the linked list.

At the end of this procedure a compact group of work units has been generated, each containing a list of
surface nodes and faces that require testing for interaction. Each node has been uniquely assigned to a
particular work unit. Faces have been assigned to multiple work units, as required. These lists may be
valid for a number of computational cycles, depending on the proximity test used to determine potential

node-face interactions and on changes in surface definitions (if Lagrange zones are eroded or removed,
surfaces need to be redefined).

The detailed interaction calculation that is performed between the nodes and faces in each work unit

list is very robust in that every impact is detected and dealt with correctly regardless of the deformation
and relative movement of bodies or changes in surface definitions. The method is based on the work
published by Thoma and Vinckier [3].

The key to the robustness of this method is

the construction of a contact detection zone
around each surface face that provides
complete “padding” to the face. The contact
detection zone for a face is shown in figure 1. It
consists of two quadrilateral zones (one on each
side of the face), four semi-cylindrical zones
along the edges of the face, and spherical zone
segments that close the areas around the four
corners of the face. If the face is not co-planar,
it is split into four triangular faces around its
mid-point and these are treated in the same
way. In AUTODYN, the radius of the contact
detection zone is referred to as the “gap” size.
Since contact detection zones of adjacent
surface faces always overlap, the algorithm
guarantees that no holes exist in the contact
surface.

Nodal forces due to contact are added to the internal forces obtained for each element. These forces

are computed using a penalty method whereby if any node enters the contact detection zone of a face, it is
repelled by a force proportional the depth of penetration of the node into the zone. The gap size is usually
set between 10% and 50% of the smallest face dimension.

An additional time step constraint is

required for interaction calculations, which
satisfies the condition that no node is able to
travel more than 20% of the gap distance in
one time step.

The example in figure 2 illustrates the use

of the contact detection algorithm. It shows
the crushing of an octagonal steel girder
impacting a rigid wall at 20 m/s. The girder
was modeled with 4100 shell elements and in
this case it was possible to accurately
simulate the shell thickness by setting the gap
size to half this dimension. This problem is a
severe test for any contact logic and despite the gross buckling, no erroneous surface penetrations were
observed.

3. The Parallel Lagrange Calculation

Figure 2: Crushing of octagonal steel girder

Figure 1: Contact detection zone (top)
with exploded view (bottom)

Parallelizing the Lagrange calculation is a fairly straightforward task. Each Lagrange grid is defined

in a three-dimensional index space (I,J,K). Each grid element interacts only with the neighboring
elements in this index space. For parallel calculations, each Lagrange grid is divided along index planes
in the I, J and K directions to form smaller grids called sub-domains. A load-balancing algorithm is
employed to distribute these sub-domains evenly amongst the available processors, with each sub-domain
being processed as if it were a Lagrange grid in serial processing (this allows most of the source code for
serial processing to be used without modification). When the nodal forces have been calculated for the
sub-domains, inter-processor communications are required to exchange forces on the boundaries of sub-
domains that are owned by different processors. The load-balancing algorithm attempts to minimize the
amount of data exchanged in this way.

It is important to note that because the grid structure does not normally change during the simulations

(except Lagrange zones that may be eroded and therefore removed), a static decomposition of the entire
index space is sufficient to achieve good performance.

4. The Parallel Contact Algorithm

The contact detection algorithm was developed to allow straightforward parallelization. The approach
used is very similar to that used to parallelize the processing of Lagrange subgrids. The work units
generated to contain the nodes and faces to be tested for impact are treated in much the same way as sub-
domains. Thus, the domain decomposition used for the contact detection algorithm is different from that
used for Lagrange calculations.

A second load-balancing algorithm has been implemented that efficiently distributes the work units
among the available processors, assuming each processor has either the same speed or a pre-determined
relative speed provided by the user. Since different domain decompositions are used for the Lagrange
calculation and the interaction computation, this algorithm attempts to minimize the inter-processor
communications required between these two decompositions.

Although a static decomposition is used for the Lagrange calculation, a dynamic decomposition is used
for the interaction computation. Consequently, load balancing of the newly formed work units is
performed for each cycle on which a sort is
carried out. This allows interaction calculations
to remain well load-balanced even when
surfaces are reconfigured as the simulation
progresses, or during the erosion (removal) of
Lagrange zones.

As our results will show, the contact algorithm
generates sufficient work units during the sort
phase to allow efficient load balancing for
parallel processing. Furthermore, the scheme
uses simpler communication patterns than those
that rely on recursive coordinate bisection
(RCB) to assign equal amounts of nodes to all
processors, and adapts well to heterogeneous
systems where processors may have different
CPU speeds and workloads that may vary with
time.

5. Benchmark Calculations

Figure 3: Benchmark calculation

Two benchmark calculations have been performed to test the efficiency and scalability of the parallel

processing for typical impact situations. Both calculations simulated a 30cm x 30cm x 10cm steel
projectile plate impacting a 30cm x 30cm x 20cm aluminum target plate (figure 3). The calculations used
27,000 elements. The first benchmark assumed that coincident projectile and target nodes were joined
together forming a continuous, non-slip interface. This meant that no contact detection processing was
necessary and the calculation tested only the efficiency of the Lagrange calculations using domain
decomposition. The second benchmark assumed free-slip contact surfaces between the projectile and
target and therefore tested the efficiency of both the domain decomposition and the contact detection
process.

Tests were performed on an Ethernet network (10 Mb/s) of four DEC Alpha machines using the PVM

message passing protocol. Calculation times using 1-4 machines are given in table 1 for both benchmarks.

Table 1: Average cycle times for benchmark #1 and benchmark #2 (Ethernet)

Benchmark # 1 Benchmark # 2 No. of
machines Sec/Cycle Speed-up Efficiency Sec/Cycle Speed-up Efficiency

1 57.0 1 100% 59.5 1 100%
2 29.5 1.93 97% 31.2 1.91 97%
3 20.1 2.84 95% 21.4 2.78 93%
4 16.0 3.56 89% 17.4 3.42 86%

Similar benchmarks were performed using a 16 PC (Pentium II 300MHz) cluster running Linux on a

fast Ethernet network (100 Mb/s) with PVM. For this system, a larger grid representing a 40cm x 40cm x
10cm steel projectile plate impacting a 40cm x 40cm x 30cm aluminum target plate was used. Both
calculations used 64,000 elements. Calculation times on this system are given in table 2 for these
benchmarks.

Table 2: Average cycle times for benchmark #1 and benchmark #2 (Fast Ethernet)

Benchmark # 1 Benchmark # 2 No. of
machines Sec/Cycle Speed-up Efficiency Sec/Cycle Speed-up Efficiency

1 90.9 1 100% 94.0 1 100%
2 45.0 2.02 100% 47.8 1.97 98%
4 22.5 4.04 100% 24.4 3.85 96%
8 11.4 7.97 99% 12.3 7.64 96%
16 5.9 15.4 96% 6.4 14.69 92%

Figure 4 shows the performance of the two benchmarks and the speed-up obtained, using the PC
cluster. The dashed line denotes perfect speed-up. In both parallel and serial calculations, most of the
computation time is spent either in Lagrange calculations or in contact detection. As the results show,
both portions of the code perform well, and a good parallel efficiency is achieved. In spite of the slow
network that incurs relatively large latency, a near-optimal speed-up is obtained, with the increase in the
number of processors.

Figure 4: Performance of both benchmarks on a Linux based PC cluster, with fast Ethernet.

It is interesting to examine the behavior of the parallel interaction algorithm. The benchmark used a

total of 64,000 elements. Of these, 12,000 (20%) were surface elements. About 3200 work units were
allocated during the sort, with each work unit holding 4-10 nodes and 12-30 faces. The fine sort
eliminated unnecessary impact tests, and allowed large flexibility for the dynamic load-balancing
algorithm to distribute the workload evenly among the processors. Indeed, the speedup for the second
benchmark is hardly impaired even for 16 processors (with relatively fine problem granularity).

5. Conclusions

An efficient and scalable parallel algorithm for computing the deformation and interaction of

structures using Lagrange grids has been developed. The algorithm uses a static decomposition for
processing the Lagrange grid and a dynamic decomposition for computing contact surfaces.

Calculations using the new algorithm have been shown to be more than 90% efficient on low-speed

Ethernet networks (10 Mb/s) and close to 100% efficient on a fast Ethernet (100 Mb/s) network.
Benchmark calculations show almost perfect scalability for up to 16 processors (the maximum we have
tested so far).

Testing is currently underway on PC clusters running Windows NT and on the scalable computing

cluster at HUJI utilizing over 80 PCs on a high-speed Myrinet (1200 Mb/s) network.

References

[1] N. K. Birnbaum, M. S. Cowler, M. Itoh, M. Katayama, H. Obata, AUTODYN – An interactive non-

linear dynamic analysis program for microcomputers through supercomputers, 9th International
conference on Structural Mechanics in Reactor Technology (SmiRT), Lausanne, August 1987.

[2] AUTODYN Theory Manual, Century Dynamics, 1997.
[3] K. Thoma, D. Vinckier, Numerical simulation of a high velocity impact on fiber reinforced materials,

IMPACT IV, SMiRT post-conference seminar, Berlin, Germany, August 23-24 1993.

0
2
4
6
8

10
12
14
16
18

0 2 4 6 8 10 12 14 16
No. of processors

S
p

ee
d

u
p

Benchmark#1 Benchmark#2 Perfect

